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Background: Glioblastoma multiforme (GBM) is the most prevalent fatal central nervous system tumor. 
Notably, the survival rates after surgical intervention and active radiotherapy are not optimistic. Therefore, 
identifying new GBM-related biomarkers is a top priority in current research.
Methods: Transcriptome and clinical information of patients with GBM were obtained from The Cancer 
Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. According to the SMIM20 
expression levels, the samples were divided into high- and low-expression groups and used for differential 
expression gene (DEG) analysis. Functional enrichment analyses, including Gene Ontology (GO), gene set 
enrichment analysis, and immune cell infiltration, were performed on SMIM20-related DEGs. Subsequently, 
univariate and multivariate Cox regression analyses were performed to screen the risk factors associated 
with the poor prognosis of SMIM20, and the clinical significance of SMIM20 in GBM was explored by 
constructing a prognostic nomogram.
Results: In total, 156 DEGs were screened, of which 131 were upregulated and 25 were downregulated. 
Kaplan-Meier analysis revealed that the total survival time of the SMIM20 high expression group was 
significantly lower than that of the SMIM20 low-expression group. Finally, the nomogram map had good 
predictive value for evaluating GBM prognosis of patients.
Conclusions: High expression of SMIM20 is associated with poor outcomes in GBM. The DEGs and 
pathways identified in this study reveal potential molecular mechanisms underlying the occurrence and 
progression of GBM. Our study identifies potential new biomarkers and therapeutic targets for the treatment 
of GBM.
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Introduction

Glioblastoma multiforme (GBM; World Health Organization 
Grade IV glioma) is the most lethal and primary brain 
cancer among adults, accounting for 14.2% of all primary 
brain and other central nervous system (CNS) tumors and 
50.1% of malignant primary brain cancers. The estimated 
relative survival of patients with GBM is very low, and 
the 5-year survival rate of many patients is only 6.09% 
after surgery, active radiotherapy, and chemotherapy 
(1,2). Traditional treatment methods can no longer meet 
expectations regarding the prognosis of GBM. Personalized 
targeted therapies based on biomarkers have emerged as 
treatment strategies. However, it is difficult for the existing 
targeted drug therapies to achieve the expected results (3).  
Therefore, the requirement for new biomarkers for 
improving the diagnosis and prognosis of GBM is urgent.

SMIM20 is a small integral membrane protein, and its 
cleavage products, PNX-14 and PNX-20, play significant 
roles in the CNS and female reproductive system (4,5). 
Previous studies have showed that SMIM30 plays an 
important role in hepatocellular carcinoma (HCC) (6). 
In addition, patients with acute myeloid leukemia (AML) 
and high SMIM3 expression have a worse prognosis (7). 
Although SMIM20 is involved in the adverse outcomes 
of AML (8), the expression of SMIM20 in GBM and its 
prognostic value remain unclear. We found that SMIM20 
can participate in the regulation and inflammatory response 
of microglia by cleavage to form PNX (4), and microglia 
play an important role in GBM, especially in promoting 
tumor development, immunosuppression, and drug 
resistance (9-11). 

Based on the above conclusions, we hypothesized that 
SMIM20 is a potential prognostic marker for GBM. 

However, a literature search revealed almost no research 
on the role of SMIM20 in GBM. Therefore, in this study, 
we conducted a large-scale bioinformatics analysis using 
corresponding public datasets to verify our hypothesis, 
focusing on the potential role and mechanism of SMIM20 
and its clinical significance in GBM. We present this 
article in accordance with the TRIPOD reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-23-796/rc). 

Methods

Data acquisition and processing

We downloaded The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx) pan-cancer RNA-seq 
data with toils processed uniformly from the public open 
online platform UCSC XENA (https://xenabrowser.net/
datapages/) (8). The TCGA website (https://portal.gdc.
cancer.gov/repository) provides the corresponding clinical 
information of the GBM samples, including age, sex, 
survival status, survival time, and gene expression data of 
High-Throughput Sequencing Fragments Per Kilobase of 
transcript per Million mapped reads (HTSeq-FPKM) and 
HTSeq-Count. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). Our 
research is based on open-source data from public databases. 
The patients involved in the databases have obtained ethical 
approval, so there are no ethical issues.

Differential expression analysis of SMIM20

We performed a differential expression analysis of SMIM20 
using the DESeq2 R package to identify differential 
expression genes (DEGs) (9). The first seven upregulated 
genes and three downregulated genes were selected to 
construct a heat map.

Functional enrichment analysis

Functional enrichment analysis was performed on DEGs 
with a log fold change (FC) criterion of >1.5 and adjusted 
P value (P.adj) <0.05. Gene Ontology (GO) enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses were performed using ClusterProfiler (10).

Gene set enrichment analysis (GSEA)

Functional and pathway distinctions between the SMIM20 
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high- and low-expression groups were clarified using GSEA 
and the R package ClusteProfiler (3.14.3) (11). An P.adj 
<0.05 and false discovery rate (FDR) <0.25 were considered 
significantly enriched.

Immune cell infiltration analysis

SMIM20 immune infiltration analysis was performed using 
the R gene set variation analysis (GSVA) tool (4.2.1). Gene 
markers for 24 different types of infiltrating immune cells 
were obtained from literature (12). The correlation between 
SMIM20 and 24 immune cell infiltration was examined 
using Spearman correction (13).

Prognostic model generation and prediction

The RMS R software package (version 6.3-0) was used to 
visualize the nomogram of patients with GBM for 0.5-,  
1-, and 3-year overall survival (OS) prediction model 
maps to personalize their OS. The model included two 
independent prognostic factors, isocitrate dehydrogenase 
(IDH) and SMIM20 expression. The model’s accuracy was 
explored using the consistency index (C-index) and receiver 
operating characteristic (ROC).

Statistical analysis

Statistical analysis was conducted using R software (version 
4.2.1) (14). The Wilcoxon rank-sum test was used to 
evaluate the expression of SMIM20 in unpaired samples, 
and the Wilcoxon signed-rank test was used for paired 
samples. Cox regression analysis and the Kaplan-Meier 
test were used to evaluate survival data. Univariate and 
multivariate Cox regression analyses were used to evaluate 
independent prognostic factors. All tests were considered 
statistically significant at P<0.05. ROC analysis was 
performed using the pROC package to evaluate the efficacy 
of SMIM20 transcriptional expression for distinguishing 
SMIM20 from normal samples.

Results

SMIM20 expression in pan-cancers and GBM

By comparing normal and tumor samples in the TCGA 
and GTEx databases, SMIM20 was found to be highly 
expressed in various types of cancers (Figure 1A), including 
GBM (Figure 1B).

Identification of DEGs with low- and high-expressed 
SMIM20

According to the median value of SMIM20 expression, 
patients with GBM in the TCGA database were divided 
into low and high SMIM20 expression groups. In total,  
156 DEGs (131 genes  upregulated and 25 genes 
downregulated) were identified. |logFC| >1.5 and P<0.05 
were considered significant (Figure 2A). The heat map 
shows the first seven upregulated DEGs and the first three 
downregulated DEGs between the SMIM20 high- and low-
expression groups (Figure 2B).

Functional enrichment analysis

To gain further insights into the biological functions 
associated with DEG, the clusterProfiler package was used 
for GO and KEGG functional enrichment analyses (Figure 3).  
From the analyses, we found that biological processes 
(BP) included immunoglobulin production, production of 
molecular mediators of immune response, phagocytosis and 
recognition, complement activation classical pathway, and 
cellular components (CC), including the immunoglobulin 
complex, circulating immunoglobulin complex, external side 
of the plasma membrane, and blood microparticles. Molecular 
functions (MF) included antigen and immunoglobulin 
receptor binding. In addition, we analyzed the GO joint 
logFC values, and all Z-scores were positive, indicating that 
SMIM20 may positively regulate them. However, the KEGG 
pathways were not effectively enriched.

To better appreciate the SMIM20-related signaling 
pathways, we performed GSEA. GSEA was performed 
on all previously obtained DEGs between the high and 
low SMIM20 expression datasets, and we enriched some 
pathways with significant differences (P<0.05) (Table S1). 
With the increased expression of SMIM20 based on the 
normalize enrichment score (NES), immune and oxidative 
phosphorylation-related pathways were mainly enriched, 
such as the interleukin (IL)-5 pathway, IL-17 pathway, and 
oxidative phosphorylation (Figure 4A-4F).

Immune infiltration analysis

Immune infiltration was analyzed using Spearman’s 
correlation analysis. SMIM20 expression correlated with 
diverse immune cell infiltration levels. Most significantly, 
SMIM20 expression was inversely associated with the 
number of effector memory T (Tem) cells (Figure 5).

https://cdn.amegroups.cn/static/public/TCR-23-796-Supplementary.pdf
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Figure 1 Compared with normal samples, the expression of SMIM20 in glioblastoma was higher. (A) SMIM20 expression in pan-cancer 
tumor tissues and nontumor samples. (B) SMIM20 expression in normal samples and glioblastoma samples. TPM is a method based on 
high-throughput RNA sequencing data analysis. *, P<0.05; **, P<0.01; ***, P<0.001. TPM, transcripts per million.

Figure 2 Differential expression analysis. (A) Red: upregulated differential expression genes; blue: downregulated differential expression 
genes. (B) Heatmap of ten differentially expressed genes, including seven up-regulated and three down-regulated genes. P.adj, adjusted  
P value; TPM, transcripts per million.
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Figure 3 Functional enrichment of differentially expressed genes. (A) GO enrichment results of differential expression genes. (B) GO 
combined with logFC value for analysis. If Z-score is positive, the corresponding items may be positively regulated. If it is negative, the 
corresponding items may be negatively regulated. BP, biological process; CC, cellular component; MF, molecular function; P.adj, adjusted P 
value; GO, Gene Ontology; FC, fold change.

Figure 4 Gene set enrichment analysis. (A-F) Six main enriched pathways. IL, interleukin; NES, normalize enrichment score; P.adj, adjusted 
P value; FDR, false discovery rate; BCR, B-cell receptor.
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Prognostic model of SMIM20 in GBM

ROC curve analysis was used to examine the potential 
value of SMIM20 to distinguish patients with GBM from 
healthy individuals. As shown in Figure 6A, SMIM20 is a 
potential biomarker with an area under the curve (AUC) 

of 0.951 (Figure 6A). The association between SMIM20 
expression and GBM prognosis was analyzed using the 
Kaplan-Meier method (Figure 6B). Compared to patients 
with low SMIM20 expression, patients with high SMIM20 
expression tended to have a worse prognosis [hazard ratio 
(HR), 1.670; 95% confidence interval (CI): 1.174–2.375; 

Figure 5 Immune cells infiltration analysis. (A) SMIM20 was positively correlated with 9 immune cells, and SMIM20 was negatively 
correlated with 15 immune cell subsets. (B) Enrichment score of Tem in SMIM20 high expression group and low expression group.  
(C) The correlation between the SMIM20 expression level and the relative enrichment score of Tem cells. TPM is a method based on 
high-throughput RNA sequencing data analysis. ***, P<0.001. Tem, effector memory T cell; Tcm, central memory T cell; NK, natural 
killer; pDC, plasmacytoid dendritic cell; Tgd, gamma delta T cell; TReg, regulatory T cell; TFH, T follicular helper cells; aDC, activated 
dendritic cell; iDC, immature dendritic cell; Cor, correlation; TPM, transcripts per million.
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P=0.004]. Subsequently, a univariate Cox proportional 
hazard regression was used to determine the factors that 
affect OS and SMIM20 (high vs. low, P=0.004) was found 
to be a predictor of decline in OS, as was IDH [mutant 
(Mut) vs. wild type (WT), P<0.001] (Table S2). IDH 
(WT) (P=0.025) and high SMIM20 expression (P=0.012) 
were independent prognostic factors associated with OS 
deterioration (P<0.05). Subsequently, a nomogram was 
constructed using the RMS package in R (Figure 7A). We 
created a nomogram for a GBM patient survival prediction 
map based on IDH and SMIM20 expression. As shown in 
Figure 7A, IDH, and SMIM20 expression affected the 0.5-,  
1-, and 3-year OS of patients with GBM. The calibration 
curve showed that the nomogram consistently predicted the 
0.5-, 1-, and 3-year OS of patients with GBM (Figure 7B).  
These results indicate that SMIM20 can predict the 
prognosis of GBM.

Discussion

The first step in this study was to discuss the expression 
of SMIM20 in various types of tumors. In GBM, the 
expression of SMIM20 was significantly higher than that 
in normal samples, prompting us to investigate SMIM20 
expression further. GSEA revealed that the SMIM20 
phenotype was primarily abundant in the IL-5 and IL-17 
pathways, FCGR3A-mediated IL-10 synthesis, oxidative 

phosphorylation, FCERI-mediated NF-κB activation, and 
CD22-mediated B-cell receptor (BCR) regulation. ILs are 
immunosuppressive factors that promote tumor immune 
escape by promoting antitumor immune reactions in a 
tumor microenvironment. Previous studies have shown 
that IL-10 reduces or inhibits antigen presentation by 
downregulating major histocompatibility complex (MHC) 
class II expression in antigen-presenting cell (APC) (15) 
and MHC class I expression in tumor cells (16), thus 
contributing to an immunosuppressive environment and 
ultimately promoting tumor escape. In addition, IL-10 
autocrine signaling in tumor cells may promote tumor 
development (17). Furthermore, IL-5 is closely associated 
with the survival of patients with GBM (18). Similarly, in 
multiple human malignancies, high expression of IL-17  
signature genes can be found, including cervical , 
esophageal, gastric, hepatocellular, and colorectal cancers, 
which are involved in adverse outcomes of these cancers 
(19,20). IL-17 is also closely associated with breast cancer 
metastasis (21). Incorrect regulation of NF-κB has been 
associated with various tumors (22), and NF-κB contributes 
to tumorigenesis and escape from immune surveillance 
in GBM (23). In addition, studies have shown that tumor 
necrosis factor-like weak inducer of apoptosis (TWEAK) 
promotes the invasion of glioma cells by inducing  
NF-κB-induced kinase (NIK) and atypical NF-κB signal 
transduction (24). Mitochondrial oxidative phosphorylation 

Figure 6 SMIM20 is associated with glioblastoma diagnosis and prognosis. (A) ROC curve analysis of the diagnostic effect of SMIM20 on 
glioblastoma. (B) Kaplan-Meier curves of glioblastoma patients. TPR, true positive rate; FPR, false positive rate; AUC, area under the curve; 
CI, confidence interval; HR, hazard ratio; ROC, receiver operating characteristic.
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plays a key role in tumor cell immortalization. Brain tumor 
cells generate energy through oxidative phosphorylation 
rather than glycolysis (25). Oxidative phosphorylation is 
an emerging target in cancer treatment (26). The results 
of the GSEA enrichment analysis were consistent with the 
core results of this study: high expression of SMIM20 was 
associated with poor prognosis of GBM.

In the infiltration analysis of immune cells, SMIM20’s 
high expression was associated with fewer central memory T  
(Tcm) and Tem cells. Both Tcm and Tem are memory T cells  
(Tm). Tcm expresses CCR7 and CD62L, produces IL-
2, and proliferates in large quantities, whereas Tem 
proliferates less and produces effector cytokines such as 
interferon (IFN)-γ, CD4+ and CD8+ cells. Tcm dominates 
in secondary lymphoid organs, whereas T cells dominate in 
the peripheral compartment (27,28). Relevant studies have 
shown that both Tem and Tcm possess antitumor properties. 
Tem cells have been shown to express higher levels of 
receptors, are responsible for the migration to inflammatory 
tissues, and have stronger immediate effects than Tcm cells 
(29,30). However, compared to Tem cells, Tcm cells with 
lower terminal differentiation may have better persistence 
and antitumor efficacy (31,32), making them more suitable 
for adoptive immunotherapy of tumors.

Our most notable finding is that high expression 
of SMIM20 is associated with shorter life expectancy. 

According to multivariate Cox regression analysis, SMIM20 
was another independent prognostic factor apart from IDH. 
Combining SMIM20 with IDH phenotype, a nomogram 
prediction model was constructed to obtain a more accurate 
prognostic prediction model. The Cox model based on the 
C-index SMIM20 predicts an OS of 0.577 (0.550–0.603). 
This calibration plot illustrates the best match between the 
SMIM20 nomogram predictions and the actual observations 
of 0.5-, 1-, and 3-year OS probabilities. Therefore, 
SMIM20 can be used as a novel adverse prognostic factor 
for GBM patients with GBM. In addition, our model can 
provide customized scores for each GBM.

However, this study has limitations owing to its small 
sample size. The sample size should be increased to 
improve the validity of future research and ensure greater 
reliability. In future studies, clinical samples should be used 
to validate the reliability of the GBM prognostic value of 
this signature. 

Conclusions

In conclusion, our study confirmed the differential 
expression, immune infiltration, possible pathways, and 
prognostic significance of SMIM20 in GBM. To the best of 
our knowledge, it revealed for the first time that SMIM20 
can be a new biomarker for the prognosis of GBM.

Figure 7 The prognostic prediction model of SMIM20 in glioblastoma. (A) Nomogram was used to predict the probability of 0.5-, 1-, and 
3-year overall survival in glioblastoma. (B) Evaluation of nomogram using 0.5-, 1-, and 3-year nomogram calibration curves. IDH, isocitrate 
dehydrogenase; Mut, mutant; WT, wild type.
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