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Abstract: Head and neck cancer is the seventh most common cancer in Australia and globally. Despite
the current improved treatment modalities, there is still up to 50–60% local regional recurrence and
or distant metastasis. High-resolution medical imaging technologies such as PET/CT and MRI do
not currently detect the early spread of tumour cells, thus limiting the potential for effective minimal
residual detection and early diagnosis. Circulating tumour cells (CTCs) are a rare subset of cells
that escape from the primary tumour and enter into the bloodstream to form metastatic deposits
or even re-establish themselves in the primary site of the cancer. These cells are more aggressive
and accumulate gene alterations by somatic mutations that are the same or even greater than the
primary tumour because of additional features acquired in the circulation. The potential application
of CTC in clinical use is to acquire a liquid biopsy, by taking a reliable minimally invasive venous
blood sample, for cell genotyping during radiotherapy treatment to monitor the decline in CTC
detectability, and mutational changes in response to radiation resistance and radiation sensitivity.
Currently, very little has been published on radiation therapy, CTC, and circulating cancer stem cells
(CCSCs). The prognostic value of CTC in cancer management and personalised medicine for head
and neck cancer radiotherapy patients requires a deeper understanding at the cellular level, along
with other advanced technologies. With this goal, this review summarises the current research of
head and neck cancer CTC, CCSC and the molecular targets for personalised radiotherapy response.
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1. Introduction

The worldwide incidence of head and neck cancer is more than 600,000 cases with 350,000 deaths
each year [1]. In Australia, it is expected to rise to about 5061 new cases in 2018, including 3725 males
and 1336 females, compared to 4409 cases in 2013 [2,3]. Some of the associated confounding factors
include tobacco-chewing, smoking, alcoholism, poor oral hygiene and p16 (cyclin-dependent kinase
inhibitor 2A, multiple tumour suppressor 1) status in oral cancers. Typically, there are five main types
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of head and neck cancer: laryngeal and hypo pharyngeal (voice box), nasal cavity and paranasal
sinus (behind the nose), nasopharyngeal in the upper part of the throat (behind the nose), oral and
oropharyngeal (mouth, tongue and salivary glands) [4–10]. These tumours predominantly originate
from the squamous cells lining the surfaces of mouth, nose and the throat. The majority of head and
neck cancers are squamous cell carcinomas (HNSCC). Despite recent improvements in loco-regional
control, 50–60% of HNSCCs develop loco-regional recurrence, a further 20% progressing to distant
metastasis and therefore treatment failure [11]. Hence, globally the diagnosis and prognosis of HNSCC
remains a challenge [12].

These statistics indicate that there is an immediate need for improved therapy modalities
specifically for the HNSCC patients who are at the risk of loco regional or distant metastasis. In
clinical practice, it may be difficult to obtain tumour tissue from patients for gene alteration discoveries
to tailor treatment. Currently, radiotherapy alone or in combination with chemo-radiotherapy has
been reasonably effective for HNSCC but there is room for improvement [13–15]. Hence, the combined
effort of researchers and clinical investigators will expand the horizons in discovering new effective
biomarkers for clinical utility [16,17].

Despite the emergence of recent state-of-the-art radiotherapy modalities such as Image-Guided
Radiation Therapy (IGRT), Intensity-Modulated Radiation Therapy (IMRT), Volumetric Modulated
Radiation Therapy (VMRT) or Stereotactic Ablative Body Radiotherapy (SABR), there is a limitation
on the precise dose delivery associated with tumour volume and on the biological effect [18]
in determining the radioresistance and sensitivity index of the patient. Radioresistance and
radiosensitivity may vary depending on the cell type and origin and the genetic makeup of the patient.
Cancer stem cells (CSCs) are more resistant to radiotherapy [19,20]. Failure in repairing the double
strand breaks of DNA by radiotherapy accumulates mutation, causing genomic instability [21,22].
Currently, radiation oncology is being revolutionised into a new era with more precise and exciting
radiobiological advancement technologies by using CTCs and CCSCs. Ionising radiation to the primary
tumour target can affect the non-primary tumours favourably or unfavourably, which is termed an
“abscopal” effect. From an oncologist’s point of view, reduction in the tumour size is the measured
criteria, whereas from a biologist’s point of view, the measured criterion is the epigenetic modification
causing tumorigenic alteration and cell death in healthy tissues. The use of high-dose radiotherapy
fractionation in combination with appropriately improved systemic agents will be more beneficial in
controlling the tumour burden and in protecting healthy tissues from local recurrence [23]. Thus, the
rationale for identifying active cancer by investigating the presence of CTCs is not only a diagnostic
tool but will also serve as a proof of concept in guiding the efficacy of current clinical radiotherapy
treatment modalities [24].

2. CTC Origin and Methodologies

In 1869, the Australian physician Thomas Ashworth [25] discovered the existence of CTCs in
blood during the autopsy of a metastatic cancer patient. Later on, in 1889, Paget [26] postulated the
“seed and soil theory” based on his observations in metastatic breast cancer. Now CTC isolation
and detection have progressed into a new era. Currently, there are different approaches available for
the identification of CTCs based on the physical properties, expression of biomarkers or functional
characteristics of the tumour [27,28].

Solid tumour CTC isolation is commonly based on the biological properties which are enriched
either by EpCAM (epithelial cell adhesion molecule) positive selection or CD2, CD14, CD16, CD19,
CD45, CD61, CD66b and Glycophorin A negative selection of cell surface antibodies (such as
Stem Cell Technologies Human CTC Enrichment Kit, Rosette sep product CTC kit, MACS cell
separation-Miltenyl Biotec Immunomagnetic bead kit) [3,29–32]. CTC isolation can also be enriched
by ficoll density gradient, deformability or electric charges dielectrophoresis (DEP), flow cytometry,
immuno-microbubbles and protein epithelial immunospot (EPISPOT) methods. The other microfluidic
platform system (CTC-chip) [32] and isolation via size of epithelial tumour cells (ISET) filtration
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methodologies are based on the size of the CTC specific to tumour type. For further precise validation
and to avoid false negative findings, immunostaining or reverse transcription PCR (RT-PCR) methods
can be supported by a genomic approach using fluorescent in situ hybridisation (FISH) or single
cell analysis. Among various CTC methodologies, CellSearch® System (Veridex, Huntington Valley,
PA 19006, USA) CTC test is the only method that has been approved by the FDA (Food and Drug
Administration) such that it can be used as a surrogate marker of overall and progression-free survival
for only few types of cancer like breast, prostate and colorectal cancers [33]. In a comparative study
of CTC methodology on breast cancer, Kallergi et al. [34] reported ISET platform performance for
the best recovery than the CellSearch system. Morris et al. identified hepatocellular CTCs in 19 out
of 19 (100%) patients by ISET methodology and 14 out of 50 (28%) patients by Cell Search system
suggesting the accuracy in sensitivity and specificity [35]. Khoja et al. [36] compared the detection of
CTC in 54 pancreatic cancer patients with ISET and CellSearch system. The percentage of detection
was higher; 93% by ISET and 40% by CellSearch. Pailler et al. [37] also concluded ISET methodology
to be 100% sensitive compared to 33% with CellSearch in non-small cell lung cancer (NSCLC) patients.
Another study conducted by Krebs et al. [38] explains the advantages and disadvantages of using
both CellSearch and ISET approaches for a complementary role. CTC recovery rate with the ISET
method was 95% and 80% compared to 52% and 23% with CellSearch; however, the results obtained
were only from small patient groups of 10 and 40, respectively. In a direct comparison study of
CellSearch and ISET, Farace et al. [39] discussed the limitation of using the EpCAM antigen (CellSearch
assay) and cell size (ISET assay) in 20-patient cohorts for metastatic breast, prostate and non-small
cell lung cancer. They concluded the ISET methodology to be a more accurate clinical tool for breast,
prostate and non-small cell lung cancers. Hofman et al. [40] also compared the efficacy of CellSearch
assayTM and the ISET methods in 210 patients undergoing radical surgery for non-small-cell lung
carcinoma (NSCLC). They concluded that both methods were good prognostic markers for CTC
detection in this patient group. CTC detection methods utilised in studies investigating head and
neck cancers are summarised in Table 1. Due to their reported sensitivity and specificity, ISET and
Maintrac methodology have been widely used for clinical utility at the NutriPATH, National Institute
of Integrative Medicine (NIIM) and Genostics in Australia [41–43].
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Table 1. Overview of head and neck circulating tumour cells studies.

Author/Country Head and Neck Cancer Types and
Staging CTC/CCSC Markers Methodology Patient Treatment

Kulasinghe, Zhou et al. Australia. [44] Stage I–IV CTC clusters, DAPI, cytokeratin EGFR,
anti-CD45 Straight microfluidic chip treatment naive

Kulasinghe, Kapeleris et al. Australia [45] Stage I–IV CTC clusters, PD-L1, ALK, EGFR, DAPI,
anti-CD45

ClearCell FX system CTChip® (Clearbridge
Biomedics, Singapore)

treatment naive

Kulasinghe, Schmidt et al. Australia [46] Stage I–IV CTC clusters, DAPI, cytokeratin EGFR,
anti-CD45 Spiral, microfluidic chip technology treatment naive

Kawada, Takahashi et al. Japan [47] TNM I–IV
anti-cytokeratin (CK) 8, 18 and 19,
anti-epithelial cell adhesion molecule
(EpCAM), and anti-CD45

cell sieve low pressure micro filtration assay surgery and chemo radiotherapy

Fanelli, Oliveira et al. Brazil [48] Locally advanced head and Neck
Squamous cell carcinoma CTM- TGF-βRI ISET Method

adjuvant chemo radiotherapy,
definitive radiotherapy (RT) concurrent
with chemotherapy or cetuximab, or
induction chemotherapy followed by
RT concurrent with chemotherapy or
cetuximab

Kulasinghe, Perry et al. Australia [49] Supraglottal squamous cell
carcinoma (SCC) PD-1/PD-L1 CellSearch System (Janssen Diagnostics)

and shear spiral microfluidic technology
single case study who do not respond
to 1st/2nd line chemo-radiotherapy

Kulasinghe, Tran et al. Australia [3] T1N0M0, T2/T3 (71%) and either no
nodal spread N0 (50 (T4N2b))

CTC clusters, ICC and DNA FISH for
EGFR DAPI Cytokeratin shear spiral microfluidic technology chemotherapy lung metastasis findings

Kulasinghe, Kenny et al. Australia [11] T4 (55.1%) to advanced nodal spread
(N2A-C) (62.1%). CD45 APC, DAPI, CK-PE

CellSearch® platform, ScreenCell®

(microfiltration device, France and
RosetteSep™ (negative enrichment))

chemotherapy docetaxel, cisplatin and
5-fluorouracil

Kulasinghe, Perry et al. Australia [50]
Advanced HNC clinical stage
patients ranging from T3N0 to
T4aN2b.

Cytokeratin 8, 18, 19, CD45 and DAPI

RosetteSepTM Human CD45 depletion
cocktail (Stemcell Technologies™,
Vancouver, BC, Canada), CTC culture for
therapeutic screening

showed high CTC counts than EpCAM
Cellsearch® in HPV + patients

Patel, Shah et al. India [29] Oral squamous cell carcinoma
(OSCC) CCSC CD44v6 and Nanog CD44+ FITC labelled antibody by

immuno-magnetic cell separation technique CCSC resistance to Cisplatin

Morosin, Ashford et al. Australia [51]
Metastatic cutaneous squamous cell
carcinoma affecting the lymph nodes
of the parotid and/or neck

EpCAM and cytokeratin

Ficoll-Paque PLUS (GE Healthcare, NSW,
Australia), IsoFluxTM immunomagnetic
beads with Anti-EpCAM antibodies; CTC
Enrichment kit Fluxion Biosciences Inc.
System, Alameda, CA, USA

surgical treatment

Wu, Mastronicola et al. France [52] Oral squamous cell carcinoma
T4N2M0

EGFR neg CK PE-cytokeratin
phycoerythrin
DAPI CD45 APC EGFR

CellSearch® system
rare case study pre-operative:
intra-operative: and post-operative

Li, Liu et al. China [53] Nasopharyngeal carcinoma (NPC)
early TNM stages, Tumour stage I–IV CD45 DAPI

Anti CD45 antibody conjugated
immuno-magnetic beads (Cyttel, Jiangsu,
China)

chemo radiotherapy treatment
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Table 1. Cont.

Author/Country Head and Neck Cancer Types and
Staging CTC/CCSC Markers Methodology Patient Treatment

Hsieh, Lin et al. Taiwan [54] Locally advanced, recurrent, or initially
metastatic HNSCC TNM II–IV EpCAM/ podoplanin-PDPN Power Mag immunofluorescence Prechemotherapy

Healthy donors

Inhestern, Oertel et al. Germany [31] TNM III–IV EpCAM Laser scanning cytometry PB/before/during/surgery
radiotherapy, chemo radiotherapy

Grisanti, Almici et al. Italy [55] TNM III–IV EpCAM/CD45/DAPI CellSearch PB/before/during

Weller, Nel et al. Germany [56] TNM I–IV CK/CD45/DAPI Immunofluorescence PB/before treatment

Tinhofer, Konschak et al. Germany [57] TNM I–IV EGFR mRNA RT-PCR PB/before treatment

Gröbe, Blessmann et al. Germany [58] TNM I–IV EpCAM/CD45/DAPI CellSearch PB/before treatment

Bozec, Ilie et al. France [59] TNM III–IV EpCAM/CD45/DAPI CellSearch PB/before treatment

He, Li et al. China [60] TNM III–IV EpCAM/CD45/DAPI CellSearch PB/before treatment

Buglione, Grisanti et al. Italy [61] TNM I–IV EpCAM/CD45/DAPI CellSearch PB/before treatment

Nichols, Lowes et al. Britain [62] TNM III–IV EpCAM/CD45/DAPI CellSearch PB/before treatment

Balasubramanian, Lang et al. USA [63] Head and neck cancer patients EGFR cytokeratin, DAPI NH4Cl and CD45 negative
Immunomagnetic separation surgical resection

Hristozova, Konschak et al. Germany [64] TNM I–IV EpCAM, CK Flow cytometry PB/before treatment

Jatana, Balasubramanian et al. USA [65] TNM I–IV CK, CD45, DAPI Immunocytochemistry PB/before treatment

Toyoshima, Vairaktaris et al. Germany [66] TNM I–IV CK20 RT-PCR PB/after treatment

Mollaoglu, Vairaktaris et al. Greece [67]
Oral squamous cell carcinoma (OSCC)
TNM I–IV, for the early detection of
metastatic cells

Melanoma Associated Antigen- (MAGE
A1, 2, 4 and 12)

disseminated tumour cell detection by
bDNA technology,

Before treatment had floor of the mouth
tumors

Yang, Lang et al. USA [68]
squamous cell carcinoma of the oral
cavity, oropharynx, hypopharynx or
larynx

EGFR, DAPI NH4Cl and CD45 negative
Immunomagnetic separation

surgical resection for patients who have
not been previously treated for this
disease.

Balasubramanian, Yang et al. USA [69] Head and neck cancer patients
8, 18, 19 cytokeratins
CD45, CD44, EpCAM Vimentin
N-cadherin

NH4Cl and CD45 negative
Immunomagnetic separation surgical resection

Winter, Stephenson et al. Australia [70] Advanced head and neck cancers ELF3, CK19, EGFR and EphB4. Immunomagnetic enrichment, RT-PCR time of surgery

Guney, Yoldas et al. Turkey [71] TNM I–IV EpCAM magnetic cell separation MACS PB/before treatment

Wollenberg, Walz et al. Germany [72] TNM I–IV CK 19 IHC- alkaline phosphatase-anti-alkaline
phosphatase (APAAP) BM/before treatment

Wirtschafter, Benninger et al. USA [73] TNM I–IV CK 20 Immunocytochemistry PB/before treatment

EpCAM-Epithelial cell adhesion molecule, CK-cytokeratin, Immunohistochemistry, NH4Cl-Ammonium Chloride, PB-Peripheral blood, BM-bone marrow, CD-cluster of differentiation,
RT-PCR, reverse transcription–polymerase chain reaction, TNM-Tumour nodal metastasis.
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3. Radiotherapy Response on Circulating Tumour Cells, ctDNA and cfDNA

To date, there have only been a few published studies investigating the impact of radiation
therapy on CTCs [24,51,61,63,69,74,75]. In HNSCC, Buglione et al. [61] investigated the role of CTC
in patients receiving radiotherapy alone; however, the results were grouped with patients who had
also received chemotherapy and the sensitivity was low (30%) [61]. Radiotherapy in combination
with chemotherapy has shown reduction in HNSCC and prostate CTC [51,61,65,70,75–78]. Research
indicates radiotherapy makes the tumour cells more aggressive and potentiates the circulation of
non-small lung cancer (NSCLC) cells [24]. The successful use of conventional fractionated high-dose
radiotherapy (~2Gy per fraction for 30 days) can result in the destruction of clonogenic tumour cells
through DNA damage and cell cycle arrest [24], through to mitotic catastrophe, apoptosis, necrosis, or
autophagy [79–81], depending on the dose. Cellular radioresistance and radiosensitivity depends on
cell type and origin, cell cycle, and the genetic background. Martin et al. [24] indicated an increase in
CTC counts during early phase radiotherapy. Dorsey et al. [74] measured human telomerase reverse
transcriptase (hTERT) activity specific to cancer cells as a threshold for live CTC positivity in NSCLC
patients receiving radiotherapy. Lowes et al. [75] also reported that CTC could be used as a predictive
biomarker in clinical decision making for radiotherapy favourable prostate cancer patient group.
Our research group [14,15] reported the significance of favourable hyperbaric oxygen therapy for
chronic radiation-induced tissue injuries. Administering low-dose cisplatin, compared to a high-dose
treatment regimen, was well tolerated when used in combination with radiotherapy in head and neck
cancer patients. Both of the studies in Figures 1 and 2 comprise the basis of the research expertise and
the scope for assessing the influence of CTCs when using radiotherapy and chemoradiotherapy.

More recently, blood-based prognostic and predictive biomarkers for radiotherapy have drawn
much attention and excitement in radiation oncology. In this section, we reviewed and explored all
the noted uses of HNSCC circulating tumour DNA (ctDNA) for radioresistance and radiosensitivity
diagnostic approaches.

Primary tumour information and metastases at different sites within the same patient may have
different genomic characteristics due to tumour heterogeneity [82]. Therefore, tumour biopsy alone,
which is currently used in clinical practice, may not reveal sufficient information for radiotherapy
response decision-making. Combining ctDNA and cell-free DNA (cfDNA) genetic information in
radiation oncology can complement the current available technologies for future radiosensitising
therapeutic intervention. However, evidence has shown that there is a radiation risk from CT scans
inducing malignancy, suggesting that it may not be an ideal method for early cancer detection [83].

cfDNA is unstable and short-lived in the bloodstream [84–87], having a mix of malignant and
non-malignant cell properties. It is released into the circulation through apoptotic and necrotic cell
death mechanisms [85,88–90]. The DNA are short fragments of 166 bp sizes in low concentration.
Increase in cfDNA level suggests the presence of residual tumour cells in plasma [91]. Interestingly,
both mitochondrial DNA (mtDNA) and genomic DNA (gDNA) constitutes the total cfDNA [90]. The
circulation of nucleosome, mutations, methylation, chromatin modifications, and virial DNA, like
human papillomavirus (HPV), hepatitis B virus (HBV), and Epstein–Barr virus (EBV) in cfDNA has
the potential to monitor the anticancer therapy response in nasopharyngeal cancer and head and neck
cancer [92–100]. In some clinical studies, the increase in cfDNA fragments in blood plasma and serum
has been associated with poor prognosis [90].

Protein-based circulating biomarkers are specific to one cancer type, and it is not feasible to
compare and generalise this to all cancer types [101]. On the other hand, ctDNA and cfDNA [17,101,102]
in all cancer types accumulate somatic mutations, which can be correlated with any cancer type
treatment regimens [17,101]. In metastatic breast cancer patients, Dawson et al. [87] measured the
ctDNA mutant allele fraction and identified progression 5 months before imaging, suggesting that
ctDNA quantification is more beneficial than imaging [87]. Other authors have suggested that ctDNA
should be considered for clinical use in post-treatment follow-up of early stage cancer patients in
whom there is no or minimal residual disease, given the higher sensitivity of such assays [103,104].
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Next-generation sequencing technology platforms for ctDNA analysis was developed 20 years
ago [105–108] as either targeted or untargeted approaches. Targeted approaches include BEAMing
Safe-SeqS, TamSeq, and digital PCR, RTq PCR [109] to detect single-nucleotide mutations for limited
genome regions, focusing on predefined gene hot spots like BRAF, KRAS and EGFR. The untargeted
approach focuses on whole exome sequencing (WES) and whole genome sequencing (WGS) for
screening genomic aberration by hypomethylation [110] insertions or deletions, acquired by therapy
resistance. Murtaza et al. [111], using exome-wide analysis, quantified very high ctDNA levels for
1 to 2 years in 6 cancer patients and also reported on several mutations confirming drug resistance
acquired post-treatment [111]. More recently, a novel method called cancer personalized profiling
by deep sequencing (CAPP-seq) has demonstrated the advantage of combining the untargeted and
targeted approaches, which can then be generalised to all types of cancers with high specificity [105].
The major advantage of ctDNA application in radiation oncology is studying the tumour kinetics for
radiotherapy response assessment. Until now, using CAPP-Seq has differentiated the normal and
residual disease ctDNA changes in NSCLC patients treated with fractionated and stereotactic ablative
radiotherapy [105]. Alternatively, ctDNA usage can be applied to patients developing symptoms or
perform imaging when there is a rise in the ct DNA levels.Cancers 2019, 11, x  9 of 26 

 

 
Figure 1. PET scan of Male pyriform fossa squamous cell carcinoma stage T4aN2bM0 patient without 
surgery, treated with radical radiotherapy delivery 70Gy/35# over 7 weeks followed by cisplatin 100 
mg/msq given on week 1, week 4 and week 7 of radiotherapy. (A) Left panel blue circle showing the 
tumour spot before treatment on the 23 October 2014; (B) Right blue circle panel showing the 
antitumor effect of radical radio chemotherapy after treatment, showing no regional palpable 
lymphadenopathy, oral capsule was clear, showing no local recurrence, patient follow up after two 
years on 11 May 2017. 

Figure 1. PET scan of Male pyriform fossa squamous cell carcinoma stage T4aN2bM0 patient without
surgery, treated with radical radiotherapy delivery 70Gy/35# over 7 weeks followed by cisplatin
100 mg/msq given on week 1, week 4 and week 7 of radiotherapy. (A) Left panel blue circle showing the
tumour spot before treatment on the 23 October 2014; (B) Right blue circle panel showing the antitumor
effect of radical radio chemotherapy after treatment, showing no regional palpable lymphadenopathy,
oral capsule was clear, showing no local recurrence, patient follow up after two years on 11 May 2017.
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Figure 2. CT scans of the neck region in pyriform fossa squamous cell carcinoma patient showing the 
tumour area and no local recurrence. (A) Right panel blue circle showing clear palpable 
lymphadenopathy. (B) Left panel blue circle showing the tumour regression after two years, 
nasendoscopy also showed no local recurrence. 
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vivo models [114–118]. Based on the existing HNSCC chemo-radiotherapy literature, it is expected 
that no isolated CTCs using different methodologies post-treatment can be cultured in vitro. 
Cayrefourcq et al. [115] established the first CTC permanent cell line from the blood sample of a colon 
cancer patient and validated the tumour-forming capacity in SCID mice [115]. Interestingly, it shared 
similar characteristics to those of the primary tumour, possessing epithelial stem-like features. In a 
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potential and resistance to therapies. The major reason for treatment failure in anticancer therapy 
modalities is due to the presence of CSCs. CTCs expressing stem cell markers in the circulation are 
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CD133, CD44 and ALDH were associated with poor patient outcome. Among them, CD44 is highly 
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Figure 2. CT scans of the neck region in pyriform fossa squamous cell carcinoma patient showing
the tumour area and no local recurrence. (A) Right panel blue circle showing clear palpable
lymphadenopathy. (B) Left panel blue circle showing the tumour regression after two years,
nasendoscopy also showed no local recurrence.

Measuring Circulating Epstein Barr virus (EBV) DNA and human papilloma virus (HPV) DNA in
HNSCC patients can be used as a biomarker for before and after radiotherapy and chemo-radiotherapy
response. Successful radiotherapy treatment should decrease the level of circulating EBV and HPV
DNA [97,98,100,106–108,112]. In a different paradigm, where ctDNA levels remained stable and
post-treatment imaging revealed complete response for radiation therapy, months later, a patient
developed metastases in multiple organs, suggesting ctDNA level was an indicator of micrometastatic
disease progression [101]. Lo et al. [98] observed that plasma EBV DNA increased in the first week of
radiation therapy and subsequently decreased in nasopharyngeal carcinoma patients. Thus, ctDNA
kinetics as a biomarker could help clinicians deliver tailored radiotherapy and/or adjuvant systemic
therapy for individualised treatment rather than following a one-size-fits-all approach [98,99].

Currently, only clinical radiotherapy imaging data, as indicated in Figures 1A,B and 2A,B,
guide clinicians in treatment response when using radiotherapy alone in HNSCC patients. Towards
precision medicine in radiation oncology, CTC counts, ctDNA and cfDNA, along with medical imaging
modalities, will play a beneficial role in predicting patient prognosis.

4. CTC Lines, CCSC Derived CSC Organoids for Future Tailored Radiotherapy

CTC culturing for functional studies from cancer patients is logistically challenging. Currently,
for understanding CTC, CCSC biology and tumour heterogeneity, all race cell lines or preclinical
models for developing new efficient novel drugs are not commercially available [113]. Functional
analysis involves understanding the viable CTCs metastatic-initiating potential using in vitro and
in vivo models [114–118]. Based on the existing HNSCC chemo-radiotherapy literature, it is
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expected that no isolated CTCs using different methodologies post-treatment can be cultured in vitro.
Cayrefourcq et al. [115] established the first CTC permanent cell line from the blood sample of a colon
cancer patient and validated the tumour-forming capacity in SCID mice [115]. Interestingly, it shared
similar characteristics to those of the primary tumour, possessing epithelial stem-like features. In a
heterogeneous population of cells in circulation, very few, depending on the genetic makeup, can be
cultured successfully for real-time assessment of radiotherapy treatment. Until now, very few studies
have validated HNSCC CTC expansion and culturing as tumour spheres [3,11,50,119].

Cancer stem cells (CSCs) are cells possessing self-renewal properties with high metastatic potential
and resistance to therapies. The major reason for treatment failure in anticancer therapy modalities
is due to the presence of CSCs. CTCs expressing stem cell markers in the circulation are known
as circulating cancer stem cells (CCSCs) and are highly tumorigenic compared to tissue CSCs [120].
CSCs and non-CSCs possess common invasive/migratory features such as epithelial-mesenchymal
transition. Regarding CCSC, Patel S et al. [29] explored the role of CD44v6 and Nanog stem cell
markers in oral squamous cell carcinoma population. Commonly used CSC markers like CD133, CD44
and ALDH were associated with poor patient outcome. Among them, CD44 is highly expressed in
HNSCC cancer stem cells and circulating cancer stem cells. The over-expression of CD44+ and CD133+
cells provides resistance in tumours and the capability for disease relapse after chemo/radiotherapy
in immunodeficient mice [121]. Therefore, selective targeting of these markers should be utilised to
deliver cytotoxic drugs to CSCs, as one Wnt pathway antagonist (sFRP4) in HNSCC CSCs decreased
CD44, ALDH, ABCG2 and ABCC4 drug-resistance expression [122]. Furthermore, detailed head and
neck cancer CSC biomarkers and their transcription factors are reviewed as CD44, CD133, ALDH,
cMET and Oct-4, Nanog, Sox2, respectively [123,124].

With regard to HNSCC HPV status, HPV-positive patients responded to radiation treatment
better when compared to HPV-negative patients. Vlashi et al. [125] tested the CSC hypothesis to
inherent radiosensitivity and radioresistance in HPV-positive and -negative HNSCC cell lines. HNSCC
HPV-positive and -negative status CSC demonstrated radiation effects that were similar to HNSCC
HPV-positive and -negative cell lines results. Additionally, radiotherapy induced the dedifferentiation
of head and neck cancer cells into stem cells and increased plasticity by Yamanaka reprogramming
factors (transcription factors Oct4 (Pou5f1), Sox2, cMyc and Klf4) in HPV-negative cell lines [125].

In summarising the literature, the CCSC findings from several studies reveal that CTCs from
head and neck, lung, breast and prostate cancer can be cultured as spheroids or organoids for
more than 6 months, and these CTCs possess self-renewal cancer stem cell properties and exhibit
a radioresistant and chemoresistant phenotype with a high metastatic potential [109,120,126–129].
Recently, binding sites for OCT4, NANOG, SOX2 and SIN3A in breast cancer CTC clusters were shown
to be hypomethylated to what is seen in embryonic stem cell biology [110].

The authors suggested the CD44+ CSC-like cell population possessed dose-dependent resistance
to cisplatin in the peripheral blood circulation as do CCSC [29]. The same group again reported the
anticancer effect of curcumin inhibiting the stem cell features (self-renewal potential) of non-small cell
lung carcinoma CCSC [130]. Recently, another group, Zhang S et al., compared the metastatic and
invasiveness characteristics of circulating gastric cancer stem cells (CGCSCs) and tissue gastric cancer
stem cells (TGCSCs) in human gastric adenocarcinoma patients [131]. Interestingly, Chen et al. [132]
reported that CGCSCs showed greater aggressive phenotype to TGCSCs when isolating CGCSCs and
TGCSCs from blood and tissue of gastric adenocarcinoma patients. They also successfully developed
in vitro cell culture expansion with the same phenotype for several passages [132]. In a correlation
study of CTC and CCSC from non-metastatic breast cancer patients, CTC was considered to be more
appropriate for therapy assessment and CCSC as an independent prognostic marker for treatment
failure and tumour recurrence [133]. Similar findings were reported for use of CD133 and CD44v9
CSC markers for predicting recurrence, prognosis, and treatment efficacy in colorectal cancer patient
CTCs [134–136].
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Kantara C et al. also developed a novel diagnostic assay, expressing CSC markers (DCLK1/LGR5)
with CD44/Annexin A2 for detecting colon cancer CCSCs in the blood of colonic adenocarcinomas
patients [137]. Similarly, Grillet F, et al. [138] developed a colorectal cancer (CRC)-expressing cancer
stem cell phenotype for drug testing and monitored the metastatic potential in the real world for clinical
practice. The outcome of the study is now in clinical trial registration (ClinicalTrial.gov NCT01577511)
for individualised treatment [138]. Interestingly, a patent-pending study on doxorubicin and aspirin
as low dose combination therapy in patient-derived CTC clusters reduced CD 44 and 24 CSCs and
tumour relapse [139].

5. Head and Neck Cancer Treatment Modalities and Application

Management of head and neck cancers to date has relied on the conventional treatments of
surgery, radiotherapy and chemotherapy. Initiating treatment of this group of cancers by a molecular
approach is innovative, and currently there is limited evidence available regarding the effects of CTC
concentration during radiotherapy treatment to gauge responses and modify radiation doses. The
CTC genes regulating the radiotherapy kinetics (including dose rate and total dose) have not been
identified to date with particular applications of radioresistance and radiosensitivity. Furthermore,
CTC gene expression changes after radiotherapy, and chemotherapy management is still in the infancy
stages of discovery. At present, much of the work done has been focused on signalling pathways.

Deregulated signalling pathways contribute to oncogenic cellular transformation and resistance.
Several gene therapy strategies with different vector delivery mechanisms are being investigated
in clinical trials for HNSCC in the UK [140–143]. Radiotherapy with gene therapy will be a novel
approach to treat HNSCC in the future [144,145]. Gene expression profiling and identification of
biomarkers will further complement the current major clinicopathologic challenges, including staging,
lymph node, and distant metastasis, treatment choice and patient outcome. In 2007, the Netherlands
Cancer Institute (NKI), using NKI array method determined the gene expression profile as a good
prognostic value for chemo-radiotherapy (cisplatin-based) in Phase II and randomized Phase III trials
of advanced HNSCC patient group [146]. Later, 10 hub genes (AR, c-Jun, STAT1, PKC-β, RelA, cABL,
SUMO1, PAK2, HDAC1 and IRF1) were developed using a system biology-based gene expression
classifier for regulating radio-sensitivity genomic adjusted radiation dose (GARD) [147], including
the radiation response of DNA damage, histone deacetylation, cell cycle regulation, apoptosis and
proliferation [148–150].

In a collaborative study in 2009 between the Moffitt Cancer Centre, Research Institute USA and
the Netherlands Cancer Institute, the multigene expression model for predicting the intrinsic tumour
radiosensitivity and treatment response in patients was developed [151]. Subsequently, Torres-Roca
et al. measured the GARD values [147] in 8271 primary tissue samples consisting of 20 different
disease sites. The GARD values ranged from (1.66 to 172.4). Gliomas and sarcomas resulted in lower
values and cervical and oropharyngeal HNSCCs resulted in higher values. The GARD approach
emphasises only the radiosensitivity parameters with the potential for further optimising the current
radiation dose, using tumour-specific genomic data as a novel genomic radiotherapy prescription
framework [152]. Conventional HNSCC radiotherapy treatment guidelines currently follow a ‘one
size fits all’ modality, guided by the TNM staging system, which is currently under review. The new
8th Edition TNM staging takes into account oropharyngeal p16 positive cancer, which is down-staged
accordingly to move away from the ‘one size fits all approach’. Along with precision medicine tools
such as genomics, radiomics and mathematical modelling, the GARD approach could open new
doors in reducing toxicity and improving patient outcome. Supplementing the GARD approach
with information gained by CTC genomics could further guide personalized treatment by tailoring
radiotherapy dose modifications to individual patients. Understanding the role of EGFR in HNSCC
metastasis and treatment efficacy is essential for improving treatment outcomes [153–157]. Often,
patients with drug resistance EGFR mutations are limited to treatment with tyrosine kinase inhibitors
to target the epidermal growth factor receptor gene (EGFR) [154]. Monitoring HNSCC CTCs and their
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expression of EGFR and pEGFR in the blood has been implicated as a good predictor for radio-chemo
therapy response [55,57]. Studies have shown that CTC concentration increased in the presence of
radiotherapy in stage IVA/B, HNSCC patients. However, addition of cetuximab decreased the CTC
number compared to cisplatin/5-fluorouracil. The treatment was also effective in decreasing the
pEGFR expression [158]. Overall, EGFR status can be used as a chemo-radiotherapy and radiotherapy
indicator along with other CTC epithelial markers like EpCAM and cytokeratin. Evidence also
proves that EGFR plays a vital role in maintaining the HNSCC CTC clusters (possessing the stem cell
features) showing metastatic potential. Targeting EGFR in these clusters might lead to a more precise
treatment approach.

Gemmill et al. and Wagner et al. [159,160] critically reviewed the novel usage of Cetuximab for
HNSCC in a large randomised Phase III clinical trial. Cetuximab in combination with radiotherapy
showed good loco-regional control compared to radiotherapy alone with less acute toxicity by
inhibiting epidermal growth factor receptor (EGFR) [159–161]. Later, Tinhofer et al. showed a decrease
in CTC number in combination with radiotherapy [158]. Cisplatin (cis-diammine-dichloro-platinumII)
is a cytotoxic drug currently used in the treatment of several cancers and is effective through causing
DNA damage or apoptosis of tumour cells. The usage of cisplatin as a radiation sensitiser in the
treatment of advanced HNSCCs are summarised in phase II clinical trials [162–168]. From an Australian
radiotherapy perspective, our own research group conducted a retrospective study that showed the
efficacy and tolerability of cisplatin in HNSCC patients receiving radiotherapy treatment. [15]. An
ongoing international randomised controlled trial being run by the Trans-Tasman Radiation Oncology
Group (TROG 12.01—HPV Oropharynx) is comparing the side-effects of cetuximab versus cisplatin,
as they both possess different antitumor effects on radiation therapy. In an American randomised
phase III trial (RTOG 0522), the outcome did not improve when cetuximab was combined with
cisplatin and delivered concurrent with radiotherapy [169]. Similar studies utilising the hypoxic
cytotoxin tirapazamine combined with cisplatin and radiation have been performed, including
the TROG 02.02 Phase III “HeadSTART” trial, which did not find any significant improvement in
outcome for head and neck cancer patients [170]. In a Phase III Danish Head and Neck Cancer Study
(DAHANCA), hypoxic radiosensitizer Nimorazole (Nimoral) was found to significantly improve the
hypoxic radio-sensitisation of supraglottic laryngeal and pharyngeal carcinoma with minimal side
effects [171]. Nimorazole is currently being investigated in the EORTC 1219 ROG-HNCG TROG 14.03
trial using the 15 hypoxic gene signature in HPV/p16-negative SCC patients to identify hypoxic cell
signature for radiotherapy treatment outcomes.

6. Targeting CTC by Wnt Signalling for Radio Ligand-Based Therapies

Wnt signalling plays a significant role in radio resistance. To our knowledge, the role of radio
resistance and the Wnt signalling mechanism is not yet elucidated in any of the cancer circulating
tumour cells and its associated circulating cancer stem cells. There is, however, limited literature
regarding Wnt signalling in circulating tumour cells. Some data exist surrounding the non-canonical
CTC gene signatures and WNT2 candidate gene in pancreatic CTC, Wnt expression contributing to
antiandrogen resistance by single cell analysis RNA-seq in prostate CTCs [172–174].

Since 1997, our research group has extensively published on Wnt signalling and the role of
secreted frizzled related protein (sFRP4) and its associated domains, cysteine rich domain (CRD)
and netrin-like domain (NLD) as an antiangiogenic protein in various cancers such as brain, breast,
ovary, prostate, mesothelioma, including HNSCC CSCs and now recently in reproductive CSCs of
breast, prostate and ovary [122,175–187]. Jun et al. [188] explored the molecular mechanism of Wnt
signalling-induced radioresistance and DNA double-strand break repair by LIG4-DNA ligase through
β-catenin in colorectal cancer.

Based on our published data, we hypothesise the sFRP4 and its associated domains CRD and
NLD will modulate the WNT 3a gene expression-induced radioresistance in HNSCC CTC and
CCSCs and could reverse the effect of radioresistance. By diligently moving forward one step at
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a time, this potent and selective inhibitor may assist drug discovery and has potential to reverse the
effect of radioresistance by targeting human HNSCC-derived CTCs and CCSCs resulting in a novel
radiotherapy breakthrough for anticancer therapeutic modalities in the clinic [122,176,183,184,188].

From a clinical perspective, a high level of nuclear β-catenin accumulation was detected in
colorectal cancer, HNSCC [189,190], ionizing radiation-induced glioblastoma [191] and in CTCs of
prostate and breast cancer and myeloid leukaemia. Targeting β-catenin is also a promising therapeutic
approach in overcoming radioresistance [192–194]. Interestingly, with respect to the CSC hypothesis, a
Wnt signalling pathway member leucine-rich repeat-containing G-protein coupled receptor 5 (LgR5)
showed significance in oesophageal adenocarcinomas (EAC) with and without Barrett’s Oesophagus
(BE) [195].

c-Met is frequently altered in 90% of HNSCC tumours by mutation and overexpression
contributing to HGF/cMet signalling [196–199]. Several anticancer tyrosine kinase inhibitors
and the ongoing clinical trials targeting HGF and c-Met receptor are summarised by
Rothenberger NJ et al. [196] Cirzotinib (PF-2341066) is a tyrosine kinase inhibitor that when used
in combination with docetaxel and cisplatin showed synergistic antitumor effects in HNSCC CSCs
in a patient-derived xenograft (PDX) model [197,199]. Previous findings show crosstalk between
inhibiting cMET and WNT signalling. Furthermore, as proof of concept Sun et al. reported
on the role of c-Met/FZD 8 in inhibition of patient derived CSC-like cells by selective c-MET
inhibitor PF-2341066 [197]. Thus, use of c-MET inhibitors for antagonising Wnt signalling in
HNSCC CSCs is warranted. Another interesting finding which may be also relevant to HNSCC
CTC detection is that highly sensitive (80%) c-MET FISH-based platforms have been seen in gastric,
pancreatic, colorectal, bladder, renal, and prostate cancers [198]. Studies have shown that few
EGFR inhibitor-positive HNSCC patients treated with routine cetuximab also acquired resistance to
c-MET [200,201]. Developing β-catenin and c-MET-based techniques will also contribute to enhancing
the sensitivity of the current established CTC detection methods and aim to improve the survival
of HNSCC patients. The overall prospects of HNSCC CTCs research in radiation oncology and
progressing towards unexplored CTC-cancer research are summarised in Figures 3 and 4.
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7. Conclusions and Future Directions

This review article provides mounting evidence and scope for using CTC counts, CTC-derived
CCSC and ctDNA as a prognostic and predictive marker for current head and neck individualised
radiotherapy and chemo-radiotherapy response. Tracking CTC counts during radiotherapy treatment
will measure the outcome and disease resistance leading to recurrence especially in loco regionally
advanced disease with a significant potential for clinical application. In future, it may also set
the stage for developing CTC radiosensitive index by GARD in the clinical setting for tailored
radiotherapy dose prescription clinical practice. Today cost effective NGS and other sequencing
platforms can also guide the radiotherapy genomic alterations response. Our group is currently
developing CTC, circulating cancer stem cells and imaging guided genetic information (model)
framework for radiotherapy resistance and sensitivity in HNSCC for clinical practice. We are confident
that the proposed research will also contribute to the development of new therapeutic strategies
for radiotherapy precision medicine. Identification of radiotherapy/chemo-radiotherapy relapsed
HNSCC CTC and CCSC subpopulation and associated genetic material will be a valuable clinical tool
to improve the current treatment approach for this disease. Developing a less invasive CTC, CCSC
as a prognostic and predictive marker will be of added advantage in clinical practice for sequential
radiotherapy and chemo-radiotherapy assessment. Furthermore, investigating WNTs, c-Met, PI3K,
AKT/mTOR, CCSC epithelial markers and stem cell markers in radiotherapy HNSCC CTCs has the
potential to generate future radio-sensitisation modalities. Globally, current drug discovery is an
expensive and time-consuming process with high failure rates in patients. Future studies investigating
CTCs on early and advanced cancer models offer a less invasive approach compared to tissue biopsies
and can facilitate further understanding of tumour heterogeneity. The aim is to tailor treatment to
individual patient requirements based on information gained by conducting chemo-radiation testing
on their own CTC/CCSC organoids. This would then identify the most suitable FDA-approved
chemo-radiation regimen for their particular cancer. Using the advanced CTC/CCSC organoid
models, resistance and sensitivity rate can be predicted for therapy response prior to administering
the therapy to the patients, avoiding unwanted toxicity burden. Patient CTC organoids approach
in the real world is faster and less expensive with more control than animal models. Our goal is
to introduce CTC/CCSC as companion diagnostics and clinical intervention for current available
treatment prediction. Identifying and targeting specifically the CSC in CTC using surface markers and
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combining with radiotherapy will be major advancements in the field of cancer research. Introducing
such robust platform discoveries and translating it to human research in radiotherapy treatment will
help resolve the current challenges of potentially incurable cancer recurrence.
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