
����������
�������

Citation: Tsilipounidaki, K.;

Athanasakopoulou, Z.; Müller, E.;

Burgold-Voigt, S.; Florou, Z.; Braun,

S.D.; Monecke, S.; Gatselis, N.K.;

Zachou, K.; Stefos, A.; et al. Plethora

of Resistance Genes in Carbapenem-

Resistant Gram-Negative Bacteria in

Greece: No End to a Continuous

Genetic Evolution. Microorganisms

2022, 10, 159. https://doi.org/

10.3390/microorganisms10010159

Academic Editor: Jane Turton

Received: 12 December 2021

Accepted: 10 January 2022

Published: 13 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Plethora of Resistance Genes in Carbapenem-Resistant
Gram-Negative Bacteria in Greece: No End to a Continuous
Genetic Evolution
Katerina Tsilipounidaki 1, Zoi Athanasakopoulou 2, Elke Müller 3,4, Sindy Burgold-Voigt 3,4, Zoi Florou 1,
Sascha D. Braun 3,4, Stefan Monecke 3,4,5, Nikolaos K. Gatselis 1, Kalliopi Zachou 1, Aggelos Stefos 1,
Ilias Tsagalas 1, Marina Sofia 2, Vassiliki Spyrou 6, Charalambos Billinis 2,7,† , George N. Dalekos 1,†,
Ralf Ehricht 3,4,8,† and Efthymia Petinaki 1,*,†

1 Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; tsilipou@uth.gr (K.T.);
zflorou@uth.gr (Z.F.); ngatsel@uth.gr (N.K.G.); zachouk@uth.gr (K.Z.); evanstef1@uth.gr (A.S.);
tsagalas@outlook.com (I.T.); dalekos@uth.gr (G.N.D.)

2 Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; zathanas@uth.gr (Z.A.);
msofia@uth.gr (M.S.); billinis@uth.gr (C.B.)

3 Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; elke.mueller@leibniz-ipht.de (E.M.);
sindy.burgold-voigt@leibniz-ipht.de (S.B.-V.); sascha.braun@leibniz-ipht.de (S.D.B.);
stefan.monecke@leibniz-ipht.de (S.M.); Ralf.Ehricht@leibniz-ipht.de (R.E.)

4 InfectoGnostics Research Campus, 07743 Jena, Germany
5 Institut fuer Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Dresden,

01307 Dresden, Germany
6 Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece; vasilikispyrou@uth.gr
7 Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
8 Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737 Jena, Germany
* Correspondence: petinaki@uth.gr
† These authors contributed equally as last authors and their names are listed alphabetically.

Abstract: Carbapenem-resistant Gram-negative bacteria are a public health threat that requires ur-
gent action. The fact that these pathogens commonly also harbor resistance mechanisms for several
other antimicrobial classes further reduces patient treatment options. The present study aimed to
provide information regarding the multidrug resistance genetic background of carbapenem-resistant
Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during
routine practice, were characterized using a DNA microarray-based assay. Various different resis-
tance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim,
sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen
different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae
ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. bau-
mannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance
genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in
Central Greece, providing evidence of their continuous genetic evolution.

Keywords: carbapenem resistance; antimicrobial resistance genes; Klebsiella pneumoniae; Acinetobacter
baumannii; Pseudomonas aeruginosa; Greece

1. Introduction

The dissemination of carbapenem-resistant (CR) Gram-negative bacteria, including
Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa, has dramatically
increased over the last years [1]. Infections caused by these microorganisms are linked
with prolonged time of hospitalization leading to increased healthcare costs as well as with
elevated mortality rates [2]. Detailed knowledge of the characteristics of these pathogens is
essential for the development of novel antibiotics and potential new therapeutic targets [3].
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Two main resistance mechanisms against carbapenems in enterobacteria are known:
ampC overexpression accompanied by a porin loss [4,5] and transmissible genes encoding
carbapenemases [6]. The corresponding genes and alleles are usually located on plasmids
as well as other mobile genetic elements (MGEs) [7]. Plasmids with carbapenemase genes
often additionally harbor toxin–antitoxin systems which prevent plasmid loss even in
the absence of selective pressure caused by antibiotics [8]. Furthermore, the capacity of
these bacteria to survive in the nosocomial environment helps them to acquire genetic
elements from other bacteria, which include novel antibiotic-resistance determinants or
pathogenicity genes [9].

Recent reports showed an increasing prevalence of CR Gram-negative bacteria and
their rapid worldwide spread. The four most prevalent carbapenemase genes are blaKPC,
blaNDM, blaOXA-48 and blaVIM [6]. Infections caused by CR Gram-negative bacteria are
usually difficult to treat [10]. Treatment options are limited since carbapenemase genes are
often co-localized on mobile genetic elements together with additional resistance genes
conferring resistance to aminoglycosides and/or fluoroquinolones. Therefore, only a few
antibiotics remain effective, such as colistin, fosfomycin and tigecycline, as well as, in some
cases, the monobactam aztreonam, which is not hydrolyzed by metallo-beta-lactamases
(e.g., VIM and NDM) [11].

As early as 2009 the US Centers for Disease Control and Prevention (CDC) recom-
mended an active screening as a prerequisite for specific quarantine arrangements that
might help to prevent the dissemination of carbapenem-resistant pathogens [12,13]. Sev-
eral other governmental institutions and agencies such as the World Health Organization
(WHO), the European Centre for Disease Prevention and Control (ECDC) and the US
Agency for Healthcare Research and Quality (AHRQ) also shared this view [14–17].

In Greece, the rate of CR Gram-negative bacteria is among the highest worldwide [18–21].
Given that the detection of different resistance genes and MGEs is costly and time-consuming,
no data from our country are available regarding the characterization of the whole genetic
background of these pathogens. The purpose of the present study was the detection of
a plethora of resistance genes in a representative collection of CR Gram-negative bacteria,
using the microarray-based CarbDetect AS-2 Kit (Abbott, Jena, Germany).

2. Materials and Methods
2.1. Selection of the CR Gram-Negative Isolates

The study was conducted in the University Hospital of Larissa (UHL), a tertiary
care 600-bed hospital in the Thessaly region (Central Greece) which serves a population
of approximately 1,000,000 inhabitants. Based on the UHL surveillance protocol, all CR
bacteria are routinely tested for carbapenemase-encoding genes, are subjected to multi-locus
sequence typing (MLST) and are stored at−80◦ for epidemiological purposes. Identification
and susceptibility testing of all CR strains are performed using the automated system BD
Phoenix™ M50. The detection of carbapenemase-encoding genes (blaKPC, blaNDM, blaVIM,
blaOXA-like) and MLST typing are performed as previously described [22].

A total of 44 CR Gram-negative isolates (6 Acinetobacter baumannii, 3 Pseudomonas
aeruginosa and 35 Klebsiella spp.) were selected from the collection of routine isolates as
described above. The inclusion of the bacteria into the study was based on the type of
carbapenemase they produced, their sequence type, and their antibiotic susceptibility
profiles, so as to include as many different profiles for each sequence type as possible. All
strains were isolated from clinical samples between January 2019 and April 2020.

2.2. Molecular Characterization

A molecular characterization of the selected strains was performed using the Carb-
Detect AS-2 Kit (Abbott, Jena, Germany), according to the manufacturer′s instructions, as
previously described [23]. The kit detects a total of 134 genes including 111 genes and
alleles associated with resistance to carbapenems, cephalosporins, aminoglycosides, fluo-
roquinolones, trimethoprim, sulfonamides and macrolides, as well as 10 genes encoding
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multidrug efflux pumps and toxin–antitoxin systems (Table 1). The Result Collector 2.0
(Abbott, Jena, Germany) was used to automatically summarize the results obtained from
the microarray analysis.

Table 1. Genes and alleles detected by the CarbDetect AS-2 Kit, per category of genes.

Category of Genes Genes and Alleles

Carbapenemases

blaBIC, blaDIM, blaGES, blaGIM, blaGOB, blaIMI-3 (nmcA), blaIMI-R, blaIMP, blaIMP-25
(blaSIM-1), blaIMP-35, blaIND, blaKHM, blaKPC, blaNDM, blaPAM-1, blaSFH-1, blaSMB-1,

blaSME, blaSPM-1, blaTMB-1, blaVIM, blaVIM-2, blaVIM-7, blaOXA-23-like, blaOXA-40-like,
blaOXA-48-like, blaOXA-51-like, ISAba1 to blaOXA-51, no ISAba1 to blaOXA-51,
blaOXA-54, blaOXA-55, blaOXA-58, blaOXA-134/235/284, blaOXA-143/182/253/255,

blaOXA-181/232, blaOXA-214, blaOXA-279, blaOXA-292

ESBL blaCME, blaCTX-M-1/15, blaCTX-M-2, blaCTX-M-8, blaCTX-M-9, blaPER-1, blaPER-2, blaSHV,
blaTEM, blaVEB, blaOXA-18, blaOXA-45

AmpC blaMIR, blaACC, blaACT, blaCMY, blaDHA, blaFOX, blaMOX, blaMOX-CMY9

Other Beta-lactamases blaOXA-1, blaOXA-2, blaOXA-9, blaOXA-10, blaOXA-60

Aminoglycoside Resistance
aac(3′), aac(3′)-Ia, aac(3′)-Ib, aac(3′)-Ic, aac(3′)-Ie, aac(3′)-Iva, aac(6′), aac(6′)-31,

aac(6′)-Ib, aac(6′)-II, aac(6′)-Iia, aac(6′)-Iic, aac-aph, aadA1, aadA2, aadA4, aadB, ant2,
aphA, armA, grm, npmA, rmtA, rmtB, rmtC, rmtD, strA, strB

Quinolone Resistance qepA, qnrA1, qnrB, qnrC, qnrD, qnrS

Trimethoprim Resistance dfrA1, dfrA12, dfrA13, dfrA14, dfrA15, dfrA17, dfrA19, dfrA5, dfrA7

Sulfonamide Resistance sul1, sul2, sul3

Macrolide Resistance mdh, mrx

Markers for Mobile Genetic Elements intI1, intI2, intI3, tnpISEcp1

Multidrug Efflux Pumps oqxA, oqxB

Toxin–Antitoxin Systems higA, higB, splA, splT

3. Results

The group of 44 carbapenem-resistant strains that were selected for analysis consisted
of 32 K. pneumoniae, six A. baumannii, three Klebsiella oxytoca and three P. aeruginosa.

Thirty-three of the selected isolates harbored one carbapenemase gene and eleven
isolates harbored two. Among K. pneumoniae strains blaKPC was the most commonly
identified carbapenemase gene, found in 24 out of the 32 isolates. blaNDM was detected in
eight isolates, while blaVIM was only detected in five and in all cases co-existed with blaKPC.
All A. baumannii strains harbored a blaOXA-23-like gene, whereas all the K. oxytoca and all
the P. aeruginosa harbored blaVIM. Variant blaVIM-2 was specifically identified in a single
P. aeruginosa isolate.

Genes responsible for ESBL and broad-spectrum beta-lactamases’ production were
detected in 40 out of the 44 carbapenem-resistant strains. The gene blaSHV was identified in
28 K. pneumoniae isolates and in two K. oxytoca, blaCTX-M-1/15 in 21 K. pneumoniae, blaTEM
in 13 K. pneumoniae and in four A. baumannii, blaVEB in four K. pneumoniae, blaOXA-1 in
16 K. pneumoniae and in two P. aeruginosa, blaOXA-9 in two K. pneumoniae and blaOXA-6 in
one K. pneumoniae. AmpC genes were detected in four isolates; two K. pneumoniae harbored
blaACT and two K. oxytoca harbored blaMOX-CMY9.

Aminoglycoside resistance genes were present in 41 out of the 44 carbapenem-resistant
strains. Among K. pneumoniae, the combination of genes aac(3′)-Ia, aac(6′)-Ib, aadA1, and
aphA was detected in six isolates, the combination aac(6′)-Ib, strA, and strB in four, the
aac(6′)-Ib, aadA1, and aadA2 in three, the aac(6′)-Ib, aadA2, and aphA in three, the aac(6′)-Ib
and aadA2 in three, the aadA1, aadB, ant2, aphA, strA, and strB in two, the aadA1, aadB, ant2,
rmtB, strA, and strB in two, the aac(6′)-Ib, aadA2, aphA, strA, and strB in one and the aadA1,
aphA, strA, and strB in one. Four K. pneumoniae only possessed aac(6′)-Ib and one only aphA.



Microorganisms 2022, 10, 159 4 of 13

Additionally, five out of the six A. baumannii isolates harbored aminoglycoside resistance
genes. Four co-harbored the aphA, armA, strA, and strB and one the aac(3′)-Ia, aadA1, armA,
strA, and strB. Regarding the three K. oxytoca, the aac(6′)-Ib, aac(6′)-IIc, aadA2, aphA, strA,
and strB genes were detected in two strains and the aac(6′)-Ib, aac(6′)-IIc, aphA, and strB
genes in one isolate. Concerning the P. aeruginosa isolates, one harbored the combination
aac(6′)-Ib, aadA1, strA, and strB, while one only harbored the aac(6′)-Ib and one the aac(6′)-Iic.
Overall, aac(6′)-Ib was the most common gene, found in 29 out of the 44 CR strains.

Plasmid-mediated quinolone resistance (PMQR) genes were identified in seven strains.
In particular, gene qnrS was detected in four K. pneumoniae and in the three K. oxytoca.

Genes associated with trimethoprim resistance were detected in 23 K. pneumoniae and
in the three K. oxytoca. Fifteen K. pneumoniae harbored dfrA14, 10 dfrA12 and four dfrA1.
DfrA14 and dfrA12 co-existed in six isolates. All the K. oxytoca harbored dfrA19. Regarding
sulfonamide resistance genes, these were detected in 27 K. pneumoniae, two A. baumannii,
the three K. oxytoca and in two P. aeruginosa. Sul1 was identified in 16 K. pneumoniae,
one A. baumannii, the three K. oxytoca and in two P. aeruginosa. Sul2 was detected in
21 K. pneumoniae, one A. baumannii and two K. oxytoca, while sul3 was present in
three K. pneumoniae.

Macrolide resistance genes were identified in 16 strains. Ten K. pneumoniae harbored
mph alone (n = 3) or in combination with mrx (n = 7). Additionally, all six A. baumannii
isolates harbored mph.

Genes associated with MGEs were detected in a total of 36 out of the 44 carbapenem-
resistant isolates. intl1 was detected in 29 K. pneumoniae, one A. baumannii, the three K. oxytoca
and the three P. aeruginosa. Twenty of the intl1 positive K. pneumoniae additionally har-
bored tnpISEcp1.

Finally, the oqxA and oqxB genes, encoding oqxAB efflux pump, were present in
26 K. pneumoniae, while the splA and splT genes, encoding the SplTA toxin–antitoxin system,
were present in all the six A. baumannii isolates.

Overall, 18 distinct genomic profiles were identified among the 24 K. pneumoniae
ST258, seven distinct profiles among the eight K. pneumoniae ST11, four profiles among the
six A. baumannii ST409 and two among the three untyped K. oxytoca.

The genomic characteristics of the carbapenem-resistant isolates are presented in
Table 2 and in Figure 1. The antibiotic susceptibility profiles of the isolates were in concor-
dance with the genotypes.
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Table 2. Genomic characterization of the carbapenem-resistant isolates.

Strain Species MLST
Typing

Carbapenemase
Genes

ESBL
Genes

AmpC
Genes

Other
Beta-

Lactamase
Genes

Genes
Associated

with Amino-
glycoside
Resistance

Genes
Associated

with
Quinolone
Resistance

Genes
Associated

with
Trimetho-

prim
Resistance

Genes
Associated

with
Sulfonamide
Resistance

Genes
Associated

with
Macrolide
Resistance

Genes
Associated

with
Mobile
Genetic

Elements

Genes
Associated

with a
Multidrug

Efflux
Pump

Genes
Encoding
a Toxin–

Antitoxin
System

A114-1 A.
baumannii ST409 blaOXA-23-like,

blaOXA-51-like - - -
aac(3′)-Ia,

aadA1, armA,
strA, strB

- - sul1 mph intI1 - splA, splT

A90-2 A.
baumannii ST409 blaOXA-23-like,

blaOXA-51-like blaTEM - - aphA, armA,
strA, strB - - - mph - - splA, splT

A261-2 A.
baumannii ST409 blaOXA-23-like,

blaOXA-51-like blaTEM - - aphA, armA,
strA, strB - - - mph - - splA, splT

A262-2 A.
baumannii ST409 blaOXA-23-like,

blaOXA-51-like blaTEM - - aphA, armA,
strA, strB - - - mph - - splA, splT

A265 A.
baumannii ST409 blaOXA-23-like,

blaOXA-51-like blaTEM - - aphA, armA,
strA, strB - - sul2 mph - - splA, splT

A268 A.
baumannii ST409 blaOXA-23-like - - - - - - - mph - - splA, splT

A1793 K. oxytoca - blaVIM - - -
aac(6′)-Ib,
aac(6′)-IIc,
aphA, strB

qnrS dfrA19 sul1 - intI1 - -

A1829 K. oxytoca - blaVIM blaSHV blaMOX-CMY-9 -

aac(6′)-Ib,
aac(6′)-IIc,

aadA2, aphA,
strA, strB

qnrS dfrA19 sul1, sul2 - intI1 - -

A1846 K. oxytoca - blaVIM blaSHV blaMOX-CMY-9 -

aac(6′)-Ib,
aac(6′)-IIc,

aadA2, aphA,
strA, strB

qnrS dfrA19 sul1, sul2 - intI1 - -

A1795 K.
pneumoniae ST258 blaKPC blaTEM - - aac(6′)-Ib,

aadA1, aadA2 - dfrA12 sul2, sul3 - intI1 - -

A1821 K.
pneumoniae ST258 blaKPC blaCTX-M-1/15 - -

aac(3′)-Ia,
aac(6′),

aac(6′)-Ib,
aadA1, aphA

- - sul1, sul2 - intI1,
tnpISEcp1 - -
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Table 2. Cont.

Strain Species MLST
Typing

Carbapenemase
Genes

ESBL
Genes

AmpC
Genes

Other
Beta-

Lactamase
Genes

Genes
Associated

with Amino-
glycoside
Resistance

Genes
Associated

with
Quinolone
Resistance

Genes
Associated

with
Trimetho-

prim
Resistance

Genes
Associated

with
Sulfonamide
Resistance

Genes
Associated

with
Macrolide
Resistance

Genes
Associated

with
Mobile
Genetic

Elements

Genes
Associated

with a
Multidrug

Efflux
Pump

Genes
Encoding
a Toxin–

Antitoxin
System

A1869 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

- -

aac(3′)-Ia,
aac(6′),

aac(6′)-Ib,
aadA1, aphA

- - sul1, sul2 - intI1,
tnpISEcp1 - -

A1833 K.
pneumoniae ST258 blaKPC, blaVIM

blaSHV,
blaTEM,
blaVEB

- blaOXA-1

aadA1, aadB,
ant2, aphA,
strA, strB

qnrS dfrA1 sul1, sul2 mph intI1 - -

A1839 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV,
blaTEM

- - aac(6′)-Ib,
strA, strB - dfrA14 sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A1841 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

- -
aac(3′)-Ia,
aac(6′)-Ib,

aadA1, aphA
- - sul1, sul2 - intI1,

tnpISEcp1 - -

A1845 K.
pneumoniae ST258 blaKPC, blaVIM blaSHV - - aadA1, aphA,

strA, strB qnrS dfrA1 sul1, sul2 mph intI1 oqxA, oqxB -

A1847 K.
pneumoniae ST258 blaKPC, blaVIM blaCTX-M-1/15 - blaOXA-1 aac(6′)-Ib - dfrA14 - - intI1,

tnpISEcp1 oqxA, oqxB -

A1850 K.
pneumoniae ST258 blaKPC, blaVIM

blaCTX-M-1/15,
blaSHV

- blaOXA-1 aac(6′)-Ib - dfrA14 - - intI1,
tnpISEcp1 oqxA, oqxB -

A1875 K.
pneumoniae ST258 blaKPC, blaVIM

blaSHV,
blaTEM,
blaVEB

- blaOXA-1

aadA1, aadB,
ant2, aphA,
strA, strB

qnrS dfrA1 sul1, sul2 mph intI1 - -

A1881 K.
pneumoniae ST258 blaKPC blaCTX-M-1/15 - - aphA - dfrA1 sul1 - intI1,

tnpISEcp1 oqxA, oqxB -

A1871 K.
pneumoniae ST258 blaKPC blaSHV - blaOXA-6 aac(6′)-Ib - - - - - oqxA, oqxB -

A10-1 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV,
blaTEM

- blaOXA-1
aac(6′)-Ib,
strA, strB - dfrA14 sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A41-1 K.
pneumoniae ST258 blaKPC

blaSHV,
blaTEM,
blaVEB

blaACT blaOXA-1

aadA1, aadB,
ant2, rmtB,
strA, strB

- dfrA14 sul2 - intI1 oqxA, oqxB -
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Table 2. Cont.

Strain Species MLST
Typing

Carbapenemase
Genes

ESBL
Genes

AmpC
Genes

Other
Beta-

Lactamase
Genes

Genes
Associated

with Amino-
glycoside
Resistance

Genes
Associated

with
Quinolone
Resistance

Genes
Associated

with
Trimetho-

prim
Resistance

Genes
Associated

with
Sulfonamide
Resistance

Genes
Associated

with
Macrolide
Resistance

Genes
Associated

with
Mobile
Genetic

Elements

Genes
Associated

with a
Multidrug

Efflux
Pump

Genes
Encoding
a Toxin–

Antitoxin
System

A50-1 K.
pneumoniae ST258 blaKPC blaSHV - - - - - - - - oqxA, oqxB -

A99-1 K.
pneumoniae ST258 blaKPC blaSHV - - - - - - - - oqxA, oqxB -

A55-1 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV,
blaTEM

- blaOXA-1,
blaOXA-9

aac(6′)-Ib,
aadA2, aphA,

strA, strB
- dfrA12,

dfrA14 sul2 mph, mrx intI1,
tnpISEcp1 oqxA, oqxB -

A56-1 K.
pneumoniae ST258 blaKPC

blaSHV,
blaTEM

- blaOXA-9
aac(6′)-Ib,

aadA2, aphA - dfrA12 sul1 mph, mrx intI1 oqxA, oqxB -

A72-1 K.
pneumoniae ST258 blaKPC

blaSHV,
blaTEM

- - aac(6′)-Ib,
aadA1, aadA2 - dfrA12 sul2, sul3 - intI1 oqxA, oqxB -

A90-1 K.
pneumoniae ST258 blaKPC

blaSHV,
blaTEM

- - aac(6′)-Ib,
aadA1, aadA2 - dfrA12 sul2, sul3 - intI1 oqxA, oqxB -

A91-1 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

- -
aac(3′)-Ia,
aac(6′)-Ib,

aadA1, aphA
- - sul1, sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A105-1 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

- -
aac(3′)-Ia,
aac(6′)-Ib,

aadA1, aphA
- - sul1, sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A126-1 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

- -
aac(3′)-Ia,
aac(6′)-Ib,

aadA1, aphA
- - sul1, sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A264 K.
pneumoniae ST258 blaKPC

blaCTX-M-1/15,
blaSHV

blaACT blaOXA-1

aadA1, aadB,
ant2, rmtB,
strA, strB

- dfrA14 sul2 - intI1,
tnpISEcp1 oqxA, oqxB -

A24-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1 aac(6′)-Ib qnrS dfrA14 sul2 - intI1,
tnpISEcp1 oqxA, oqxB -

A97-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,

aadA2, aphA - dfrA12,
dfrA14 sul1, sul2 mph, mrx intI1,

tnpISEcp1 oqxA, oqxB -
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Table 2. Cont.

Strain Species MLST
Typing

Carbapenemase
Genes

ESBL
Genes

AmpC
Genes

Other
Beta-

Lactamase
Genes

Genes
Associated

with Amino-
glycoside
Resistance

Genes
Associated

with
Quinolone
Resistance

Genes
Associated

with
Trimetho-

prim
Resistance

Genes
Associated

with
Sulfonamide
Resistance

Genes
Associated

with
Macrolide
Resistance

Genes
Associated

with
Mobile
Genetic

Elements

Genes
Associated

with a
Multidrug

Efflux
Pump

Genes
Encoding
a Toxin–

Antitoxin
System

A100-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV,
blaTEM

- blaOXA-1
aac(6′)-Ib,
strA, strB - dfrA14 sul2 - intI1 oqxA, oqxB -

A102-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,

aadA2, aphA - dfrA12,
dfrA14 sul1 mph, mrx intI1,

tnpISEcp1 oqxA, oqxB -

A198 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,
strA, strB - dfrA14 sul2 - intI1,

tnpISEcp1 oqxA, oqxB -

A261-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,

aadA2 - dfrA12,
dfrA14 sul1 mph, mrx intI1,

tnpISEcp1 oqxA, oqxB -

A261-3 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,

aadA2 - dfrA12,
dfrA14 sul1 mph, mrx intI1,

tnpISEcp1 oqxA, oqxB -

A262-1 K.
pneumoniae ST11 blaNDM

blaCTX-M-1/15,
blaSHV

- blaOXA-1
aac(6′)-Ib,

aadA2 - dfrA12,
dfrA14 sul1 mph, mrx intI1,

tnpISEcp1 oqxA, oqxB -

A84-1 P.
aeruginosa ST235 blaVIM-2 - - blaOXA-1

aac(6′)-Ib,
aadA1, strA,

strB
- - sul1 - intI1 - -

A29-1 P.
aeruginosa ST111 blaVIM - - blaOXA-1 aac(6′)-Ib - - sul1 - intI1 - -

A102-2 P.
aeruginosa ST111 blaVIM - - - aac(6′)-Ilc - - - - intI1 - -
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4. Discussion

In recent years, multidrug resistance has evolved to one of the greatest challenges
in the health sector, affecting not only hospital settings but also the community, animals
and the environment [24,25]. Carbapenem-resistant pathogens represent a threat highly
potent to cause outbreaks, while it is anticipated that new unique β-lactamases with
unusual properties will be identified in the near future given the widespread presence of
β-lactamases genes and the unceasing pressure from the use of β-lactam antibiotics [26–28].
The present study aimed to unveil the molecular multidrug resistance determinants of CR
Gram-negative bacteria isolated from the University Hospital of Larissa, a hospital that
serves the population of Central Greece. A microarray-based assay was selected as the
typing tool, as an alternative to whole genome sequencing, since it is a technique suitable
for screening research, excellent in specificity and sensitivity [29].

The majority of K. pneumoniae strains in our study expressed carbapenem resistance
due to carriage of blaKPC. Carbapenemases of the KPC family have the most extensive
global distribution of all carbapenemases that are associated with Enterobacteriaceae and
are highly prevalent in Mediterranean countries, especially Italy and Greece [30]. Despite
the fact that Greece used to be the epicenter of VIM-producing Enterobacteriaceae [31],
these did not predominate, underlining the fast evolution in the molecular epidemiology
of carbapenemases, as has previously been illustrated by Galani et al. [32]. Coexistence of
OXA-23-like and TEM was the primary resistance profile in the A. baumannii isolates, as has
previously been described in China [33]. The oxacillinase blaOXA-23-like is also amongst the
most dominant resistance genes that have been reported in A. baumannii from Germany [34].
All the P. aeruginosa harbored blaVIM, which was expected considering the pre-existing data
from the region [20].

Genes associated with aminoglycoside resistance were detected in 41 strains. Amino-
glycosides are usually part of the empirical treatment of serious nosocomial infections
in most Greek tertiary hospitals and constitute one of the few remaining options in the
battle against CR pathogens. That could explain and drive the wide dissemination of the
respective resistance genes. The aac(6′)-Ib was the most common gene detected in this study.
Former studies have also stated its frequent co-occurrence with carbapenemases genes in
Switzerland [35], Spain [36], and India [37], as well as Greece [38].

Trimethoprim/sulfamethoxazole resistance genes sul and dfrA were detected in 24 strains.
DfrA14 was the most common trimethoprim resistance gene, which is in agreement with
a recent study from South Africa [39]. Concerning sulfonamide resistance genes, sul2
predominated, which is in contrast with former findings from Brazil [40]. Sul2 variant has,
however, also been detected in high rates among carbapenemase-producing K. pneumoniae
strains isolated from intensive care unit patients in Turkey [41].

Concerning quinolone resistance genes, the plasmid-encoded gene qnrS was detected
in seven strains; six harbored qnrS and possessed blaVIM alone (n = 3) or in combination
with blaKPC (n = 3), while the remaining one possessed blaNDM. The presence of genes
oqxA and oqxB might also have contributed to the fluoroquinolone resistance profile of
26 K. pneumoniae. The plasmidic efflux pump OqxAB confers resistance to multiple agents,
including fluoroquinolones as well as biocides, and has been shown to play a role in the
selection of fluoroquinolone resistance in different K. pneumoniae clones [42,43].

One of the main drivers for the recorded rapid dispersion of multidrug resistance
is the presence of MGEs [44]. In our study, intl1 was the only integrase gene detected
among the CR strains, while the intl2 and intl3 genes were not present in any isolate. These
findings are in concordance with earlier reports about KPC-2 positive K. pneumoniae from
a pediatric hospital in China [45]. In Southern Brazil, though, class 2 integrons were more
frequently detected than class 1 among OXA-23 A. baumannii [46]. Class I integrons are
known to harbor various antimicrobial resistance gene cassettes encoding β-lactamases,
dfr and sul variants, qacE∆1 (quaternary ammonium compound disinfectant), as well as
aminoglycoside-modifying enzymes [47]. This probably explains the genotypic profile
of the intl1 positive strains that we examined, which presented different combinations
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of resistance determinants for at least three classes of antimicrobials. Furthermore, we
detected the ISEcp1 element, known to be implicated in the mobilization of AMR genes
such as blaCTX-M and blaKPC [48,49]. The resistance determinants identified in isolates
that were tested positive for tnpISEcp1 are subsequently considered more likely to be
disseminated horizontally via ISEcp1-mediated transposition among the same or different
bacterial species.

Finally, genes splA and splT, encoding the plasmid borne SplTA toxin–antitoxin system,
were identified in all the CR A. baumannii isolates of our study. The SplTA is widely
spread in the A. baumannii plasmidome, including carbapenem-resistant clinical isolates,
and can act as a plasmid stabilization and maintenance mechanism even in the absence
of antimicrobial selective pressure. It is also involved in the successful transmission of
plasmids carrying carbapenemase genes, favoring even further their dissemination [50].

In conclusion, according to our findings, strains that belonged to the same MLST clone
had different molecular resistance patterns, indicating a potential continuous genetic evolu-
tion of antimicrobial resistance. The ability of bacteria to evolve their AMR characteristics
might continue to undermine health care, economic development, and life expectancy if
infection control measures are not implemented.
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