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Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) protein family medi-

ates antiviral effects by inhibiting translation initiation, cell proliferation, and migration in the

interferon (IFN) dependent innate immune system. Several members of this family, includ-

ing IFIT1, IFIT2, IFIT3 and IFIT5, have been heavily studied in mammals. Avian species con-

tain only one family member, IFIT5, and little is known about the role of this protein in birds.

In this study, duck IFIT5 (duIFIT5) full-length mRNA was cloned by reverse transcription po-

lymerase chain reaction (RT-PCR) and rapid amplification of the cDNA ends (RACE).

Based on the sequence obtained, we performed a series of bioinformatics analyses, and

found that duIFIT5 was most similar to homologs in other avian species. Also, duIFIT5 con-

tained eight conserved TPRmotifs and two conserved multi-domains (TPR_11 and

TPR_12). Finally, we used duck hepatitis virus type 1 (DHV-1) and polyriboinosinicpolyribo-

cytidylic acid (poly (I:C)) as a pathogen or a pathogen-associated molecular pattern induc-

tion to infect three-day-old domestic ducklings. The liver and spleen were collected to

detect the change in duIFIT5 transcript level upon infection by quantitative real-time PCR

(qRT-PCR). DuIFIT5 expression rapidly increased after DHV-1 infection and maintained a

high level, while the transcripts of duIFIT5 peaked at 8h after poly (I:C) infection and then re-

turned to normal. Taken together, these results provide a greater understanding of avian

IFIT5.

Introduction
The innate immune system relies on a class of cytokines known as interferons (IFNs), which
are secreted by host cells in response to viral infection [1,2]. IFNs, combined with specific cell
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surface receptors, lead to high expression of a large group of IFN-stimulated genes (ISGs),
which inhibit viral replication, transcription and cell proliferation [3,4].

IFITs are among the most predominant ISGs, and based on extensive studies from recent
years, have been shown to play a significant role during viral infection [5]. Four members,
IFIT1 (p56; ISG56), IFIT2 (p54; ISG54), IFIT3 (p60; ISG60), and IFIT5 (p58; ISG58), constitute
an intimate family in mammals. IFITs are conserved in mammals, amphibians and fish, but do
not exist in lower animals. IFIT5 is the sole family member found in birds. Very little is known
about the function of IFIT5 in birds.

IFITs are characterized by multiple tetratricopeptide repeats (TPRs), degenerate helix–
turn–helix motifs of 34 amino acids in length. Different IFIT family members have distinct
numbers of TPR motifs, for example, IFIT1 has six TPR motifs, while IFIT5 has eight. Over the
past decade, the antiviral activity and mechanisms of action of IFIT proteins have been gradu-
ally elucidated. Recently, IFIT family members have been shown to selectively restrict viral rep-
lication by sensing the methylation status of the 5’-cap of some viral RNAs [6–8]. Viruses
hijack a cap from host mRNA or encode machinery to add a 5’-cap structure to their mRNA,
thereby escaping IFIT recognition [9]. More recently, the structural basis for viral 5’-PPP-RNA
recognition by human IFIT proteins has been unraveled, which validated the mechanism by
which IFIT proteins selectively recognize viral single-stranded RNA (ssRNA) [10].

In this study, we presented the molecular cloning and characterization of duIFIT5 and ana-
lyzed its expression during duck hepatitis virus type 1 (DHV-1) and poly (I:C) infection, to in-
vestigate infection by a single-stranded RNA (ssRNA) and a double-stranded RNA (dsRNA),
respectively. These data facilitated a better understanding of the role of duIFIT5 in immunity,
thus providing tools for future immunopathological studies.

Materials and Methods

Ethics Statement
All animal experiments were reviewed and approved by the Institutional Animal Care and Use
Committee of Yangzhou University. Experiments were performed in accordance with the Reg-
ulations for the Administration of Affairs Concerning Experimental Animals (Yangzhou Uni-
versity, China, 2012) and the Standards for the Administration of Experimental Practices
(Jiangsu, China, 2008). All operations were performed according to recommendations pro-
posed by the European Commission (1997), and all efforts were made to minimize suffering.

Animals and sample collection
All animals were obtained from the Chinese Waterfowl Germplasm Resource Pool (Taizhou,
China). To characterize gene expression, various tissues, including heart, liver, spleen, lung,
kidney, large intestine, small intestine, muscle, cerebrum, cerebellum, glandular stomach and
muscular stomach, were collected from healthy, adult, domestic ducks, frozen in liquid nitro-
gen, and stored at −80°C.

120 three-day-old domestic ducklings were randomly assigned to three groups and injected
with 0.4 mL of either allantoic fluid containing DHV-1, poly (I:C) (0.5 mg/mL, Invitrogen,
USA), or saline (as a control). Ducklings inoculated with DHV-1 appeared depressed soon,
showed little desire to eat, and began to die 1.5 d.p.i, whereas the forty ducklings inoculated
with poly (I:C) and saline have no symptoms. Samples from ducklings with no symptoms were
collected at 0, 4, 8, 12, 24, 36, 48, 72, and 96 h after injection. 4 ducklings per group were eutha-
nized after anesthesia with intraperitoneal injection of sodium pentobarbital (150mg/kg) at
each time point. The spleen and liver were snap-frozen in liquid nitrogen immediately after
dissection and stored at -80°C. Ducklings displayed symptoms were anaesthetic by using a low
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dose of sodium pentobarbital (50mg/kg). If ducklings displayed serious symptoms and seemed
moribund, they would be euthanized by using a high dose of sodium pentobarbital (150mg/kg)
and decollation.

RNA extraction and cDNA synthesis
Total RNA was extracted using Trizol reagent (Takara) according to the standard protocol.
1 μg of RNA isolated from the tissues was used to synthesize first strand cDNA with the cDNA
synthesis kit (Takara) according to the manufacturer’s protocol.

Cloning of duIFIT5
The TaKaRa 5’-Full RACE Kit and 3’-Full RACE Core Set Ver.2.0 were used according to the
manufacturer’s instructions to amplify the 5’ and 3’ ends of the cDNA, respectively. RACE
primers (S1 Table) were designed using the duIFIT5 CDS obtained from RT-PCR. Touchdown
and nested PCRs were performed according to the manufacturer’s instructions. Amplication
were then cloned into a plasmid vector for nucleotide sequencing, as described above.

Bioinformatic analysis
BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used to identify genes with homology to
IFIT5. Homology analyses of nucleotide and amino acid sequences were performed with
DNAstar software. A phylogenetic tree was generated by the neighbor joining method with
1000 bootstrap replicates in MEGA5.0. ESPript3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/
ESPript.cgi) was used to construct multiple alignments of the amino acid sequences of IFIT5
proteins. Conserved domains within duIFIT5 and human IFIT5 were identified through NCBI
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). The primary structure and subcellular
localization was analyzed using the ExPASy ProtParam tool (http://espript.ibcp.fr/ESPript/cgi-
bin/ESPript.cgi) and PSORT II Protein Sorting Prediction program (http://psort.ims.u-tokyo.
ac.jp/form2.html).

Quantitative real-time PCR (qRT-PCR)
To quantify duIFIT5 gene expression patterns, cDNA from different tissues was amplified in a
20 μL reaction using the Applied Biosystems 7500 real-time PCR system with the following
program: 1 cycle at 95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 34 s. All
cDNA samples were tested three times, and the results were normalized to duck glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) expression. The primers designed for real-time
PCR (P7 and P8 for duIFIT5; P9 and P10 for GAPDH) are shown in S1 Table. The relative ex-
pression levels of duIFIT5 in healthy and infected ducks were indicated by the 2− ΔCt and 2−
ΔΔCt methods, respectively.

Construction of plasmids and transient transfection
The CDS of duIFIT5 (P1 and P2) was cloned into the EGFP-C1 vector (Invitrogen, USA) di-
gested with XbaI and KpnI to produce the EGFP-C1-duIFIT5 plasmid. DF1 cells were seeded
at 2×105 cells/well (24-well plate), grown to 80% confluence, and then transfected with 2 μL
Lipofectamine-2000 transfection reagent (Invitrogen, USA) and 1μg of plasmid DNA
(EGFP-C1-duIFIT5 or EGFP-C1) according to the manufacturer’s instructions. The complexes
were removed after 6 h, and the complete growth medium was replaced. Finally, fluorescence
microscopy was used to detect the fluorescence in each well at 24 h post-transfection.

Identification and Expression Analysis of Duck IFIT5

PLOSONE | DOI:10.1371/journal.pone.0121065 March 27, 2015 3 / 11

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
http://psort.ims.u-tokyo.ac.jp/form2.html
http://psort.ims.u-tokyo.ac.jp/form2.html


Results

cDNA cloning of duIFIT5 and bioinformatics analysis
The full-length cDNA sequence of duIFIT5 was 2146 bp in size, including a 71 bp 50 UTR and
a 635 bp 30 UTR with the poly [A] tail (Genbank accession No.KF956064). The open reading
frame (ORF) was 1440 bp in length and encoded a predicted protein of 479 amino acids.
The nucleotide and predicted amino acid sequences of the duIFIT5 gene are shown are shown
in S1 Fig.

DNAStar software was used to analyze duIFIT5. Compared to the homologous gene se-
quences of nine other species obtained from Genbank, it had the highest homology to Falco
cherrug (up to 80.1%), followed byMeleagris gallopavo (up to79.7%), and about 50% homology
with other species (S2 Fig.). A condensed phylogenetic tree was constructed based on the
amino acid sequence of duIFIT5 compared to homologs in other organisms (Fig. 1). The over-
all topology of the tree revealed three major groups, including mammals, birds, and fish. DuI-
FIT5 was most similar to homologs of the other avian species. Aligning the amino acid
sequences of duIFIT5 homologs from several species using ESPript3.0 software, we found that
the amino acid sequences were conserved between mammals, fish, and birds (S3 Fig.). The con-
served domains predicted from the amino acid sequence included eight TPR modifs and two
multi-domains (TPR_11 and TPR_12), which is similar to the domain structure of human
IFIT5 (Fig. 2). The ExPASyProtParam and PSORT Protein Sorting Prediction tools were used
to analyze the primary structure and subcellular localization of duIFIT5. Primary structure
analysis showed that the predicted molecular weight was 55780.8 Da with a theoretical isoelec-
tric point of 6.57. Subcellular localization analysis predicted that duIFIT5 would be highly ex-
pressed in both the cytoplasm and nucleus (S2 Table).

Subcellular localization of duIFIT5 in DF1 cells
To confirm the above prediction, the EGFP-C1-duIFIT5 plasmid, or EGFP-C1 as a negative
control, was transfected into chicken embryo fibroblasts (DF1 cells), and fluorescence was ob-
served 24 h post-transfection (Fig. 3). DuIFIT5 was predominantly in the cytoplasmic, but was
also visualized in the nucleus.

Fig 1. Phylogenetic tree of IFIT5 amino acid sequences generated with the neighbor-joining tree
method. Numbers at each branch indicate the percent a node was supported in 1,000 bootstrap replicates.

doi:10.1371/journal.pone.0121065.g001
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Tissue expression of duIFIT5 in healthy ducks
To determine which tissues expressed duIFIT5, qRT-PCR was performed using gene specific
primers and cDNA templates synthesized from several tissues taken from healthy ducks. DuI-
FIT5mRNA was constitutively expressed in all 12 tissues tested. The highest expression levels
were observed in intestine (large intestine and small intestine) and stomach (glandular stomach
and muscular stomach) tissues, whereas the expression levels in other tissues were relatively
low, especially in heart, kidney and muscle. (Fig. 4).

Temporal expression of duIFIT5 after DHV-1 and poly (I:C) injection
Upon infection of ducklings with DHV-1, the major pathological change is hepatitis. The same
situation also appeared in the dead ducklings of our experiment. In addition, the spleen is an
important organ for immune system function. Therefore, liver and spleen tissues of treated
and untreated groups were collected to study the temporal expression of duIFIT5 with injection
of foreign RNA. The mRNA expression levels of duIFIT5 in liver and spleen were measured at

Fig 2. The predicted conserved domains predicted from the amino acid sequence of duIFIT5 and
human IFIT5. Both duIFIT5and human IFIT5 have eight TPRmotifs and multi-domains TPR_11 and
TPR_12.

doi:10.1371/journal.pone.0121065.g002

Fig 3. Subcellular localization of duIFIT5 in DF1 cells. EGFP-C1-duIFIT5 or an EGFP-C1 control plasmid
was transiently transfected into DF1 cells, shown in A and B, respectively. DuIFIT5was mostly in the
cytoplasmic, but was also detected in the nucleus.

doi:10.1371/journal.pone.0121065.g003
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various time points after injection (0, 4, 8, 12, 24, 36, 48, 72, 96 h) by qRT-PCR. For animals in-
fected with DHV-1, some subtle differences were observed in the expression patterns of the
spleen compared to the liver. In the liver, duIFIT5 expression sharply increased more than 200-
fold from 0–48 hours post-infection and expression levels remained high compared with that
of the control for the duration of the experiment. In the spleen, duIFIT5 expression peaked at
36 h post-infection, but only demonstrated a 40-fold increase with that of the control (Fig. 5).
After poly (I:C) injection, duIFIT5 expression rapidly increased in both liver and spleen during
the first eight hours post infection and reached a peak of 10–20 fold with that of that control,
then returned to normal levels by 36 h post induction (Fig. 6). These results showed that duI-
FIT5 sharply increased following both types of viral infection, but the temporal expression pat-
terns of DHV-1 group and poly (I:C) group were different. The expression pattern of DHV-
1group was similar between the liver and spleen, but duIFIT5 shown a stronger increase
in liver.

Discussion
We cloned the 2146-bp mRNA of duIFIT5, performed bioinformatics analysis, and determined
the subcellular localization of duIFIT5 in DF1 cells. We found duIFIT5 was closely related to
homologs found in turkey and chicken. Aligning the amino acid sequences of duIFIT5 homo-
logs from several species, we found that the domains were conserved between mammals, fish,
and birds. The analyses provided an evidence that the IFIT family is evolutionarily conserved
from mammals to birds. Besides, the conserved domains of duIFIT5 consisted of eight TPR
motifs and two multi-domains (TPR_11 and TPR_12), which was similar to the domain struc-
ture of human IFIT5. The presence of tandem arrays of multiple TPR domains provides a well-
suited space for mediating protein–protein interactions, potentially allowing IFIT proteins to
bind to specific proteins and RNAs, regulating the cell cycle[11–13]. Recently, the crystal struc-
ture of IFIT protein has been elucidated, revealing that helix-turn-helix TPR-like structures
exist in each subunit, forming a nucleotide channel which binds specific proteins and RNAs
[14,15]. This prompted us duIFIT5may have a similar fuction as human IFIT5.

Although IFITs are normally quiescent, their transcription is strongly induced by IFNs,
virus infection, and molecular patterns such as double-stranded RNA or lipopolysaccharides
[16,17]. We have demonstrated that this is coincident for duIFIT5. The relative expression
level of duIFIT5 compared to GAPDH is very low in most tissues, except in the intestine and

Fig 4. Relative expression levels of duIFIT5 in the following tissues: heart, liver, spleen, lung, kidney,
cerebrum, cerebellum, large intestine, small intestine, glandular stomach, muscular stomach, and
muscle. The expression of duIFIT5was normalized toGAPDH. Different letter showed significant difference
(p< 0.05).

doi:10.1371/journal.pone.0121065.g004
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Fig 5. Relative expression of duIFIT5 in liver (A) and spleen (B) after DHV-1 injection. qRT-PCRwas used to determine the relative expression of
duIFIT5 in liver and spleen tissues at 0, 4, 8, 12, 24, 36, 48, 72 and 96 h after infection with DHV-1. The expression of duIFIT5was normalized toGAPDH.
Different letter showed significant difference (p< 0.05).

doi:10.1371/journal.pone.0121065.g005
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Fig 6. Relative expression of duIFIT5 in liver (A) and spleen (B) after poly (I:C) injection. qRT-PCR was used to determine the relative expression of
duIFIT5 in liver and spleen tissues at 0, 4, 8, 12, 24, 36, 48, 72 and 96 h after infection with poly (I:C). The expression of duIFIT5was normalized toGAPDH.
Different letter showed significant difference (p< 0.05).

doi:10.1371/journal.pone.0121065.g006
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the stomach. The high expression in these tissues may be attributed to unknown microbes in
these organs, such as viruses, bacteria, and fungi, which potentially trigger induction of IFNs
[18,19].

Following we decided to mimic foreign RNA viral infection in vivo to determine the tempo-
ral expression of duIFIT5 after DHV-1 and poly (I:C) infection. The challenging ducklings ex-
periment with DHV-1 and poly (I:C) infection resulted in two different duIFIT5 temporal
expression patterns. There was a strong increase in duIFIT5 expression during both types of
viral infection, however, the experiment revealed a different expression tendency to DHV-
1and poly (I:C). In DHV-1 group, duIFIT5 expression sharply increased to a peak and main-
tained high. In Poly (I:C) group, duIFIT5 expression increased to a peak and rapidly returned
to the normal. This phenomenon may be caused by ducklings’ different resistance to the two
viruses. DHV-1 is an acute and fatal disease of young ducklings. It is very prevalent and results
in mortality rates higher than 90% in infected ducklings under 3 weeks of age [20–22]. As IFN-
αtranscripts greatly increase following DHV-1 infection[23], the elevated expression of duI-
FIT5 was expected in our study. And the recent hypothesis that IFIT5 specifically engage sin-
gle-stranded 5’-PPP-RNA could also explain why abundant transcripts of duIFIT5 persisted in
both liver and spleen. The major pathologic change in infected ducklings is hepatitis, hence,
the exceptionally higher expression level detected in the liver may be due to higher pressure
against numerous viruses. Similar IFIT5 expression changes have been observed upon avian in-
fluenza infection. Several papers have shown that IFIT5 is very highly expressed in avian influ-
enza infected ducklings [24,25]. Poly (I:C) is a synthetic double-stranded RNA that has been
identified as a product of viral replication [26]. Previous studies have demonstrated that IFN-β
and ISGs were over expressed by host cells after poly (I:C) infection [27]. Our result indicates
that upon poly (I:C) infection duIFIT5 obviously increased. Poly (I:C) is nontoxic or lentogenic
to duck, so the rapid return to basal level of duIFIT5 expression might be because ducklings
have a relatively high resistance to poly (I:C). Besides, our previous study have shown that
duck RIG-I gene had a similar expression pattern after poly (I:C) infection[28]. RIG-I is consid-
ered to be a upstream gene for IFITs[29,30], so the result could also demonstrate that duck
RIG-I and IFIT5 are well connected. Together, our study revealed duIFIT5 take part in both
ssRNA and dsRNA innate immune process, and two different expression patterns of duIFIT5
are put forth. These results provide a better understanding of IFIT5 in avian species.

Supporting Information
S1 Fig. Nucleotide and predicted amino acid sequences of duIFIT5.
(TIF)

S2 Fig. Homology comparison of IFIT5 amino acid sequences in duck and other verte-
brates. The columns and rows show numbers representing each species. The intersection be-
tween a row and column shows the amino acid homology of IFIT5 for the two
corresponding species.
(TIF)

S3 Fig. Amino acid alignment of IFIT5 homologs. The alignment of primary and secondary
structure of IFIT5 proteins from ten species, Homo sapiens (Homo), Gallus gallus (Gallus),
Meleagris gallopavo (Meleagris), Anas platyrhynchosv (Anas), Sus scrofa (Sus), Bos Taurus
(Bos), Poephila guttata (Poephila),Macaca fascicularis (Macaca), Equus caballus (Equus),
Oreochromis niloticus (Oreochromis) was shown. Ten species of IFIT5 proteins have similar
amino acid sequences.
(TIF)
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S1 Table. Primers used in this study.
(DOCX)

S2 Table. Prediction of duIFIT5 subcellular localization.
(DOCX)
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