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Abstract

Global trends in wetland degradation and loss have created an urgency to monitor wetland extent, 

as well as track the distribution and causes of wetland loss. Satellite imagery can be used to 

monitor wetlands over time, but few efforts have attempted to distinguish anthropogenic wetland 

loss from climate-driven variability in wetland extent. We present an approach to concurrently 

track land cover disturbance and inundation extent across the Mid-Atlantic region, United States, 

using the Landsat archive in Google Earth Engine. Disturbance was identified as a change in 

greenness, using a harmonic linear regression approach, or as a change in growing season 

brightness. Inundation extent was mapped using a modified version of the U.S. Geological 
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Survey’s Dynamic Surface Water Extent (DSWE) algorithm. Annual (2015–2018) disturbance 

averaged 0.32% (1095 km2 year−1) of the study area per year and was most common in forested 

areas. While inundation extent showed substantial interannual variability, the co-occurrence of 

disturbance and declines in inundation extent represented a minority of both change types, totaling 

109 km2 over the four-year period, and 186 km2, using the National Wetland Inventory dataset in 

place of the Landsat-derived inundation extent. When the annual products were evaluated with 

permitted wetland and stream fill points, 95% of the fill points were detected, with most found by 

the disturbance product (89%) and fewer found by the inundation decline product (25%). The 

results suggest that mapping inundation alone is unlikely to be adequate to find and track 

anthropogenic wetland loss. Alternatively, remotely tracking both disturbance and inundation can 

potentially focus efforts to protect, manage, and restore wetlands.
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1. Introduction

Across the globe, wetlands provide a myriad of ecosystem services including flood 

abatement, erosion control, hydrologic regulation, carbon sequestration, and water quality 

improvement [1–3]. Wetland ecosystems are threatened, however, by expansion of 

agriculture and urban development, invasive species, pollution, and sea level rise, all of 

which can result in wetland degradation or loss [4,5]. Globally, as much as 87% of wetland 

area has been lost since 1700 CE [6], and 30% since 1970 [7]. The Ramsar Convention on 

Wetlands of International Importance was established in 1971 in recognition of the value of 

and threats to wetlands. It included policy commitments to maintain and restore wetlands 

[6]. However, even in countries such as the United States, which has a national policy of no 

net loss of wetlands, mitigating losses through wetland creation and restoration can fall 

short, resulting in net wetland degradation and declines in wetland area [8,9]. These trends 

make it essential to monitor wetland extent over time, as well as enhance our understanding 

of the causes and spatial distribution of wetland loss and gain.

Satellite imagery can provide a spatially explicit and cost-effective means to monitor 

changes in wetland extent and patterns in wetland loss over time [10,11]. Landsat is 

commonly used to monitor wetlands in part because of its multi-decadal temporal archive 

and substantial swath (185 km). The National Oceanic and Atmospheric Administration 

(NOAA) Coastal Change Analysis Program (C-CAP), for example, uses Landsat imagery to 

map changes in land cover for the coastal portions of the United States every five years 

(1996–2016) [12]. To provide a more temporally detailed understanding of seasonal and 

interannual variability in the surface water extent of wetlands, Landsat-based surface-water 

products at national and global extents are also rapidly becoming available. These efforts 

include the Global Surface Water (GSW) Landsat product [13] and the U.S. Geological 

Survey’s (USGS) Dynamic Surface Water Extent (DSWE) product [14,15] that use the 

Landsat archive (available every 8–16 days) to map surface water extent on a global and 

contiguous United States (CONUS) scale, respectively. The more frequent monitoring is 
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critical to characterize variability of inundation in wetlands in response to seasonal and 

interannual variability in weather [16], as well as variability in coastal wetlands in response 

to the tidal cycle [17].

Landsat multispectral data have also been used to distinguish wetland classes, such as 

emergent wetlands, forested wetlands, and ponds [18,19], as well as monitor the degradation 

or recovery of wetland vegetation [20,21]. Detecting a gain or loss of wetland extent requires 

distinguishing a change in class from natural variability in pixel condition. The likelihood 

that a pixel has changed its class can be quantified as its departure from a measure of central 

tendency for all pixels in that class. A z-score statistic, for example, that uses the mean and 

standard deviation of a population, is one way to achieve this [22,23]. The challenge in 

applying z-scores over a large area, however, is that the population must be normally 

distributed, which may not be true as more images and a greater area is included in the 

analysis [24]. Alternatively, measures such as median and median absolute deviation do not 

rely on the assumption of a normally distributed population and are less sensitive to outliers 

[24]. Improvements in using Landsat time series analysis to detect change have also been 

specific to different land cover types. For instance, in forestry studies the focus has been on 

using harmonic algorithms that model interannual and seasonal variability in spectral 

characteristics to detect both abrupt changes in forest cover [25–28], as well as gradual 

changes in forest condition [29,30]. Efforts in wetland ecosystems, in contrast, have been 

more focused on overcoming Landsat’s moderate spatial resolution that limits its ability to 

monitor smaller wetlands (<1 ha) [10]. This challenge has encouraged Landsat sub-pixel 

analysis techniques, such as spectral mixture analysis (SMA) [15,31,32] and Tasseled Cap 

indices [33,34], as well as other partial pixel algorithms, such as regression trees [35], or 

automated methods to estimate sub-pixel water fraction [36–38]. Even sub-pixel Landsat 

approaches, however, typically require wetlands to be >0.2 ha to be reliably detected 

[32,37].

To monitor smaller wetlands (<1 ha), data sources with increased spatial resolution have 

been used (e.g., Sentinel-2, CubeSats) [39,40]. However, these datasets lack the multi-

decadal data records provided by Landsat. Additionally, the cost of commercial imagery 

(e.g., DigitalGlobe, Planet) may limit its role in the operational monitoring of wetlands. Free 

sources of aerial imagery, such as the National Agricultural Imaging Program (NAIP), have 

been shown to be an effective means to monitor interannual variability in wetlands over time 

[41]. However, the applicability of these data to regions dominated by forested or vegetated 

wetlands may be limited. Instead, synthetic aperture radar (SAR) imagery may be more 

helpful to “see” water through canopy cover [42–44].

The persistent threats to wetlands necessitate efforts to monitor changes in wetland extent at 

the regional to national scale. Past efforts to monitor changes to coastal and inland wetlands 

across the U.S. Mid-Atlantic region have tended to be mostly localized, focusing on one or a 

few watersheds. Studies have explored approaches to map forested wetlands using active 

sensors, such as C-band SAR [42,45], L-band SAR [46], LiDAR [47], and Landsat trained 

with LiDAR [48,49]. Efforts have also focused on monitoring tidal wetlands in the 

Chesapeake and Delaware Bays using aerial imagery [6,50] and Landsat imagery [21,51]. 

Regional efforts have used data from the U.S. Fish and Wildlife Service’s Status and Trends 
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Study (S&T) to predict change in wetland area between the 1950s and 1990s along the U.S. 

Atlantic Coast [52], and comparisons between the National Wetland Inventory (NWI) and 

Landsat circa 2000 [24]. In general, although efforts to monitor wetland change over time 

are somewhat common [14,32], relatively few studies have explicitly attempted to attribute 

the cause of the change, for instance differentiating between wetland loss caused by a 

drought event versus human activities [9,31,34,53]. Identifying both the spatial distribution 

of modifications to wetland extent as well as the cause of wetland change are critical for 

modeling, management, and conservation efforts. The objectives of this study were to 

determine (1) if wetland loss, defined as a transition from wetland to upland, can be reliably 

detected using changes in Landsat inundation extent; (2) if mapping disturbance extent 

across all land cover types can enable the identification and attribution of wetland loss; and 

(3) the spatial distribution of disturbance and changes to inundation extent across the Mid-

Atlantic region.

2. Materials and Methods

2.1. Study Area

The study was limited to the U.S. Environmental Protection Agency (EPA) Region 3, which 

extends across the Mid-Atlantic region of the United States, including Pennsylvania, 

Delaware, Maryland, Washington, D.C., Virginia, and West Virginia (study area center: 

39.403 N, −77.974 W). The climate across these states is temperate with annual precipitation 

averaging 1122 mm, and annual temperature maximum and minimum averaging 17 °C and 5 

°C, respectively [54]. Across the region, deciduous forest is the dominant cover type (51%), 

with pasture/hay (13%), developed land (open space, low, medium, high) (11%), and 

cultivated crops (7%) also common [55]. Developed land dominates around major cities 

within the study area, including Washington, D.C., Baltimore, Virginia Beach, Richmond, 

Philadelphia, and Pittsburgh. Wetlands, as defined by the NWI dataset, average 5.1 ha km−2 

across the region and wetland area is dominated by freshwater forested/shrub wetlands 

(46%) and riverine wetlands (26%), with lakes (9%), estuarine and marine wetlands (8%) 

and freshwater emergent wetlands (6%) also common [56].

2.2. Inundation Extent

The Landsat archive was used to map annual inundation extent across the region. Although 

the pixel size of Landsat Enhanced Thematic Mapper plus (ETM+) and Operational Land 

Imager (OLI) (900 m2) makes monitoring inundation extent across narrow rivers, streams, 

and smaller (<1 ha) wetlands challenging, the source of imagery was selected to take 

advantage of regular (every 8 days), wall-to-wall data collection. Mapping surface-water or 

inundation extent cannot be considered equivalent to mapping wetlands, but areas that are 

regularly detected as inundated are very likely to meet the hydrologic definition of a wetland 

(i.e., inundated or saturated in the root zone for at least two weeks within the growing 

season) [57]. In limiting the detection algorithm to inundation, however, areas that show 

near-surface saturated soils were likely omitted, although these areas may also meet wetland 

definitions. A further challenge was that much of the Mid-Atlantic region and the wetlands 

across the region are forested, making it more difficult to detect inundation under leaf cover 

with multispectral imagery. Prior efforts have shown, however, that inundation extent can 
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still be monitored using Landsat imagery if the acquisition dates include leaf-off conditions 

[45,49].

2.2.1. Single Image Inundation Classification—Inundation extent across the region 

was mapped with Landsat ETM+ and OLI imagery using a modified version of the image-

based components of the Dynamic Surface Water Extent (DSWE) model [15] implemented 

in Google Earth Engine. Landsat imagery was used from Landsat paths 14 to 19 and Landsat 

rows 31 to 35 (a total of 30 Landsat path/rows). All Landsat images collected between 

January 1 and May 31 from 2013 through 2018 for these path/rows were processed for a 

total of 2122 Landsat images (Table 1). The seasonal restriction of images helped maximize 

images used during the seasonal hydrological peak [58], while limiting the number of 

images contributing errors during non-peak hydrological conditions. Landsat 5 and 7 images 

were converted to surface reflectance using the Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) algorithm [59], while Landsat 8 images were converted to 

surface reflectance using the Landsat Surface Reflectance Code (LaSRC) algorithm [60]. 

Values identified as cloud or cloud shadow were masked using cFMask [61].

The DSWE model detects inundation using a single-scene approach through a series of static 

thresholds applied to combinations of indices and band values to ultimately label pixels into 

one of four inundation classes: (1) inundation—high confidence, (2) inundation—moderate 

confidence, (3) partial surface water/wetlands—conservative, and (4) partial surface water/

wetland—aggressive/low confidence. An advantage of the DSWE approach is that it is 

essentially an unsupervised classifier, meaning it does not require scene-specific training 

data and therefore can be easily applied across space and time. The thresholds in the model 

were based on spectral unmixing and evaluation of results over a range of water landscapes 

across North America [14,15]. Individual bands used in the classification include blue, near 

infrared (NIR), shortwave infrared one (SWIR1), and shortwave infrared two (SWIR2). 

Indices used include modified Normalized Difference Wetness Index (mNDWI = (Green − 

SWIR1)/(Green + SWIR1) [62], NDVI [63], the Multi-band Spectral Relationship Visible 

(MBSRV = (Green + Red) − (NIR + SWIR1) [64], and the Automated Water Extraction 

Shadow (AWEsh = Blue + 1.5*Green – 1.5*(NIR + SWIR1) − 0.25*SWIR2) [65]. The 

bands and indices are organized into five tests applied to each pixel (Table 2), and the 

inundation confidence class is then based on the combination of tests for which water 

detection is “positive” [15]. In applying the image-based component of the DSWE model to 

Landsat ETM+ images several minor modifications were made. To reduce confusion 

between upland forests and forested wetlands an additional NDVI requirement of <4000 was 

added to Test 5 and the NDVI threshold was changed to be more conservative (i.e., <0.6 

rather than <0.7) in Test 4 (Table 2).

Version 1 of DSWE was trained on Landsat TM and ETM+ only. When the DSWE 

algorithm was applied to Landsat 8 in the study area, a decline in forested wetland extent 

was observed, as well as an increase in commission error in areas of low to medium density 

development. To enhance the detection of forested wetlands an additional Test (i.e., Test 6) 

was added to the DSWE model where wetlands were found if Green<490, NIR<2500, and 

NDVI <5500 (Table 2). These threshold values were selected using a classification tree in R 

(rpart package) using points randomly selected across the study area (deciduous and 
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coniferous forest (n = 588), agriculture and grassland (n = 463), urban (n = 405), and 

forested wetlands (n = 368)). Band and index values were extracted from six Landsat 8 

images (p14r33: November 16, 2016, November 10, 2017, April 28, 2018, July 1, 2018; 

p15r34: April 16, 2017, November 29, 2018). To reduce confusion with suburban and urban 

development, the 3 Band Index was calculated where BU3 = red + SWIR1 − NIR and pixels 

with BU3 ≥ 1600 were classified as urban [66]. This threshold requirement (BU3 < 1600) 

was added to Landsat 8 Test 5 and 6.

For each image considered, a pixel was classified as low to moderate confidence inundated if 

it passed at least two of the Tests, except for Test 5 and Test 6, where if either Test 5 or 6 

was satisfied, it was classified as inundated. High confidence inundation was defined as 

pixels that passed four or more of the tests. Lastly, as modification to the terrain-based 

components of the DSWE model [67], the percent slope was calculated using a USGS 

digital elevation model (DEM, 30 m) derived from the Shuttle Radar Topography Mission 

(SRTM) [68] and inundation was masked from areas with a slope ≥7%. Although this mask 

may have reduced the detection of springs that can occur on slopes, it greatly reduced errors 

from topographic shadowing that were particularly prevalent in the Appalachian Mountains 

that dominate West Virginia, western Virginia, and central Pennsylvania.

2.2.2. Annual Inundation Extent—The modified DSWE model calculated inundation 

extent (and confidence class) per image. The per-image classification was then applied to all 

Landsat images across the study area and time period of interest (2013–2018). On an annual 

time-step, a raster was produced representing the number of inundation observations for 

each inundation confidence class per year. The primary challenge in reclassifying the annual 

inundation count to an annual binary inundation/non-inundation extent was to limit image-

based error contributions while retaining inundation extent for small, ephemeral, forested 

wetlands common across the Delmarva Peninsula. For example, the number of cloud-free 

observations across the study area for a given year was highly uneven, and commission error 

tended to be higher in the overlapping areas between Landsat path/row images where the 

number of cloud-free observations tended to be double or triple the number of cloud-free 

observations found elsewhere (Figure 1).

The accuracy of the annual products was maximized by considering: (1) inundation 

confidence level, (2) ecoregion, (3) the number of times a pixel was classified as inundation 

per year, and (4) the number of cloud-free observations. Across the entire study area, a pixel 

was classified as inundated when there were (1) at least two high confidence inundation 

observations in a given year, (2) at least six observations of low to moderate confidence 

inundation in a given year when the total observation count was <14, or (3) at least eight 

observations of low to moderate confidence inundation in a given year when the total 

observation count was >14. In the lowlands, this was expanded to classify pixels as 

inundated when there were at least two observations of either high confidence inundation or 

low to moderate confidence water each year. The lowlands were defined using a modified 

version of the U.S. Environmental Protection Agency Level III Ecoregion definitions [69]. 

Lowland Ecoregion extent included the Middle Atlantic Coastal Plain, Southeastern Plains, 

Eastern Great Lakes Lowlands, Lake Erie, Chesapeake Bay, and the Atlantic Ocean [69]. 

Upland Ecoregion extent included the Erie Drift Plain, the Appalachians, Blue Ridge, 
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Piedmont, Northern Piedmont, and Western Allegheny Plateau [69]. Lastly, only inundated 

polygons that overlapped an NWI wetland [56] were retained to further eliminate 

erroneously mapped inundation. An example showing the reduction of inundation extent 

error through each processing step is shown in Figure 2.

Inundation loss (2015–2018) in this study was defined as a pixel that was mapped as 

inundated in either of the two previous years but was not mapped as inundated in the present 

year. Change from two years was used to increase the probability of identifying 

anthropogenic inundation loss in a year following a dry year. The area identified as “loss” 

therefore includes: (1) natural variability in inundation extent, (2) underestimated inundation 

extent in the current year due to cloud cover during peak wetness conditions, (3) erroneously 

identified inundation mapped in prior years that is correctly mapped in the current year, and 

(4) permanent or semi-permanent water loss due to anthropogenic activities. An overview of 

the processing steps is shown in Figure 3.

2.3. Disturbed Extent

Disturbance extent was mapped across all land cover types in Google Earth Engine using a 

combination of two approaches, first a harmonic regression approach, and second by 

tracking changes in pixel brightness. Annual, binary image classifications were created 

representing (1) disturbed extent (e.g., conversion of water or vegetation to bare soil, 

removal of overstory vegetation, water fill), and (2) non-disturbed extent (e.g., grassland, 

agriculture, forest, wetland, open water, or consistent bare soil). The harmonic linear 

regression used all per-pixel observations of the Normalized Difference Vegetation Index 

(NDVI) from Landsat TM, Landsat ETM+, and Landsat OLI surface reflectance from 

January 2000 through December 2018 (Table 1). Values identified as cloud or cloud shadow 

were masked using the cFMask [61]. The NDVI observations were used to train a per-pixel 

harmonic linear regression that used the seasonal variability in NDVI (one harmonic cycle 

per year) to predict the NDVI values over the same period (2000–2018). An observation was 

flagged when the NDVI value deviated substantially from the expected NDVI variability, 

defined as three times a pixel’s root mean square error (RMSE). The RMSE was calculated 

using the difference between the observed and expected NDVI over the time series. Further 

details of the algorithm are explained in Zhu and Woodcock [25]. Deviations from the Zhu 

and Woodcock [25] approach included: (1) flagging NDVI observations that were >70% of 

the 3 × RMSE instead of >100% of 3 × RMSE, and (2) requiring four flagged observations, 

instead of three, to indicate a change in a pixel. Multiple flagged observations were required 

to limit the influence of erroneous Landsat images flagging change falsely. To further limit 

the inclusion of erroneous flags only flagged anomalous observations acquired between 

March and November were retained.

Although NDVI seemed to outperform other indices in preliminary investigations, in 

multiple scenarios a conversion to bare soil was missed by the harmonic linear regression 

approach. The predicted NDVI values in some cases underestimated the pre-change NDVI 

observations so that despite a substantial change in NDVI values, the post-change NDVI 

values were found to be within the allowable RMSE variability. When pre-change NDVI 

values were negative or highly variable (e.g., open water), the harmonic regression approach 

Vanderhoof et al. Page 7

Remote Sens (Basel). Author manuscript; available in PMC 2021 July 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



also frequently did not identify change as expected. Examples showing change in NDVI 

flagged as expected and as unexpected are shown in Figure 4. To compensate for scenarios 

in which the harmonic linear regression did not identify conversion to bare soil, change in 

pixel brightness was tracked in growing season (May–September), where brightness was 

defined as the mean band reflectance across six spectral bands (blue, green, red, NIR, 

SWIR1, and SWIR2). Per-pixel surface reflectance observations from Landsat TM, Landsat 

ETM+, and Landsat OLI between June 2012 and September 2018 were used. Values 

identified as cloud or cloud shadow were masked using the cFMask [61]. An increase in 

growing season (June–September) pixel brightness of >60% relative to the average growing 

season brightness from the previous three years (e.g., 2015 brightness relative to 2012–2014 

brightness) concurrent with a post-change brightness of ≥1300 was flagged as a change. For 

both analyses, all images were internally buffered by −500 m to eliminate erroneous values 

and noise that tended to occur near the edges of the Landsat images.

Classifying Change as Disturbance—A change to a pixel’s NDVI or brightness could, 

of course, indicate several state transitions including, but not limited to, deforestation, 

afforestation, or an increase or decrease in inundation extent. Change in the pixel condition, 

identified by either the harmonic linear regression or the brightness analysis, that did not 

represent a conversion to disturbance, was limited by: (1) establishing a spectral window 

defining disturbed pixels, (2) masking change pixels where the maximum NDVI in the year 

following the change was >0.3 to limit highly temporary change or shifts in the timing of 

crop patterns, and (3) masking change pixels where the minimum NIR value in the year 

following the change was <500 to limit the inclusion of turbid water or natural variability in 

open water extent. The spectral window required pixels flagged as changed to only be 

retained if they met at least two of three spectral thresholds at the time of the change: (1) red 

band reflectance >900, (2) NDVI <0.3, and (3) average band reflectance (or brightness) of 

>1100. All spectral thresholds were derived using class separability and natural breaks in the 

spectral values of training points (n = 10,971) selected from manually delineated polygons 

representing disturbed, forest, grassland, agriculture, open water, wetlands, and impervious 

surfaces. The polygons were delineated from Landsat images representing spring (March–

May), summer (June–August), and autumn (September–November) spectral conditions 

across five Landsat path/rows (p15r31, p15r33, p16r34, p17r32, p18r34) (Table A1). After 

applying the post-change spectral conditions, the remaining pixels classified as disturbed 

were compiled over time to produce an annual raster (2015–2018) of change. A summary of 

the processing steps is shown in Figure 3.

2.4. Validation

Independent validation efforts were used to validate: (1) inundation extent, (2) conversion to 

bare soil, and (3) waterbody fill. Sampling was stratified by: (1) inundation class and (2) 

disturbance class. Because the rare cover type (i.e., inundation, disturbance) was the cover 

type of interest, sample points were equally allocated between the two strata.

2.4.1. Validation of Inundation Extent—To validate the Landsat inundation extent, 8-

band WorldView-2 (2 m resolution) and WorldView-3 (1.4 m resolution) images (n = 32) 

were obtained from DigitalGlobe via the NextView License (Westminster, CO) (Table A2, 
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Figure 5a). The availability of WorldView-2 and WorldView-3 imagery was uneven across 

the study area. Images were selected to: (1) minimize the temporal gap between a cloud-free 

Landsat ETM+ and Landsat OLI image and the high-resolution image, (2) represent diverse 

vegetation types, and (3) approximate the spatial distribution of inundation across the Mid-

Atlantic states, which occurs disproportionately in the eastern portion of the study area. The 

absolute average date gaps between the high-resolution image acquisition date and the 

Landsat ETM+ and OLI collection dates was 9.2 days (ranged from 0 to 38 days apart) and 

11.1 days (ranged from 0 to 36 days apart), respectively. Using ENVI (Harris Geospatial 

Solutions, Inc., Broomfield, CO), the WorldView-2 and 3 images were converted to radiance 

and atmospheric conditions were taken into account using dark object subtraction. The 

WorldView water index (WV-WI = (coastal – NIR2)/(coastal + NIR2)) [70] and Red-Edge 

index (RE68 = (red edge – NIR2)/(red edge + NIR2)) were calculated. These indices showed 

the maximum class separability between open water and non-open water and wetlands and 

non-wetlands, respectively. Using these two indices as inputs, a maximum likelihood 

classification was calculated. Two to four training polygons were selected per image to 

represent the major cover classes across the image. A Frost filter was applied using a kernel 

size of 3 and an aggregated minimum size of 10 pixels. The classified raster was then 

reclassified to represent inundation and non-inundation. For each classified image, random 

points were generated across the inundation (n = 250) and non-inundation (n = 250) 

categories (total points = 16,000). The points were then visually checked against the raw 

high-resolution image to ensure that the correct classification was assigned to each point. If 

the point was incorrectly assigned, it was deleted. Landsat inundation extent was not shared 

with interpreters to avoid bias. In addition to validating inundation extent, the minimum size 

of wetlands reliably detected, or the minimum mapping unit, was also evaluated. A subset of 

five WorldView validation images was selected (Figure 5A). The WorldView image 

classifications were converted to polygon shapefiles where an overlap between the per-date 

Landsat (ETM+ and OLI) inundation extent and the WorldView wetland polygons was 

considered detection. Wetlands where the corresponding Landsat image was cloudy were 

excluded from consideration.

2.4.2. Validation of Disturbance Extent—Creation of a reference dataset of 

conversion to bare soil imagery with a regular collection interval was needed so that both 

pre- and post-disturbance conditions were observable. WorldView imagery is only collected 

on demand and therefore would not necessarily provide pre-disturbance conditions. Six 

Landsat path/rows were selected across the study area (p15r31, p15r33, p15r34, p16r34, 

p17r32, p18r34), and one to three cloud-free Landsat OLI images per year were acquired 

within each of these Landsat path/rows (Table A3). Note that the approach of deriving 

validation data from Landsat to validate a Landsat product has been used by a number of 

studies when steps have been taken to increase the accuracy, specifically, manually 

evaluating the imagery [71–74]. Across each path/row extent 150 points per year (2015–

2018) were randomly generated to represent “no-change” points. The points were visually 

checked with the prior year images to verify that no conversion to bare soil had occurred. 

Ancillary datasets were used to assist in finding areas that had been converted to bare soil, 

including the U.S. Army Corps of Engineers, Jurisdictional Determinations and Permit 

Decisions database, and the active mines and mineral plants point shapefile monitored by the 
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National Minerals Information Center of the USGS. Polygons were manually delineated that 

showed new disturbance that was not visible in previous year images. From these polygons, 

points were randomly generated representing conversion to disturbance. As the amount of 

land cover change was uneven across the study area and years, the number of random points 

representing disturbance also varied (total disturbed points = 2711) (Figure 5b). A minimum 

distance of 30 m was required between all points, while the distance between points 

averaged 2.1 km. No co-occurrence of the training points was used to establish spectral 

filters and the disturbed validation points. Timing of the change relative to the image 

acquisition dates could have introduced error into the reference dataset (e.g., point classified 

as no change based on a July Landsat image when a change occurred in October). To 

compensate for this uncertainty, a −1 to +1-year buffer was applied when matching the 

validation point class to the mapped output (e.g., a point identified as new bare soil in 2016 

could map the point as new bare soil in 2015–2017).

2.4.3. Validation of Water Fill—Points where water resources had been filled were 

identified using the U.S. Army Corps of Engineers (USACE) ORM Jurisdictional 

Determinations and Permit Decisions database. This database identifies a project location 

and the date a permit was issued. Permits issued in 2015–2018 were downloaded for five 

USACE districts including (1) Huntington District, (2) Pittsburgh District, (3) Norfolk 

District, (4) Baltimore District, and (5) Philadelphia District. Project locations occurring 

within the EPA Region 3 states were exported to Google Earth Pro. Historical aerial imagery 

time series available within Google Earth Pro was used to manually delineate the extent of 

conversions from inundation (e.g., loss of streams, rivers, ponds, or wetlands). Project 

locations were excluded from further consideration where: (1) construction or disturbance 

was not visible (i.e., construction had not yet occurred or was limited to dredging of open 

water or installation of a dock); (2) the conversion was from non-water or wetland to open 

water; or (3) a disturbance was visible, but no aquatic features were visible. Random points 

(n = 263) with a minimum distance between the points of 30 m were generated to represent 

loss of ponds or open water (n = 68), streams and rivers (n = 65), and wetlands (n = 130) 

(Figure 5a).

2.5. Ancillary Datasets

Climate conditions were quantified using the monthly Palmer Hydrological Drought Index 

(PHDI), calculated from precipitation and temperature station data and interpolated at 5 km 

[75]. To quantify climate conditions at the seasonal peak in inundation extent, March and 

April PHDI values were averaged across the region. In addition to examining Landsat-based 

inundation extent, the distribution of aquatic resources as defined by the NWI dataset, 

version 2, Surface Waters and Wetlands Inventory, was also considered [56]. This dataset 

was derived from fine spatial resolution satellite or aerial imagery and designed to represent 

wetland extent under “average” hydrological conditions [56]. The advantage of including 

this dataset is that potential impacts to wetlands and streams smaller or narrower than 

reliably detected with Landsat can be examined and mapped. The co-occurrence between 

inundation loss or NWI data and the disturbance was defined as the annual intersection of 

the two inputs. To account for mixed disturbance pixels, the disturbance extent was 

internally buffered by 30 m and recalculated as the intersection between the disturbance 
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extent and NWI dataset. To quantify the distribution of change by watershed position, the 

Strahler Order/Strahler Calculator (SOSC) was linked to the National Hydrography Dataset 

Plus catchment polygon dataset. Headwater extent was defined as the contributing areas of 

all first-order streams across the study area [76].

3. Results

3.1. Accuracy of Outputs

In comparing Landsat ETM+ and OLI inundation extent relative to the inundation extent 

derived from processed WorldView-2, 3 imagery, errors of omission for inundation (17.5% 

and 18.7%, respectively) were larger than errors of commission for inundation (0.9% and 

4.3%, respectively) (Table 3). When the Landsat ETM+ and OLI inundation extent was 

merged for each high-resolution image and date, errors of omission for inundation decreased 

to 12.6%, suggesting that using both sources of imagery together, as is done in producing the 

annual inundation extent, produces a more complete inundation extent (Table 3). In 

determining the minimum wetland size reliably mapped, a total of 1176 wetlands >900 m2 

in size were evaluated across five WorldView images (median size = 0.2 ha). The per-image 

Landsat (ETM+ and OLI) inundation extent mapped 61% of wetlands between 0.4 and 1.0 

ha in size, and 84% of wetlands between 1.0 and 1.5 ha in size.

In validating the annual disturbance extent, the harmonic and brightness approaches alone 

showed relatively high rates of omission error for disturbance (27.0% and 56.1%, 

respectively), but the methods were highly complementary so that defining disturbance as 

detected by either the harmonic or brightness approach resulted in an error of omission of 

15.5%, while maintaining a low commission error (1.9%) (Table 4). Of the 263 USACE 

permitted water fill points, 95.1% of the points were detected by either or both disturbance 

and inundation loss products. By output type, 70.7% of the points were detected using the 

disturbance outputs alone, 6.5% detected using inundation loss outputs alone, and 17.9% 

detected by both the disturbance and inundation loss outputs. By water feature type, 66 of 68 

pond loss points, 62 of 65 stream loss points, and 122 of 130 wetland loss points were 

detected.

3.2. Change Analysis

Across the six years in which inundation was mapped, spring (March–April) drought 

conditions, defined using the PHDI, ranged from 42.7% wettest historically (1895–2018) in 

2013 to 100% wettest historically in 2017 (Table 5). An observable, positive correlation was 

present between annual wetness and annual inundation extent (2013–2018), but the 

correlation was not significant (R = 0.49, p = 0.33). Figure 6 shows examples of mapped 

inundation extent across: (1) forested wetlands, (2) rivers, (3) emergent tidal wetlands, and 

(4) lake and emergent wetlands. In the examples, the limitations of Landsat-based 

inundation can be observed where errors of omission increase as rivers become narrower or 

wetlands become smaller. Because declines in inundation were identified using a summed 

two-year prior inundation extent, per-year declines in inundation (7.0% to 11.2% of 

inundation extent, Table 5) exceeded per-year gains in inundation (2.7% to 5.3% of 

inundation extent). Annual declines in inundation disproportionately occurred in the 
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Delmarva Peninsula and eastern Virginia (Figure 7), where much of the wetland area and 

rivers drain into the Chesapeake Bay. The spatial pattern of annual declines in inundation 

extent largely matched the spatial distribution of NWI wetland density (Figure 7). Although 

inundation extent was dynamic, the percent of the study area mapped as inundated remained 

extremely stable across the six years mapped, ranging from 11.07% to 11.69%.

The percent of the study area identified as disturbed ranged from 0.24% in 2016 to 0.35% in 

2015 and 2018. Much of the disturbance across the region was focused in Virginia, east of 

the Appalachian Mountains (Figure 7). The type of disturbance was typically identifiable 

from the raw Landsat imagery and tended to be locally specific, with mining expansion 

dominating disturbance in West Virginia, silviculture disturbance dominating south-central 

Virginia, and residential and commercial development common around Richmond, VA, west 

of Dulles Airport (Ashburn, Leesburg, VA), and Baltimore, MD (Figure 8). We examined 

the distribution of disturbances by pre-disturbance land cover type and found 59% occurred 

in areas that were previously forested, 14% occurred in areas that were classified as low- to 

high-intensity development, and 15% occurred in areas that were classified as either hay/

pasture or cultivated crops (Table 6). Examples of specific disturbance events are shown in 

Figure 9. In the examples, the brightness approach helped identify areas that were low in 

vegetation prior to experiencing further disturbance (Figure 9).

The intersection of inundation loss and disturbance represented 1% or less of the annual 

inundation loss (0.58% to 1.12%, Table 5), meaning that ~99% of the decline in inundation 

extent occurred without a co-occurring disturbance event. Across the region and between 

2015 and 2018 a total of 108.6 km2 showed a co-occurrence of inundation loss and 

disturbance, indicating potential anthropogenic impacts to aquatic resources (Table 5). 

Examples where disturbance occurred, including disturbance to water features, are shown in 

Figure 10. The examples show how the relative importance of disturbance, inundation loss, 

and the co-occurrence of both, played a variable role depending, in part, on the size of the 

water feature (Figure 10). To better characterize these potential impacts, the intersection of 

the NWI dataset and the disturbance extent was also evaluated, which totaled 186 km2. Core 

areas of disturbance were identified by internally buffering the disturbance impact by 30 m 

to account for mixed pixels, after which the potential impact to aquatic resources decreased 

to 33.4 km2 (Table 5), suggesting that disturbance near aquatic resources likely contributes 

to much of the potential impact. The intersection of disturbance with inundation loss 

indicated that potential impacts to water resources were more common in southeastern 

Virginia and the Delmarva Peninsula (Figure 7). The spatial pattern is very similar using the 

NWI dataset or the internally buffered disturbance extent. By wetland type, the potentially 

impacted wetlands were dominated by freshwater forested/shrub wetland, followed by 

riverine wetlands and freshwater ponds (Table 7). Many of the forested/shrub wetland and 

riverine wetlands are buffered streams included in NWI V2 [56] but not in NWI V1.

Finally, the potential role of watershed position was considered. Headwaters represented 

56% of the study area. A minority of inundation extent (8.3%), as mapped by Landsat, 

occurred in headwaters, but a larger percent (46.5%) of the annual decline in inundation 

extent was mapped as occurring in the headwaters. A slightly disproportionately high 

amount of the disturbance (60.4%) extent was documented in the headwaters, while 54.8% 
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of the co-occurrence between inundation decline and disturbance was mapped in the 

headwaters (55.2% of the co-occurrence between the NWI dataset and disturbance was 

mapped in the headwaters).

4. Discussion

Past studies that track the extent and cause of wetland change (from one wetland type to 

another) and wetland loss (conversion to upland) across the eastern United States are limited 

but suggest that wetland losses have outpaced wetland gains [9], and that the impact of 

anthropogenic activities on wetlands remains poorly understood [77]. In this study, by 

concurrently tracking all types of disturbance and changes in inundation extent, 95% of 

permitted wetland losses were identified. The distribution of disturbances was very uneven 

across the Mid-Atlantic region with central and eastern Virginia experiencing a 

disproportionate amount of the disturbance. Residential and urban development, common in 

eastern Virginia, was also common in the suburbs of Washington, D.C., and Baltimore. Over 

the four years examined, the percent of the Mid-Atlantic region mapped as disturbed, not 

limited to disturbance in wetlands, averaged 0.32% of the study area per year. This estimate 

is consistent with national estimates of land cover change. The National Land Cover Dataset 

(NLCD) documented a 0.25% change per year across the conterminous United States 

between 2000 and 2011 [55], and another study estimated an average of 0.34% change per 

year from 1973 to 2000 across the conterminous United States [78]. The major sources of 

disturbance identified in the analysis, including residential and commercial development, 

silviculture, and mining, were consistent with the findings of others [24,79,80]. Like the 

pattern of disturbance, changes in inundation extent were also uneven across the study area 

with much of the variability in inundation focused in eastern Virginia and the Delmarva 

Peninsula. This spatial pattern was very similar to that observed by Nielson et al. [24] who 

used Landsat to model wetland change between 1990 and 2000, suggesting that the spatial 

distribution of dynamic inundation extent and wetland loss has remained consistent over 

time.

Geographical overlap in the concentration of disturbance activities and areas with a higher 

density of wetlands and dynamic inundation extent means that wetland protection and 

attention to sustainable development may be particularly important in these regions. This 

conclusion is further substantiated by the findings of the U.S. Fish & Wildlife Service Status 

and Trends reports that have documented changes to wetlands concentrated along the 

Atlantic Ocean and Gulf of Mexico [80]. These findings also have potential implications for 

restoration activities. An improved understanding of the spatial distribution of wetland loss 

and the types of wetlands that are being lost can help guide restoration priorities [20] to 

maximize retention of the ecosystem services provided by these wetlands [3,4].

As cloud-based platforms, like the Google Earth Engine, become more advanced and 

accessible, large-scale, automated efforts that process thousands of images are likely to 

become the new “normal” in remote sensing of change. One of the challenges of applying 

algorithms across diverse regions is that the compilation of adequate training datasets can be 

time-consuming, particularly for temporary conditions, such as disturbance, or non-

permanent waterbodies. Requiring training data can also make it challenging to scale or 

Vanderhoof et al. Page 13

Remote Sens (Basel). Author manuscript; available in PMC 2021 July 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



transfer an approach to a new area. In addition, computing may also be a challenge. For 

instance, Google Earth Engine currently limits the size of objects to be cached, meaning that 

the number of training points may be limited by memory, making the platform less suited for 

memory-intensive, machine-learning algorithms [81]. In generating disturbance and 

inundation extent in this analysis, the approaches were largely automated, meaning that the 

DSWE, the harmonic change detection algorithm, and an increase in pixel brightness were 

all run without training data. This approach allowed us to process thousands of Landsat 

images relatively easily. However, the unsupervised approaches alone were not adequate to 

map the object of interest while minimizing erroneous change detection. Instead, supervised 

classification outside of Google Earth Engine was needed to improve outputs, for example 

when applying DSWE to Landsat OLI and defining the spectral window of disturbed pixels.

Identifying and limiting error and other sources of uncertainty was a major component of 

this analysis. Some of the error encountered was at an image scale. For example, a limited 

number of images commonly classified much of an entire image as change using the 

harmonic change detection algorithm, or as low-moderate potential wetlands using the 

DSWE algorithm. We attribute this source of uncertainty to residual error within the Landsat 

image collections. Higher rates of error in a select number of images can potentially be 

attributed to a higher root mean square error (RMSE), errors in converting the raw images to 

surface reflectance, poor or uneven atmospheric conditions, or residual cloud or cloud 

shadow occurring after the application of cFMask [59,82]. Many of these errors are likely 

observable when working with individual images but may not be distinguished when 

working with many images. The influence of these erroneous images was reduced by 

requiring multiple disturbance flags and multiple observations of inundation per year. 

However, error was also related to the observation count. This meant that erroneously 

detected change tended to be higher in the overlapping portions of the Landsat path/rows 

(Figure 1), but also that cloud cover increased omission error for inundation extent, 

particularly for wetlands that might be inundated only for a few weeks per year. Cloud 

cover, consequently, likely weakened the relationship between inundation extent and climate 

indices, in that the wetter the year was, the more cloud cover, and consequently the less clear 

the images may have been during peak hydrological conditions. Image-based and cloud-

cover related sources of error are currently intrinsic to the Landsat surface reflectance image 

collections, and therefore will continue to be a challenge for most Landsat-based change 

detection algorithms.

In addition to encountering error at an image scale or related to observation timing and 

count, multiple sources of spectral confusion were also encountered that introduced error in 

classifying disturbance or inundation extent. For instance, to map inundation extent required 

a substantial effort to eliminate error related to topographic shading and falsely mapped 

inundation, while retaining highly ephemeral, forested wetlands. In response to these 

sources of error, filtering inundation using rule sets specific to ecoregions was critical, as 

was applying a slope threshold mask. Another source of error encountered was spectral 

confusion between suburban areas and forested wetlands, which represent mixed pixels. This 

source of error was reduced by using the BU3 index [66], but some spectral confusion 

remained.
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In mapping disturbance extent, agricultural fields originally have a substantial amount of 

error. This error occurred when a field was left fallow for a year or two or when the crop 

type, and corresponding timing of the peak greenness, changed. This source of error was 

most problematic across central Virginia and the Delmarva Peninsula. To address this source 

of error filters were added for peak greenness in the year following the disturbance year 

which greatly reduced, but did not eliminate, this source of error. Because development of 

formerly agricultural land was quite common, this cover class could not be masked. In 

addition, while residential and commercial development was common within and near the 

edges of towns and cities across the Mid-Atlantic region, erroneously mapped disturbance 

was also found in high-density urban areas where disturbances were not visible in the raw 

Landsat imagery. This source of error may be attributable to building shadows that are likely 

to change based on the day of year and time of day the image was collected. Consequently, a 

pixel’s brightness may show more variability than expected in a densely developed area. 

Similarly, erroneously detected disturbance was also common in tidally influenced areas 

where light, sandy soils become intermittently visible. Further, a documented disturbance, 

even in the presence of a wetland, may not necessarily result in a conversion of that wetland 

to upland. In the case of silviculture harvests, for example, wetland hydrology can remain 

following harvest and replanting [81]. Despite these sources of error and uncertainty, 

adequate accuracy of both inundation and disturbance extent products was obtained, 

demonstrating that steps can be taken to limit the influence of errors related to both the 

Landsat image collection, as well as spectral confusion.

Although Landsat was too coarse in spatial resolution to monitor the inundation patterns of 

narrow rivers, streams, or smaller (<1 ha) wetlands, disturbance around or over these water 

features was typically larger in extent and can be effectively identified using the Landsat 

archive. However, incorporating additional sources of imagery may also help overcome 

some intrinsic limitations of Landsat. For instance, using a SAR sensor, such as Sentinel-1 

[83,84] or, in the future, the NASA-ISRO Synthetic Aperture Radar (NISAR) [85], could 

help overcome challenges induced by cloud cover, and enable seasonal variability in 

inundation extent to be tracked, potentially identifying declines in inundation extent at a 

temporal resolution finer than an annual time step. Sentinel-2 can also be used to effectively 

map inundation extent [40]. The inclusion of Sentinel-2 could help increase the number of 

observations near the seasonal peak in inundation extent. Both Sentinel-1 and Sentinel-2 can 

also potentially increase spatial resolution, relative to Landsat, making it possible to more 

accurately map the edges of larger waterbodies, and detect narrower and smaller (<1 ha) 

waterbodies. However, without a 10 m DEM, an alternative approach to reducing 

commission error in mountainous areas would be needed.

5. Conclusions

Conserving and effectively managing wetland ecosystems at a regional to national scale will 

require monitoring wetland extent, as well as distinguishing natural declines in wetland 

extent, attributable to droughts or sea level rise, from declines in wetland extent, attributable 

to changes in land use. Although variability in climate conditions can make it harder to 

identify and differentiate anthropogenic disturbance activities [86], concurrently monitoring 

inundation extent and disturbance enabled us to identify potential anthropogenic impacts on 
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water resources. Further, disturbance extent paired with a wetland dataset (e.g., NWI) 

enabled the loss of small (<1 ha) wetlands or narrow streams to be identified. Across the 

Mid-Atlantic region, the spatial distribution of disturbance and inundation change was 

consistent between years, with southeastern Virginia showing the greatest density of both 

types of change. While cloud-based platforms increasingly permit big data approaches to 

monitor and analyze landscape changes, using thousands of Landsat images to track 

disturbance and inundation required rigorous approaches to identify and minimize erroneous 

images and spectral confusion across the diversity of the Mid-Atlantic region. Wetlands 

provide a multitude of ecological, economic, and social benefits. Progress in approaches to 

monitor wetland extent, as well as the potential cause of changes in wetland extent, will 

enable stakeholders to make informed, strategic decisions in a cost-efficient manner.
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Appendix A

Table A1.

Landsat OLI images from which the training points were extracted. The points were used 

only to help refine the harmonic and brightness algorithm outputs.

Landsat Path/Row (p/r) Image Acquisition Date Disturbed Points (count) Non-Disturbed Soil Points 
(count)

p15r31 23-Sep-17 43 669

p15r31 21-May-18 53 670

p15r31 8-Jul-18 71 668

p15r33 18-Mar-18 100 600

p15r33 8-Jul-18 100 599

p15r33 12-Oct-18 100 600

p16r34 10-Jun-17 48 706

p16r34 26-Apr-18 55 707

p16r34 4-Nov-18 47 707

p17r32 26-Mar-16 73 726

p17r32 20-Aug-17 80 730

p17r32 11-Nov-18 77 730

p18r34 8-Apr-18 66 503

p18r34 29-Jul-18 82 514

p18r34 17-Oct-18 119 498
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Landsat Path/Row (p/r) Image Acquisition Date Disturbed Points (count) Non-Disturbed Soil Points 
(count)

Total 1114 9627

p: path, r: row.

Table A2.

High resolution images (HR) used in the inundation extent validation and the corresponding 

Landsat Enhanced Thematic Mapper plus (ETM+) and Landsat Operational Land Imager 

(OLI) images. Image value refers to the high-resolution file name.

HR Date Sensor Date 
(ETM+)

Path/Ro
w (ETM

+)

Date 
Gap 

(ETM+)
Date (OLI) Path/Ro

w (OLI)

Date 
Gap 

(OLI)
State Image

26-Jan-18 WV3 14-Jan-18 p14r33 −12 21-Dec-17 p14r33 −36 DE P1

6-Apr-15 WV3 12-Apr-15 p14r33 6 4-Apr-15 p14r33 −2 DE P1

6-Apr-15 WV3 12-Apr-15 p14r33 6 4-Apr-15 p14r33 −2 DE P2

20-Feb-17 WV2 28-Feb-17 p14r33 8 20-Feb-17 p14r33 0 MD P6

19-Feb-19 WV2 25-Feb-19 p15r33 6 10-Feb-19 p14r33 −9 MD P1

19-Feb-19 WV2 25-Feb-19 p15r33 6 10-Feb-19 p14r33 −9 MD P2

20-0ct-17 WV3 17-Oct-17 p15r33 −3 25-Oct-17 p15r33 5 MD P1

20-Jan-18 WV3 14-Jan-18 p14r33 −6 28-Dec-17 p15r33 −23 MD P3

20-Jan-18 WV3 14-Jan-18 p14r33 −6 28-Dec-17 p15r33 −23 MD P7

23-Nov-18 WV2 21-Nov-18 p15r32 −2 22-Nov-18 p14r32 −1 PA P1

23-Nov-18 WV2 14-Nov-18 p14r32 −9 22-Nov-18 p14r32 −1 PA P4

29-Nov-17 WV2 4-Dec-17 p15r31 5 25-Oct-17 p15r31 −35 PA P1

18-Oct-18 WV3 18-Oct-18 p17r32 0 10-Oct-18 p17r32 −8 PA P3

18-Oct-18 WV3 18-Oct-18 p17r32 0 10-Oct-18 p17r32 −8 PA P7

18-Oct-18 WV3 18-Oct-18 p17r32 0 10-Oct-18 p17r32 −8 PA P10

18-Oct-18 WV3 18-Oct-18 p17r32 0 10-Oct-18 p17r32 −8 PA P13

17-Aug-17 WV3 23-Aug-17 p14r32 6 22-Aug-17 p15r32 5 PA P1

23-Aug-18 WV2 16-Jul-18 p15r33 −38 9-Aug-18 p15r33 −14 VA P2

23-Aug-18 WV2 9-Sep-18 p15r33 17 25-Aug-18 p15r33 2 VA P4

23-Aug-18 WV2 16-Jul-18 p15r33 −38 25-Aug-18 p15r33 2 VA P8

21-Nov-18 WV2 28-Nov-18 p16r34 7 4-Nov-18 p16r34 −17 VA P1

21-Nov-18 WV2 28-Nov-18 p16r35 7 4-Nov-18 p16r35 −17 VA P4

9-Mar-17 WV3 16-Mar-17 p14r34 7 20-Feb-17 p14r34 −17 VA P2

9-Mar-17 WV3 16-Mar-17 p14r35 7 20-Feb-17 p14r35 −17 VA P4

9-Mar-17 WV3 16-Mar-17 p14r35 7 20-Feb-17 p14r35 −17 VA P6

4-Oct-18 WV3 29-Oct-18 p14r34 25 21-Oct-18 p14r34 17 VA P2

1-Dec-17 WV3 27-Nov-17 p14r34 −4 26-Nov-17 p15r34 −5 VA P5

1-Dec-17 WV3 27-Nov-17 p14r34 −4 26-Nov-17 p15r34 −5 VA P7

20-0ct-17 WV3 31-Oct-17 p17r34 11 7-Oct-17 p17r34 −13 WV P3

20-0ct-17 WV3 31-Oct-17 p17r34 11 7-Oct-17 p17r34 −13 WV P7

20-0ct-17 WV3 31-Oct-17 p17r34 11 7-Oct-17 p17r34 −13 WV P10

20-Nov-17 WV3 31-Oct-17 p17r33 −20 24-Nov-17 p17r33 4 WV P1
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WV3: WorldView-3, WV2: WorldView-2, p: path, r: row.

Table A3.

Distribution of newly disturbed validation points and the Landsat Operational Land Imager 

(OLI) images used to identify the change. A total of 150 no change points were randomly 

selected for each year (2015–2018) and each path/row (n = 3600).

Path/Row Image Date Disturbed Soil Points Path/Row Image Date Disturbed Soil Points

p15r31 24-Apr-14 p16r34 10-Jun-17 162

p15r31 29-May-15 p16r34 19-Oct-18 59

p15r31 13-Apr-16 p17r32 6-Apr-14

p15r31 23-Sep-17 41 p17r32 3-Nov-15 131

p15r31 8-Jul-18 p17r32 5-Nov-16 171

p15r33 24-Apr-14 p17r32 24-Nov-17 80

p15r33 14-Aug-14 p17r32 11-Nov-18 63

p15r33 17-Aug-15 150 p18r34 24-Feb-14

p15r33 2-Jul-16 247 p18r34 20-Sep-14

p15r33 22-Aug-17 172 p18r34 15-Mar-15

p15r33 8-Jul-18 167 p18r34 23-Sep-15 70

p15r34 14-Aug-14 p18r34 18-Apr-16 169

p15r34 17-Aug-15 156 p18r34 30-Oct-17 130

p15r34 13-Apr-16 98 p18r34 17-Oct-18 159

p15r34 2-May-17 164 Total 2015 546

p15r34 8-Jul-18 185 2016 793

p16r34 8-Oct-14 2017 749

p16r34 20-May-15 39 2018 633

p16r34 7-Jul-15 2015–2018 2711

p16r34 29-Oct-16 98

p: path, r: row.
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Figure 1. 
The per-pixel and per-year observation count for January 1 through May 31 integrating 

Landsat Enhanced Thematic Mapper plus and Landsat Operational Land Imager, after 

excluding cloud and cloud shadow observations.
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Figure 2. 
Inundation extent in 2016 as defined by (a) two or more observations of low, moderate, or 

high confidence inundation, (b) inundation extent in a with a slopes greater than 7% masked 

out, (c) inundation extent in b with additional observations required of low or moderate 

confidence inundation outside of the coastal plain ecoregions, and (d) extent in c with 

inundation polygons required to also intersect a National Wetlands Inventory polygon.
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Figure 3. 
A summary of the steps taken to produce the annual inundation loss, annual disturbance 

extent and annual intersection of these two products. TM: Thematic Mapper, ETM+: 

Enhanced TM, OLI: Operational Land Imager, DSWE: Dynamic Surface Water Extent, GS: 

Growing Season, NDVI: Normalized Difference Vegetation Index, NIR: Near Infrared.
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Figure 4. 
Variability was observed in the performance of the harmonic linear regression (top) and 

change in brightness (middle) to document transitions to bare soil. Examples shown include 

(a) a wetland fill found using the harmonic linear regression, (b) a water fill and (c) forest to 

soil transition, found using the increase in brightness, and (d) a transition from grassland to 

bare soil, missed by both approaches. Images are from Google Earth Pro. NDVI: 

Normalized Difference Vegetation Index.
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Figure 5. 
The distribution of (a) WorldView-2, 3 image extent used to validate inundation extent, 

minimum wetland size, and water fill validation points, and (b) disturbance extent validation 

points.
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Figure 6. 
Annual inundation extent examples across (a,b) forested wetlands, (c,d) river extent, (e,f) 
tidal emergent wetlands, (g,h) lake and emergent wetlands.
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Figure 7. 
(a) The density of National Wetland Inventory (NWI) wetlands, the density of (b) water loss, 

(c) disturbance, and (d) the intersection of disturbance and water loss. For a-d density was 

calculated from 5 × 5 window of cells using a 3 km resolution, for b-d density was based on 

the summed 2015–2018 annual outputs.
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Figure 8. 
Examples of the types of disturbance detected (2015–2018) including (a–c) expansion of 

mining activities in West Virginia, (d–f) silviculture harvests in central Virginia, and (g–i) 
residential development outside of Richmond, VA.
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Figure 9. 
Examples of disturbance extent as mapped by change in brightness, harmonic change 

detection and both approaches showing the pre-disturbance imagery (a,d,g), post-

disturbance imagery (b,e,h), and mapped disturbance extent (c,f,i). p: path, r: row.
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Figure 10. 
Examples of how the decrease in inundation extent and disturbance extent co-occur when 

impacts to water resources occur. Examples are included from Maryland (a–c), eastern 

Virginia (d–f), and western Pennsylvania (g–i). Light blue lines show National Wetland 

Inventory dataset boundaries. p: path, r: row.
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Table 1.

The number of Landsat Thematic Mapper (TM), Enhanced TM plus (ETM+) and Operational Land Imager 

(OLI) images used per-year for the inundation extent and per sensor for the harmonic and brightness outputs. 

The harmonic algorithm used images from January 2000 through December 2019, and the brightness 

algorithm used images for the years of interest and three years prior. Per year outputs (2015–2018) were 

generated within a given algorithm run.

Algorithm Imagery Year(s) Output Year(s) TM (Image 
Count)

ETM+ (Image 
Count)

OLI (Image 
Count)

Total (Image 
Count)

Inundation Extent 2013 2013 ~ 154 85 239

Inundation Extent 2014 2014 ~ 201 189 390

Inundation Extent 2015 2015 ~ 175 205 380

Inundation Extent 2016 2016 ~ 184 203 387

Inundation Extent 2017 2017 ~ 157 221 378

Inundation Extent 2018 2018 ~ 165 183 348

Inundation Extent 2013–2018 2013–2018 ~ 1036 1086 2122

Brightness 2012–2019 2015–2018 ~ 3673 3540 7213

Harmonic 2000–2019 2015–2018 5037 9394 3525 17,956
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Table 2.

The per-pixel tests applied to determine if a Landsat pixel contained water. Band and index values were 

multiplied by 10,000 for data efficiency purposes.

Test Landsat ETM+ Landsat OLI

Test 1 mNDWI > 123 mNDWI > 123

Test 2 MBSRV > 0 MBSRV > 0

Test 3 AWESH > 0 AWESH > 0

Test 4 mNDWI > −400, SWIR1 < 900, NIR < 1500, NDVI < 
6000 mNDWI > −4400, SWIR1 < 900, NIR < 1500, NDVI < 6500

Test 5 mNDWI > −5000, SWIR1 < 3000, SWIR2 < 1000, NIR 
< 2500, NDVI < 4000, B < 1000

mNDWI > −5000, SWIR1 < 3000, SWIR2 < 1000, NIR < 2500, NDVI < 
5500, B < 1000, BU3 < 1600

Test 6 G < 480, NIR < 2500, NDVI < 5500, BU3 < 1600

Enhanced Thematic Mapper plus (ETM+), Operational Land Imager (OLI), MNDWI: modified Normalized Difference Wetness Index, MBSRV: 
Multi-band Spectral Relationship Visible, AWESH: Automated Water Extension Shadow, SWIR: shortwave infrared, NIR: near-infrared, NDVI: 
Normalized Difference Vegetation Index, B: blue, G: green, BU3: 3 Band Index.
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Table 6.

The distribution of disturbance by pre-disturbance land cover type, defined by the National Land Cover 

Dataset (NLCD) 2013, and the percent of each cover type across the study area mapped as disturbed during 

the four-year time period (2015–2018).

NLCD (2013) Disturbance Distribution (%) Proportion of Cover Type Disturbed (%)

Forest 59.0 1.3

Developed (low to high intensity) 14.1 1.6

Hay/Pasture 8.1 0.8

Cultivated Crops 6.8 1.2

Shrub 4.1 2.6

Woody Wetlands 3.4 1.4

Grassland/Herbaceous 1.7 1.4

Barren 1.5 4.2

Open Water 0.7 0.1

Emergent Wetlands 0.6 0.9
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Table 7.

The distribution of the National Wetland Inventory (NWI) dataset and Landsat disturbance (2015–2018) 

intersection by NWI wetland type.

Wetland Type NWI - Disturbance Intersect (km2) NWI - Disturbance (−30 m buffer) Intersect (km2)

Freshwater Forested/Shrub Wetland 115.6 27.4

Riverine 22.0 1.2

Freshwater Pond 11.1 0.5

Estuarine and Marine Wetland 10.2 1.4

Lake 9.8 2.6

Freshwater Emergent Wetland 9.7 0.4

Estuarine and Marine Deepwater 6.5 0.3

Other 0.7 0.03
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