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Abstract: Transformations of 1-methoxymethylethynyl substituted isoquinolines triggered by termi-
nal alkynes in alcohols were studied and new 3-benzazecine-containing compounds synthesized,
such as 6-methoxymethyl-3-benzazecines incorporating an endocyclic C6–C8 allene fragment and
the -ylidene derivatives 6-methoxymethylene-3-benzazecines. The reaction mechanisms were inves-
tigated and a preliminary in vitro screening of their potential inhibitory activities against human
acetyl- and butyrylcholinesterases (AChE and BChE) and monoamine oxidases A and B (MAO-A and
MAO-B) showed that the allene compounds were more potent than the corresponding -ylidene ones
as selective AChE inhibitors. Among the allenes, 3e (R3 = CH2OMe) was found to be a competitive
AChE inhibitor with a low micromolar inhibition constant value (Ki = 4.9 µM), equipotent with the
corresponding 6-phenyl derivative 3n (R3 = Ph, Ki = 4.5 µM), but 90-fold more water-soluble.

Keywords: acetylcholinesterase; butyrylcholinesterase; monoamine oxidase A and B screening;
anti-cholinesterase activity; azacyclic allenes; 3-benzazecines; -ylidene derivatives

1. Introduction

Medium-sized nitrogen-containing heterocycles, i.e., 8-, 9-, 10-, 11-, and 12-membered
rings are quite widespread in nature, since a number of alkaloids possess these core cyclic
structures [1–4]. However, the chemical behavior of these heterocycles remains unclear,
due to the fact that there are not enough effective methods for their synthesis [5–9] and
the available ones are often limited to single examples, complexity of realization, or low
group compatibility in substrates. Developing methods with broader applicability to the
synthesis of such medium-sized heterocycles should helpfully support drug discovery
and structure–activity relationship (SAR) studies. It is well known that the biological
properties of compounds with 10-membered rings depend upon the conformation of
the cycle [10], which in turn is mainly related to cumulated and conjugated bonds in
molecular frameworks (Figure 1) [11,12] and by the presence of given pharmacophore
features. The combination of these factors could open new opportunities for disclosing new
medicinal hits targeted to biomolecules (e.g., enzymes, receptors), thus ultimately allowing
the modification of the 3-benzazecine scaffold and possibly expanding their applicability in
drug-discovery studies.

It should also be noted that heterocyclic nitrogen-containing allenes have not prac-
tically been studied. Moreover, while acyclic allenes are well known and successfully
used in the syntheses of heterocycles, their cyclic analogues still require further detailed
studies [13,14].
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kyl(aralkyl)-substituted allene 3-benzazecines smoothly underwent transformation into 

8-ylidene decorated derivatives in acetic acid (Figure 1). The purposes of this study were 

to synthesize new 3-benzazecine derivatives and investigate their chemical properties, as 

well as to preliminarily evaluate their in vitro biological properties as potential inhibitors 

of enzymes, which are drug targets related to neurological degenerative syndromes (e.g., 

Alzheimer and Parkinson diseases), namely, acetyl- and butyrylcholinesterases (AChE 

and BChE) and monoamine oxidases A and B (MAO-A and MAO-B). 

2. Results and Discussion 

Starting 1-methyl (isopropyl-, benzyl-, phenyl-, tolyl-, p-methoxyphenyl- and p-fluor-

ophenyl)-1-methoxymethylethynyl-1,2,3,4-tetrahydroisoquinolines 2a–h were obtained 

from 3,4-dihydroisoquinolinium methyl iodide 1 derived via the Bischler–Napieralski re-

action [18], followed by alkylation and subsequent methoxymethyl ethynylation in the 

presence of cuprous bromide in methylene chloride (Scheme 1, Table 1) [19]. 
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Table 1. Synthesis of 1,2,3,4-tetrahydroisoquinolines 2a–h. 

Entry Isoquinoline R1 R2 % Yield 

1 2a OMe Me 50 

2 2b OMe Bn 80 

3 2c OMe Ph 72 

4 2d OMe C6H4-Me-p 77 

5 2e OMe C6H4-OMe-p 90 

6 2f OMe C6H4-F-p 83 

7 2g H i-Pr 40 

8 2h H Ph 48 

Figure 1. Structures of newly synthesized 3-benzazecines with intramolecular allene moiety (A) and
exocyclic double bond (B,C).

Previously, we have taken the first steps and succeeded in the construction of allene-
containing 3-benzazecines [15]—a new type of allene A (R3 = Ph)—and later in our ongoing
study observed some of their transformations [16,17]. It was shown that 8-alkyl(aralkyl)-
substituted allene 3-benzazecines smoothly underwent transformation into 8-ylidene deco-
rated derivatives in acetic acid (Figure 1). The purposes of this study were to synthesize
new 3-benzazecine derivatives and investigate their chemical properties, as well as to
preliminarily evaluate their in vitro biological properties as potential inhibitors of enzymes,
which are drug targets related to neurological degenerative syndromes (e.g., Alzheimer
and Parkinson diseases), namely, acetyl- and butyrylcholinesterases (AChE and BChE) and
monoamine oxidases A and B (MAO-A and MAO-B).

2. Results and Discussion

Starting 1-methyl (isopropyl-, benzyl-, phenyl-, tolyl-, p-methoxyphenyl- and
p-fluorophenyl)-1-methoxymethylethynyl-1,2,3,4-tetrahydroisoquinolines 2a–h were ob-
tained from 3,4-dihydroisoquinolinium methyl iodide 1 derived via the Bischler–Napieralski
reaction [18], followed by alkylation and subsequent methoxymethyl ethynylation in the
presence of cuprous bromide in methylene chloride (Scheme 1, Table 1) [19].
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Scheme 1. Synthesis of starting 1-R2-1-alkynyl-1,2,3,4-tetrahydroisoquinolines 2a–h.

Table 1. Synthesis of 1,2,3,4-tetrahydroisoquinolines 2a–h.

Entry Isoquinoline R1 R2 % Yield

1 2a OMe Me 50
2 2b OMe Bn 80
3 2c OMe Ph 72
4 2d OMe C6H4-Me-p 77
5 2e OMe C6H4-OMe-p 90
6 2f OMe C6H4-F-p 83
7 2g H i-Pr 40
8 2h H Ph 48

We continued our study with estimating behavior of isoquinolines 2a–h in reactions
with terminal activated alkynes (methyl propiolate and acetylacetylene) in different solvents-
trifluoroethanol, hexafluoroisopropanol, isopropanol, acetonitrile, or dichloromethane
(Scheme 2, Table 2).
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Scheme 2. Reactions of isoquinoline 2a–h with terminal activated alkynes in protic solvents.

Table 2. Conditions and products of reactions of isoquinoline 2a–h with activated alkynes.

Entry Cmpd R1 R2 X Solvents Conditions Allene 3
(yield, %) a

Benzazecine 4
(yield, %) a

1 2a OMe Me CO2Me CF3CH2OH 25 ◦C, 1 day 3a, 80% 4a, -

2 2b OMe Bn CO2Me CF3CH2OH 25 ◦C, 1 day 3b, 91% 4b, -
3 2b OMe Bn CO2Me (CF3)2CHOH 20 ◦C, 3 days 3b, 40% b -
4 2b OMe Bn CO2Me i-PrOH 20 ◦C, 4 days 3b, 70% -

5 2c OMe Ph CO2Me CF3CH2OH 25 ◦C, 1 day 3c, 30% 4c, 32%
6 2c OMe Ph CO2Me i-PrOH 20 ◦C, 10 days 3c, 25% b -

7 2d OMe 4-MePh CO2Me CF3CH2OH 25 ◦C, 1 day 3d, 47% 4d, 35%
8 2d OMe 4-MePh Ac CF3CH2OH 7 ◦C, 4 days 3i, 50% -

9 2e OMe 4-MeOPh CO2Me CF3CH2OH 25 ◦C, 1 day 3e, 63% 4e, 28%
10 2e OMe 4-MeOPh Ac CF3CH2OH 7 ◦C, 2 days 3j, 73% -

11 2f OMe 4-FPh CO2Me CF3CH2OH 25 ◦C, 1 day 3f, 24% 4f, 47%
12 2f OMe 4-FPh Ac CF3CH2OH 7 ◦C, 6 h 3k, 76% -

13 2g H i-Pr CO2Me CF3CH2OH 25 ◦C, 1 day 3g, 87% 4g, -
14 2g H i-Pr Ac CF3CH2OH 7 ◦C, 2 days 3l, 44% -

15 2h H Ph CO2Me CF3CH2OH 25 ◦C, 1 day 3h, 64% 4h, -
16 2h H Ph Ac CF3CH2OH 7 ◦C, 3 days 3m, 50% -

a Products 3 and 4 were isolated via chromatography. b A strong tarring was observed.

In trifluoroethanol at 25 ◦C, isoquinolines 2a, 2b, 2g with alkyl or benzyl substituents
in the C-1 position reacted with methyl propiolate, readily forming benzazecines 3a, 3b,
3g with an allene fragment as main products in 80–91% yield. However, reactions of iso-
quinolines 2c–f with aryl substituent in the C-1 position under the same conditions did not
proceed so clearly and led to the formation of mixtures of allene-containing benzazecines
3c–f and 6-methoxymethylenebenzazecines 4c–f in different ratios. The latter compounds
were unexpected for us, as in previous work [16], we isolated only azecines with -ylidene
fragment at C-8. We noticed that the prolongation in the reaction time led to the formation
of the second product, compound 4, so we tried to carry out the reactions quickly and
immediately isolate target allene 3.

Acetylacetylene also smoothly reacted with isoquinolines 2d–h to provide allenes
3i–m in moderate to high yields (Scheme 2).

Previously, it was shown that 1-alkyl-1-phenylethynyltetrahydroisoquinolines under the
action of methyl propiolate in hexafluoroisopropanol produced 8-ylidene-benzazecines [16],
but in the case of 1-methoxymethylethynyl-substituted isoquinoline 2b, the same reaction
conditions led to the formation of benzazecine 3b with an allene fragment in 40% yield.
The reactions of isoquinolines 2b and 2c with alkynes in less acidic isopropanol proceeded
slowly (4–10 days, 20 ◦C), resulting only in allenes 3b and 3c (Scheme 2, Table 2). The
formation of benzazecines with -ylidene moiety was not observed. The low yield of
compound 3c can be explained by a prolonged exposure of the reaction mixture in a proton
solvent and, as a consequence, its strong tarring.
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Acetonitrile and dichloromethane appeared not to be effective solvents for the trans-
formations. Isoquinoline 2 did not react with methyl propiolate in either acetonitrile or
dichloromethane. Reflux and MW irradiation could not solve the problem—the reactions
in these solvents did not even start.

Based on the obtained experimental data, we presume that the reaction proceeds
through the formation of zwitterion I, which exists in equilibrium with zwitterion II
(Scheme 3). The equilibrium position depends on the solvation ability of the solvent,
substituents in the C-1 position of the isoquinoline, and delocalization of the anionic center.
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Scheme 3. A proposed mechanism of the transformations.

In the case of acetylacetylene, the anionic center has greater nucleophilicity in compar-
ison with one formed by methyl propiolate, so the reaction proceeds immediately after the
formation of the initial ion I, leading to benzazecines 3i–m.

In the case of methyl propiolate, delocalization of the anionic center promotes the
formation of equilibrium and results in formation of a mixture of benzazecines 3c–f and
6-ylidene decorated compounds 4c–f (Scheme 3).

The following step of the research was to study the behavior of obtained allene 3a in
acetic acid at 100 ◦C and microwave irradiation. It was of great interest to see whether the
rearrangement in allene 3a proceeds via a previously described route [17] or again prefers
to yield 6-methoxymethylene benzazecines. In the abovementioned conditions, allene 3a
underwent rearrangement readily to give only 6-methoxymethylene benzazecine 4a in
25% yield (Scheme 4). The poor yield of the product can be explained by the use of more
acidic protic solvent, such as AcOH, in which the intensive formation of tar products is
observed. The short-term heating of reaction mixtures in an MW reactor does not improve
the situation with the yields. We suggest that under the action of acetic acid, the allyl system
is protonated, thus producing cation III, after stabilization of which 6-ylidene-substituted
compound 4 is formed (Scheme 4).
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Scheme 4. Transformation of allene 3a into 6-methoxymethylene benzazecine 4a.

In previous work [12], the 10,11-dimethoxy derivative of the allene 3-benzazecine
3n (scaffold A, R3 = Ph), bearing at C-8 the 4-methoxyphenyl group, was found to be the
most potent competitive AChE-selective inhibitor (Ki about 4.5 µM). Herein, a number of
newly and previously synthesized 3-benzazecine analogs, including either allene (Figure 1,
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scaffold A) or 6- and 8-ylidene (B and C) derivatives, were firstly assayed as inhibitors of
AChE, BChE, and MAOs at 10 µM concentration. For compounds that attained at least 50%
inhibition at 10 µM, IC50s were determined from the best-fitting inhibition-concentration
curves (five scalar concentrations in the 0.1–50 µM range). The inhibition data only for the
allene compounds, which achieved IC50 toward AChE in the low µM range, are reported
in Table 3. Previously reported activities of 3n and 3o are also shown for comparison.

Table 3. Inhibition potency data on human acetyl- and butyrylcholinesterases (AChE and BChE)
and monoamine oxidases A and B (MAO A and B) of 10,11-dimethoxy derivatives of allenyl 3-
benzazecines (scaffold A, R1 = OMe).

Entry Cmpd R2 R3 X
Enzymes’ Inhibition Data a

hAChE hBChE hMAO-A hMAO-B

1 3d 4-MePh CH2OMe CO2Me 19.3 ± 3.3 n.i. (30 ± 4) (30 ± 5)
2 3e 4-OMePh CH2OMe CO2Me 12.2 ± 2.6 n.i. (37 ± 5) (23 ± 1)
3 3i 4-MePh CH2OMe Ac 32.5 ± 4.4 n.i. (28 ± 1) (38 ± 4)
4 3j 4-OMePh CH2OMe Ac 13.2 ± 0.7 n.i. (29 ± 5) (28 ± 5)
5 3n b 4-OMePh Ph CO2Me 5.05 ± 0.21 n.i. (20 ± 5) (24 ± 5)
6 3o b 4-OMePh Ph Ac (23 ± 4) n.i. (34 ± 2) (16 ± 2)

a Half-maximal inhibitory concentration or % inhibition at 10 µM in parentheses; values are mean ± SD of three
independent measurements; n.i. = no inhibition. b Ref. [12].

The only noteworthy activity was the AChE inhibition, for which the allene derivatives
proved to be more potent than the -ylidene ones. The CO2Me esters 3d and 3e worked
slightly better than the corresponding COMe ketones 3i and 3j. Compound 3e bearing the
polar methoxymethyl group at C-6 showed IC50 just double that of the corresponding 6-Ph
analogue 3n.

The Lineweaver–Burk plot of hAChE inhibition kinetics of the most active inhibitor
3e showed a competitive mechanism (Figure 2), with inhibition constant Ki equal to
4.89 ± 0.47 µM, suggesting a preferential occupancy of the catalytic cavity of the enzyme
by means of noncovalent interactions.
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The enzymes’ inhibition assays showed that for all the tested compounds, the in-
hibitory effects toward both MAO isoforms, and BChE as well, were weak to nil in the
low micromolar range. Possible antioxidant activities were also explored with the DPPH
radical scavenging assay, where all compounds were inactive.
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Interestingly, the replacement of the phenyl group at C-6 of 3n with the more polar
CH2OMe group in 3e, while retaining the same inhibition potency, did improve the water
solubility by 90 times. The experimental data (Table 4) showed a solubility in PBS at pH 7.4
for 3e and 3n equal to 17.4 and 0.2 µM, respectively. The hydrolytic stability of 3e was quite
good (half-life 4.5 h), though lower than the poorly soluble 3n (half-life > 12 h).

Table 4. Acetylcholinesterase inhibition constants, aqueous solubility, hydrolytic stability, predicted
pharmacokinetics properties, and PAINS alert of 3-benzazecine derivatives 3e and 3n.

Cmpd 3e 3n

AChE inhibition, Ki µM 4.89 ± 0.47 4.45 ± 0.08
Solubility a, µM 17.4 ± 0.7 0.200 ± 0.015

Hydrolytic half-life a, h 4.5 >12

ADME-related properties

GI absorption b High High
BBB permeant c Yes Yes
P-gp substrate No No

CYP2C19 inhib. No No
CYP3A4 inhib. Yes Yes

PAINS No alert No alert
a PBS pH 7.4, 0.15 M KCl, 37 ◦C. Each experiment was performed in triplicate; data expressed as mean ± SD;
b predicted apparent Caco-2 cell permeability (>4000) [20]; c predicted apparent MDCK cell permeability
(>2000) [20].

The in silico prediction of ADME-related properties for 3e and 3n using the Swis-
sADME tool [21] showed high gastrointestinal (GI) absorption, good permeation of the
blood–brain barrier (BBB), and poor ability for compounds as P-glycoprotein 1 (P-gp) sub-
strates. Indeed, tested in a P-gp assay, several similar analogues and 3n itself proved to be
potent inhibitors of P-gp in the nanomolar range. The two compounds were also predicted
to inhibit cytochrome CYP3A4, a key liver enzyme responsible for oxidative detoxification
of diverse xenobiotics, while no activity was suggested toward CYP2C19. Furthermore, the
computational tool PAINS remover [22] did not alert for any PAINS (pan-assay interference
compounds) for 3e or 3n.

3. Materials and Methods
3.1. Chemistry
3.1.1. Materials and General Procedures

IR spectra were recorded on an Infralum FT-801 FTIR spectrometer in KBr tablets for
crystalline compounds or in a film for amorphous compounds (ISP SB RAS, Novosibirsk,
Russia). Elemental analysis was carried out on a Euro Vector EA-3000 elemental Analyzer
(Eurovector, S.p.A., Milan, Italy) for C, H and N; experimental data agreed to within 0.04%
of the theoretical values. 1H and 13C NMR spectra were acquired on a 600 MHz NMR
spectrometer (JEOL Ltd., Tokyo, Japan) in CDCl3 for compounds with a solvent signal as
internal standard (7.27 ppm for 1H nuclei, 77.2 ppm for 13C nuclei); peak positions were
given in parts per million (ppm, δ). Mass spectra (LC-MS) of compounds were acquired
on an Agilent 1100 LC/MSD VL system (electrospray ionization) (Agilent Technologies
Inc., Santa Clara, CA, USA). Melting points were determined on an SMP-10 apparatus
(Bibby Sterilin Ltd., Stone, UK) in open capillary tubes. Sorbfil PTH-AF-A-UF plates (Imid
Ltd., Krasnodar, Russia) were used for TLC, visualization in an iodine chamber, or using
KMnO4 and H2SO4 solutions. Silica gel (40–60 µm, 60 Å) Macherey-Nagel GmbH&Co
(Loughborough, UK) was used for column chromatography. MW-assisted reactions were
carried out in a Monowave 400 reactor from Anton Paar GmbH (Graz, Austria); the reaction
temperature was monitored by an IR sensor; standard 10 mL G10 reaction vials, sealed
with silicone septa, were used for the MW irradiation experiments. All reagents (Sigma-
Aldrich, St. Louis, MO, USA; Merck, Darmstadt, Germany; J.T. Baker, Phillipsburg, NJ,
USA), and fluorinated solvents (SIA P&M-Invest Ltd., Moscow, Russia) were used without
additional purification.



Molecules 2022, 27, 6276 7 of 13

3.1.2. Synthesis of Benzazecines 3 and 4

To compounds 2a–h (1.7 mmol) was added 5 mL of 2,2,2-trifluoroethanol (hexafluo-
roisopropanol, isopropanol), then methyl propiolate or acetylacetylene (2.21 mmol) was
added. In the case of methyl propiolate, the reaction proceeded at 25 ◦C and for acetylacety-
lene at 7 ◦C (Table 2). The reaction was carried out under argon atmosphere. The progress
of the reaction was monitored by TLC (Sorbfil, 3:2 EtOAc–hexane). The solvent was re-
moved under vacuum and residue was chromatographed on silica gel (1:5 EtOAc–hexane).
Compounds 3a–m and 4d, 4f were crystallized from Et2O.

Methyl 3,8-dimethyl-10,11-dimethoxy-6-(methoxymethyl)-benzo[d]-3-aza-cyclodeca-4,6,7-
triene-5-carboxylate (3a): 0.507 g (80%); beige solid; mp 165–167 ◦C; Rf 0.60 (3:1, EtOAc–
hexane); IR (KBr) ν 1961 (C=C=C), 1690 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.41
(1H, s, H-4), 6.82 (1H, s, H Ar), 6.62 (1H, s, H Ar), 4.36–4.32 (1H, m, 2-CH2), 4.01 (1H, d,
J = 11.6 Hz, CH2OCH3), 3.93 (1H, d, J = 11.6 Hz, CH2OCH3), 3.88 (3H, s, OCH3), 3.86 (3H,
s, OCH3), 3.71 (3H, s, OCH3), 3.38–3.34 (1H, m, 2-CH2), 3.25 (3H, s, OCH3), 3.13 (3H, s,
N-CH3), 2.89–2.83 (1H, m, 1-CH2), 2.75–2.69 (1H, m, 1-CH2), 2.10 (3H, s, CH3); 13C NMR
(CDCl3, 150 MHz) δ 205.5, 170.0, 147.8, 147.6, 147.5, 131.1, 128.1, 113.1, 110.4, 97.7, 96.8, 94.2,
74.7, 58.7, 56.1, 56.0, 51.6, 51.2, 45.3, 31.4, 19.3; LCMS (ESI) m/z 374 [M + H]+; anal. C 67.61,
H 7.19, N 3.81%, calcd for C21H27NO5, C 67.54, H 7.29, N 3.75%.

Methyl 8-benzyl-3-methyl-10,11-dimethoxy-6-(methoxymethyl)-benzo[d]-3-aza-cyclodeca-4,6,7-
triene-5-carboxylate (3b): 0.694 g (91% from CF3CH2OH); white solid; mp 168–170 ◦C; Rf
0.55 (3:2, EtOAc–hexane); IR (KBr) ν 1955 (C=C=C), 1675 (C=O) cm−1; 1H NMR (CDCl3,
600 MHz) δ 7.41 (1H, s, H-4), 7.25–7.23 (4H, m, H Ph), 7.16 (1H, t, J = 7.1 Hz, H Ph), 6.81 (1H,
s, H Ar), 6.58 (1H, s, H Ar), 4.39–3.35 (1H, m, 2-CH2), 4.00 (1H, d, J = 11.9 Hz, CH2OCH3),
3.98 (1H, d, J = 11.9 Hz, CH2OCH3), 3.84 (3H, s, OCH3), 3.78 (3H, s, OCH3), 3.76 (2H, s,
CH2-Ph), 3.64 (3H, s, OCH3), 3.35–3.31 (1H, m, 2-CH2), 3.24 (3H, s, OCH3), 3.13 (3H, s,
N-CH3), 2.88–2.82 (1H, m, 1-CH2), 2.70–2.64 (1H, m, 1-CH2); 13C NMR (CDCl3, 150 MHz) δ
206.4, 170.1, 147.7, 147.5, 139.6, 129.8, 129.0 (3C), 128.6, 128.3 (2C), 126.1, 112.9, 110.7, 101.8,
97.9, 94.1, 74.7, 58.8, 55.9 (2C), 51.6, 51.2, 45.3, 39.8, 31.3; LCMS (ESI) m/z 450 [M + H]+; anal.
C 72.28, H 6.87, N 3.16%, calcd for C27H31NO5, C 72.14, H 6.95, N 3.12%.

Methyl 3-methyl-8-phenyl-10,11-dimethoxy-6-(methoxymethyl)-benzo[d]-3-aza-cyclodeca-
4,6,7-triene-5-carboxylate (3c): 0.222 g (30% from CF3CH2OH); light yellow oil; Rf 0.53 (2:1,
EtOAc–hexane); IR (KBr) ν 1943 (C=C=C), 1683 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ
7.42 (1H, s, H-4), 7.37 (2H, d, J = 8.1 Hz, H Ph), 7.31 (2H, t, J = 7.6 Hz, H Ph), 7.23 (1H, t,
J = 7.6 Hz, H Ph), 6.75 (1H, s, H Ar), 6.70 (1H, s, H Ar), 4.44–4.41 (1H, m, 2-CH2), 4.21 (2H,
s, CH2OCH3), 3.92 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.70 (3H, s, OCH3), 3.42–3.39 (1H,
m, 2-CH2), 3.29 (3H, s, OCH3), 3.15 (3H, s, N-CH3), 2.94–2.89 (1H, m, 1-CH2), 2.85–2.80
(1H, m, 1-CH2); 13C NMR (CDCl3, 150 MHz) δ 207.1, 169.6, 147.9, 147.6, 147.5, 137.3, 129.6,
128.4 (2C), 128.0 (2C), 127.9, 126.9, 113.1, 112.5, 105.6, 100.5, 93.4, 74.5, 59.0, 56.0, 55.9, 51.5,
51.2, 45.1, 31.5; LCMS (ESI) m/z 436 [M + H]+; anal. C 71.55, H 6.89, N 3.14%, calcd for
C26H29NO5, C 71.70, H 6.71, N 3.22%.

Methyl 3-methyl-8-(4-methylphenyl)-10,11-dimethoxy-6-(methoxymethyl)-benzo[d]-3-aza-
cyclodeca-4,6,7-triene-5-carboxylate (3d): 0.359 g (47%); light yellow solid; mp 142–144 ◦C; Rf
0.53 (2:1, EtOAc–hexane); IR (KBr) ν 1935 (C=C=C), 1680 (C=O) cm−1; 1H NMR (CDCl3,
600 MHz) δ 7.42 (1H, s, H-4), 7.26 (2H, d, J = 8.1 Hz, H Ar), 7.13 (2H, d, J = 7.6 Hz, H Ar),
6.76 (1H, s, H Ar), 6.70 (1H, s, H Ar), 4.45–4.41 (1H, m, 2-CH2), 4.20 (2H, s, CH2OCH3), 3.91
(3H, s, OCH3), 3.75 (3H, s, OCH3), 3.70 (3H, s, OCH3), 3.42–3.39 (1H, m, 2-CH2), 3.29 (3H,
s, OCH3), 3.14 (3H, s, N-CH3), 2.94–2.88 (1H, m, 1-CH2), 2.84–2.79 (1H, m, 1-CH2), 2.35
(3H, s, CH3); 13C NMR (CDCl3, 150 MHz) δ 206.8, 169.6, 147.8, 147.5, 147.4, 136.6, 134.2,
129.6, 129.0 (2C), 128.0, 127.9 (2C), 113.1, 112.4, 105.4, 100.3, 93.6, 74.6, 59.0, 56.0, 55.9, 51.5,
51.1, 45.0, 31.4, 21.1; LCMS (ESI) m/z 450 [M + H]+; anal. C 72.05, H 6.85, N 3.19%, calcd for
C27H31NO5, C 72.14, H 6.95, N 3.12%.

Methyl 3-methyl-10,11-dimethoxy-6-methoxymethyl-8-(4-methoxyphenyl)-benzo[d]-3-aza-
cyclodeca-4,6,7-triene-5-carboxylate (3e): 0.498 g (63%); orange oil; Rf 0.58 (1:2, EtOAc–hexane);
IR (KBr) ν 1939 (C=C=C), 1682 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.42 (1H, s, H-4),
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7.28 (2H, d, J = 8.6 Hz, H Ar), 6.85 (2H, d, J = 8.6 Hz, H Ar), 6.75 (1H, s, H Ar), 6.69 (1H,
s, H Ar), 4.44–4.40 (1H, m, 2-CH2), 4.19 (2H, s, CH2OCH3), 3.91 (3H, s, OCH3), 3.82 (3H,
s, OCH3), 3.75 (3H, s, OCH3), 3.70 (3H, s, OCH3), 3.43–3.39 (1H, m, 2-CH2), 3.28 (3H, s,
OCH3), 3.15 (3H, s, N-CH3), 2.93–2.88 (1H, m, 1-CH2), 2.84–2.79 (1H, m, 1-CH2); 13C NMR
(CDCl3, 150 MHz) δ 206.5, 169.6, 158.7, 147.8, 147.5, 147.4, 129.5, 129.4, 129.1 (2C), 128.2,
113.8 (2C), 113.0, 112.4, 105.1, 100.3, 93.7, 74.6, 58.9, 56.0, 55.9, 55.3, 51.5, 51.1, 45.0, 31.4;
LCMS (ESI) m/z 466 [M + H]+; anal. C 69.60, H 6.65, N 3.07%, calcd for C27H31NO6, C 69.66,
H 6.71, N 3.01%.

Methyl 3-methyl-10,11-dimethoxy-6-methoxymethyl-8-(4-fluorophenyl)-benzo[d]-3-aza-cyclodeca-
4,6,7-triene-5-carboxylate (3f): 0.185 g (24%); light yellow solid; mp 177–180 ◦C; Rf 0.39 (1:1,
EtOAc–hexane); IR (KBr) ν 1941 (C=C=C), 1682 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz)
δ 7.42 (1H, s, H-4), 7.33–7.31 (2H, m, H Ar), 7.01–6.98 (2H, m, H Ar), 6.69 (2H, s, H Ar),
4.41–4.37 (1H, m, 2-CH2), 4.19 (1H, d, J = 11.9 Hz, CH2OCH3), 4.17 (1H, d, J = 11.9 Hz,
CH2OCH3), 3.90 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.69 (3H, s, OCH3), 3.41–3.37 (1H, m,
2-CH2), 3.28 (3H, s, OCH3), 3.14 (3H, s, N-CH3), 2.95–2.88 (1H, m, 1-CH2), 2.84–2.79 (1H, m,
1-CH2); 13C NMR (CDCl3, 150 MHz) δ 206.8, 169.6, 162.9, 161.2, 148.1, 147.7 (2C), 133.4 (1C,
d, J = 2.9 Hz), 129.6 (2C, d, J = 8.7 Hz), 127.9, 115.2 (2C, d, J = 20.2 Hz), 113.0, 112.6, 104.9,
100.8, 93.4, 74.5, 59.1, 56.1, 56.0, 51.5, 51.2, 45.2, 31.5; LCMS (ESI) m/z 454 [M + H]+; anal. C
68.80, H 6.32, N 3.15%, calcd for C26H28FNO5, C 68.86, H 6.22, N 3.09%.

Methyl 3-methyl-8-isopropyl-6-(methoxymethyl)-benzo[d]-3-aza-cyclodeca-4,6,7-triene-5-
carboxylate (3g): 0.505 g (87%); yellow oil; Rf 0.75 (5:1, EtOAc–hexane); IR (KBr) ν 1951
(C=C=C), 1687 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.42 (1H, s, H-4), 7.31 (1H, d,
J = 8.1 Hz, H Ar), 7.24–7.21 (1H, m, H Ar), 7.16–7.13 (2H, m, H Ar), 4.44–4.39 (1H, m,
2-CH2), 4.04 (1H, d, J = 11.1 Hz, CH2OCH3), 3.95 (1H, d, J = 11.1 Hz, CH2OCH3), 3.72 (3H, s,
OCH3), 3.36–3.32 (1H, m, 2-CH2), 3.21 (3H, s, OCH3), 3.13 (3H, s, N-CH3), 2.88–2.82 (1H, m,
CH(CH3)2), 2.79–2.75 (2H, m, 1-CH2), 1.22 (3H, d, J = 6.9 Hz, CH3), 0.91 (3H, d, J = 6.9 Hz,
CH3); 13C NMR (CDCl3, 150 MHz) δ 204.6, 170.2, 147.4, 138.0, 136.5, 130.0, 127.3, 126.9,
126.4, 109.3, 99.6, 94.6, 75.1, 58.9, 51.6, 51.1, 45.2, 31.8, 31.4, 22.2, 21.6; LCMS (ESI) m/z 342
[M + H]+; anal. C 73.76, H 8.11, N 4.19%, calcd for C21H27NO3, C 73.87, H 7.97, N 4.10%.

Methyl 3-methyl-8-phenyl-6-(methoxymethyl)-benzo[d]-3-aza-cyclodeca-4,6,7-triene-5-carboxylate
(3h): 0.408 g (64%); beige solid; mp 148–150 ◦C; Rf 0.72 (5:1, EtOAc–hexane); IR (KBr) ν 1943
(C=C=C), 1668 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.43 (1H, s, H-4), 7.36 (2H, d,
J = 7.6 Hz, H Ar), 7.31 (2H, t, J = 7.6 Hz, H Ar), 7.27–7.25 (1H, m, H Ph), 7.24–7.22 (4H, m, H
Ph), 4.45–4.41 (1H, m, 2-CH2), 4.22 (1H, d, J = 11.9 Hz, CH2OCH3), 4.20 (1H, d, J = 11.9 Hz,
CH2OCH3), 3.71 (3H, s, OCH3), 3.47–3.43 (1H, m, 2-CH2), 3.28 (3H, s, OCH3), 3.15 (3H, s,
N-CH3), 2.95–2.88 (2H, m, 1-CH2); 13C NMR (CDCl3, 150 MHz) δ 207.0, 169.6, 147.5, 137.2,
137.0, 136.0, 130.3, 129.8, 128.3 (2C), 128.1 (2C), 127.1, 126.9, 126.5, 105.5, 100.8, 93.1, 74.4,
59.0, 51.3, 51.1, 45.1, 31.8; LCMS (ESI) m/z 376 [M + H]+; anal. C 76.65, H 6.82, N 3.88%,
calcd for C24H25NO3, C 76.77, H 6.71, N 3.73%.

1-(3-Methyl-8-(4-methylphenyl)-10,11-dimethoxy-6-methoxymethyl-benzo[d]-3-aza-cyclodeca-
4,6,7-trien-5-yl)ethanone (3i): 0.368 g (50%); yellow solid; mp 156–159 ◦C; Rf 0.30 (EtOAc); IR
(KBr) ν 1950 (C=C=C), 1641 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.38 (1H, s, H-4),
7.26 (2H, d, J = 8.1 Hz, H Ar), 7.13 (2H, d, J = 8.1 Hz, H Ar), 6.73 (1H, s, H Ar), 6.69 (1H, s, H
Ar), 4.43–4.39 (1H, m, 2-CH2), 4.13 (1H, d, J = 11.6 Hz, CH2OCH3), 4.11 (1H, d, J = 11.6 Hz,
CH2OCH3), 3.90 (3H, s, OCH3), 3.73 (3H, s, OCH3), 3.42–3.38 (1H, m, 2-CH2), 3.29 (3H, s,
OCH3), 3.18 (3H, s, N-CH3), 2.96–2.90 (1H, m, 1-CH2), 2.83–2.78 (1H, m, 1-CH2), 2.34 (3H, s,
COCH3), 2.23 (3H, s, CH3); 13C NMR (CDCl3, 150 MHz) δ 206.1, 195.4, 148.0, 147.9, 147.5,
136.8, 134.1, 129.3, 129.1 (2C), 127.93, 127.90 (2C), 113.0, 112.5, 106.7, 105.7, 101.0, 75.0, 59.1,
55.9, 55.8, 51.6, 45.5, 31.2, 26.6, 21.1; LCMS (ESI) m/z 434 [M + H]+; anal. C 74.75, H 7.29, N
3.31%, calcd for C27H31NO4, C 74.80, H 7.21, N 3.23%.

1-(3-Methyl-10,11-dimethoxy-6-methoxymethyl-8-(4-methoxyphenyl)-benzo[d]-3-aza-cyclodeca-
4,6,7-trien-5-yl)ethanone (3j): 0.557 g (73%); beige solid; mp 137–139 ◦C; Rf 0.26 (EtOAc); IR
(KBr) ν 1938 (C=C=C), 1649 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.38 (1H, s, H-4),
7.30 (2H, d, J = 9.1 Hz, H Ar), 6.86 (2H, d, J = 9.1 Hz, H Ar), 6.74 (1H, s, H Ar), 6.69 (1H, s, H
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Ar), 4.44–4.40 (1H, m, 2-CH2), 4.13 (1H, d, J = 11.9 Hz, CH2OCH3), 4.11 (1H, d, J = 11.9 Hz,
CH2OCH3), 3.91 (3H, s, OCH3), 3.82 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.43–3.40 (1H, m,
2-CH2), 3.30 (3H, s, OCH3), 3.20 (3H, s, N-CH3), 2.96–2.90 (1H, m, 1-CH2), 2.84–2.78 (1H, m,
1-CH2), 2.24 (3H, s, COCH3); 13C NMR (CDCl3, 150 MHz) δ 206.0, 195.5, 158.9, 148.2, 148.0,
147.6, 129.5, 129.4, 129.3 (2C), 128.2, 114.0 (2C), 113.1, 112.7, 107.1, 105.6, 101.1, 75.2, 59.3,
56.1, 56.0, 55.4, 51.7, 45.7, 31.3, 26.7; LCMS (ESI) m/z 450 [M + H]+; anal. C 72.05, H 6.75, N
3.04%, calcd for C27H31NO5, C 72.14, H 6.95, N 3.12%.

1-(3-Methyl-10,11-dimethoxy-6-methoxymethyl-8-(4-fluorophenyl)-benzo[d]-3-aza-cyclodeca-
4,6,7-trien-5-yl)ethanone (3k): 0.565 g (76%); light yellow solid; mp 164–166 ◦C; Rf 0.35
(EtOAc); IR (KBr) ν 1940 (C=C=C), 1650 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ
7.37–7.34 (3H, m, H-4, H Ar), 7.01 (2H, t, J = 8.6 Hz, H Ar), 6.70 (1H, s, H Ar), 6.69 (1H, s, H
Ar), 4.42–4.38 (1H, m, 2-CH2), 4.13 (1H, d, J = 11.9 Hz, CH2OCH3), 4.10 (1H, d, J = 11.9 Hz,
CH2OCH3), 3.92 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.42–3.38 (1H, m, 2-CH2), 3.30 (3H, s,
OCH3), 3.20 (3H, s, N-CH3), 2.97–2.92 (1H, m, 1-CH2), 2.85–2.79 (1H, m, 1-CH2), 2.23 (3H,
s, COCH3); 13C NMR (CDCl3, 150 MHz) δ 206.1, 195.3, 162.1 (1C, d, J = 247.1 Hz), 148.4,
148.2, 147.8, 133.3 (1C, d, J = 2.9 Hz), 129.7 (2C, d, J = 8.7 Hz), 129.4, 127.9, 115.4 (2C, d,
J = 21.7 Hz), 113.0, 112.7, 106.9, 105.2, 101.5, 74.9, 59.3, 56.1, 56.0, 51.7, 45.7, 31.3, 26.5; LCMS
(ESI) m/z 438 [M + H]+; anal. C 71.46, H 6.54, N 3.26%, calcd for C26H28FNO4, C 71.38, H
6.45, N 3.20%.

1-(3-Methyl-6-methoxymethyl-8-isopropyl-benzo[d]-3-aza-cyclodeca-4,6,7-trien-5-yl)ethanone
(3l): 0.243 g (44%); colorless solid; mp 130–132 ◦C; Rf 0.45 (5:1, EtOAc–hexane). IR (KBr) ν
1941 (C=C=C), 1580 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.45 (1H, s, H-4), 7.33 (1H,
d, J = 7.6 Hz, H Ar), 7.25 (1H, td, J = 6.9, 1.7 Hz, H Ar), 7.16–7.13 (2H, m, H Ar), 4.39–4.35
(1H, m, 2-CH2), 3.96 (2H, s, CH2OCH3), 3.34–3.30 (1H, m, 2-CH2), 3.22 (3H, s, OCH3), 3.19
(3H, s, N-CH3), 2.90–2.86 (1H, m, CH(CH3)2), 2.85–2.83 (1H, m, 1-CH2), 2.82–2.77 (1H, m,
1-CH2), 2.29 (3H, s, COCH3), 1.27 (3H, d, J = 6.6 Hz, CH3), 0.93 (3H, d, J = 6.6 Hz, CH3);
13C NMR (CDCl3, 150 MHz) δ 204.1, 195.9, 147.9, 137.6, 136.1, 130.0, 127.2, 127.0 (2C), 126.5,
109.7, 100.6, 75.6, 59.1, 51.7, 45.6, 31.7, 31.4, 26.7, 22.3, 22.0; LCMS (ESI) m/z 326 [M + H]+;
anal. C 77.61, H 8.25, N 4.25%, calcd for C21H27NO2, C 77.50, H 8.36, N 4.30%.

1-(3-Methyl-6-methoxymethyl-8-phenyl-benzo[d]-3-aza-cyclodeca-4,6,7-trien-5-yl)ethanone
(3m): 0.305 g (50%); beige solid; mp 183–185 ◦C; Rf 0.47 (1:3, EtOAc–hexane); IR (KBr) ν
1942 (C=C=C), 1580 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.39–7.37 (3H, m, H Ar
and H-4), 7.32 (2H, t, J = 8.1 Hz, H Ar), 7.25–7.22 (5H, m, H Ph), 4.45–4.41 (1H, m, 2-CH2),
4.15 (1H, d, J = 11.9 Hz, CH2OCH3), 4.13 (1H, d, J = 11.9 Hz, CH2OCH3), 3.46–3.42 (1H,
m, 2-CH2), 3.29 (3H, s, OCH3), 3.20 (3H, s, N-CH3), 2.98–2.88 (2H, m, 1-CH2), 2.24 (3H, s,
COCH3); 13C NMR (CDCl3, 150 MHz) δ 206.4, 195.4, 148.1, 137.3, 136.9, 136.2, 130.4, 130.1,
128.5 (3C), 128.3 (2C), 127.3, 127.2, 126.8, 106.0, 101.6, 74.9, 59.3, 51.6, 45.7, 31.7, 26.7; LCMS
(ESI) m/z 360 [M + H]+; anal. C 80.03, H 7.15, N 3.80%, calcd for C24H25NO2, C 80.19, H
7.01, N 3.90%.

Methyl (4E,6E,7Z)-10,11-dimethoxy-6-(methoxymethylidene)-3-methyl-8-phenyl-1,2,3,6-
tetrahydro-3-benzazecin-5-carboxylate (4c): 0.237 g (32% from CF3CH2OH); yellow oil; Rf 0.52
(2:1, EtOAc–hexane); IR (KBr) ν 1685 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.38 (1H, s,
H-4), 7.28 (1H, s, H Ph), 7.24 (3H, t, J = 7.9 Hz, H Ph), 7.17 (1H, t, J = 7.1 Hz, H Ph), 6.64 (2H,
br. s, H Ar and =CH-OCH3), 6.44 (1H, s, H Ar), 5.99 (1H, s, H-7), 4.15–4.08 (1H, m, 2-CH2),
3.91 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.50 (3H, s, OCH3), 2.96 (3H, s,
N-CH3), 2.94–2.91 (1H, m, 2-CH2), 2.65–2.63 (1H, m, 1-CH2), 2.52–2.50 (1H, m, 1-CH2); 13C
NMR (CDCl3, 150 MHz) δ 170.1, 152.9, 150.0, 148.0, 147.7, 142.5, 135.7, 134.6, 128.5, 128.1
(2C), 126.5, 126.2 (2C), 122.6, 113.8, 113.6, 112.0, 94.3, 60.3, 56.2 (2C), 55.8 (2C), 50.7, 32.3;
LCMS (ESI) m/z 436 [M + H]+; anal. C 71.57, H 6.84, N 3.28%, calcd for C26H29NO5, C 71.70,
H 6.71, N 3.22%.

Methyl (4E,6E,7Z)-3-methyl-10,11-dimethoxy-6-(methoxymethylidene)-8-(4-methylphenyl)-
1,2,3,6-tetrahydro-3-benzazecin-5-carboxylate (4d): 0.267 g (35%); light yellow solid; mp
153–155 ◦C; Rf 0.52 (2:1, EtOAc–hexane); IR (KBr) ν 1680 (C=O) cm−1; 1H NMR (CDCl3,
600 MHz) δ 7.34 (1H, s, H-4), 7.17 (2H, d, J = 8.1 Hz, H Ar), 7.05 (2H, d, J = 8.1 Hz, H Ar),
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6.63 (2H, br. s, H Ar and =CH-OCH3), 6.43 (1H, s, H Ar), 5.96 (1H, s, H-7), 4.15–4.08 (1H,
m, 2-CH2), 3.91 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.49 (3H, s, OCH3),
2.96 (3H, s, N-CH3), 2.93–2.90 (1H, m, 2-CH2), 2.64–2.62 (1H, m, 1-CH2), 2.51–2.49 (1H, m,
1-CH2), 2.31 (3H, s, CH3); 13C NMR (CDCl3, 150 MHz) δ 170.1, 152.5, 149.9, 148.0, 147.6,
139.6, 136.2, 135.5, 134.8, 128.8 (2C), 128.4, 126.1 (2C), 121.6, 113.7, 113.6, 112.0, 94.3, 60.2,
56.2, 55.7 (2C), 50.6 (2C), 32.2, 21.0; LCMS (ESI) m/z 450 [M + H]+; anal. C 72.01, H 7.08, N
3.18%, calcd for C27H31NO5, C 72.14, H 6.95, N 3.12%.

Methyl (4E,6E,7Z)-10,11-dimethoxy-6-(methoxymethylidene)-8-(4-methoxyphenyl)-
3-methyl-1,2,3,6-tetrahydro-3-benzazecin-5-carboxylate (4e): 0.221 g (28%); orange oil; Rf
0.53 (2:1, EtOAc–hexane); IR (KBr) ν 1679 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 7.27
(1H, s, H-4), 7.19 (2H, d, J = 8.6 Hz, H Ar), 6.78 (2H, d, J = 8.6 Hz, H Ar), 6.63 (2H, br. s,
H Ar and =CH-OCH3), 6.43 (1H, s, H Ar), 5.95 (1H, s, H-7), 3.91 (3H, s, OCH3), 3.78 (3H,
s, OCH3), 3.74 (6H, s, OCH3), 3.72–3.70 (1H, m, 2-CH2); 3.49 (3H, s, OCH3), 2.96 (3H, s,
N-CH3), 2.93–2.90 (1H, m, 2-CH2), 2.65–2.62 (1H, m, 1-CH2), 2.51–2.47 (1H, m, 1-CH2); 13C
NMR (CDCl3, 150 MHz) δ 170.1, 158.6, 152.3, 149.9, 148.0, 147.7, 147.6, 135.3, 134.9, 129.2,
128.4, 127.3 (2C), 120.8, 113.6, 113.5 (2C), 112.1, 94.4, 60.2, 56.2, 55.8 (2C), 55.3 (2C), 50.6, 32.2;
LCMS (ESI) m/z 466 [M + H]+; anal. C 69.55, H 6.85, N 3.23%, calcd for C27H31NO6, C
69.66, H 6.71, N 3.01%.

Methyl (4E,6E,7Z)-3-methyl-10,11-dimethoxy-6-(methoxymethylidene)-8-(4-fluorophenyl)-
1,2,3,6-tetrahydro-3-benzazecin-5-carboxylate (4f): 0.362 g (47%); light yellow solid; mp
177–179 ◦C; Rf 0.38 (1:1, EtOAc–hexane); IR (KBr) ν 1682 (C=O) cm−1; 1H NMR (CDCl3,
600 MHz) δ 7.30 (1H, s, H-4), 7.23–7.21 (2H, m, H Ar), 6.94–6.91 (2H, m, H Ar), 6.64 (2H,
br. s, H Ar and =CH-OCH3), 6.41 (1H, s, H Ar), 5.98 (1H, s, H-7), 4.16–4.11 (1H, m, 2-CH2),
3.91 (3H, s, OCH3), 3.75 (3H, s, OCH3), 3.74 (3H, s, OCH3), 3.49 (3H, s, OCH3), 2.96 (3H, s,
N-CH3), 2.93–2.91 (1H, m, 2-CH2), 2.62–2.60 (1H, m, 1-CH2), 2.52–2.50 (1H, m, 1-CH2); 13C
NMR (CDCl3, 150 MHz) δ 170.1, 162.8, 161.1, 152.9, 150.0, 148.2, 147.9, 138.8, 134.7, 134.5,
127.7 (2C, d, J = 7.2 Hz), 122.3, 114.9 (2C, d, J = 21.7 Hz), 113.7 (2C), 112.0, 94.3, 60.4, 56.3,
55.9 (2C), 50.7 (2C), 32.3; LCMS (ESI) m/z 454 [M + H]+; anal. C 68.75, H 6.17, N 3.15%,
calcd for C26H28FNO5, C 68.86, H 6.22, N 3.09%.

3.1.3. Transformation of Allene 3a into 6-Methoxymethylidenebenzazecin 4a

A solution of allene 3a (0.4 mmol) in glacial acetic acid was placed into microwave
reactor. The reaction was carried out for 20 min at 100 ◦C. The progress of the reaction was
monitored by TLC (Sorbfil, 3:2 EtOAc-hexane). The solvent was removed under vacuum
and the residue chromatographed on silica gel (1:5 EtOAc-hexane).

Methyl (4E,6E,7Z)- 10,11-dimethoxy-6-(methoxymethylidene)-3,8-dimethyl-1,2,3,6-tetrahydro-3-
benzazecin-5-carboxylate (4a): 0.037 g (25%); brown oil; Rf 0.52 (2:1, EtOAc–hexane); IR (KBr) ν
1683 (C=O) cm−1; 1H NMR (CDCl3, 600 MHz) δ 6.71 (2H, s, H-4 and =CH-OCH3), 6.59 (1H,
s, H Ar), 6.40 (1H, s, H Ar), 5.71 (1H, s, H-7), 3.86 (3H, s, OCH3), 3.76 (3H, s, OCH3), 3.68
(3H, s, OCH3), 3.47 (3H, s, OCH3), 2.94 (3H, s, N-CH3), 2.87–2.82 (2H, m, 1-CH2, 2-CH2),
2.66–2.62 (2H, m, 1-CH2), 2.03 (3H, s, CH3); 13C NMR (CDCl3, 150 MHz) δ 170.1, 150.8,
149.3, 148.0, 147.1, 137.2, 134.0, 126.1, 122.1, 113.8, 111.8, 111.6, 94.3, 60.0, 56.2 (2C), 55.9
(2C), 50.6, 31.7, 28.0; LCMS (ESI) m/z 374 [M + H]+; anal. C 67.41, H 7.08, N 3.38%, calcd for
C21H27NO5, C 67.54, H 7.29, N 3.75%.

3.2. Inhibition of Cholinesterases and Inhibition of Monoamine Oxidases
3.2.1. Inhibition of Cholinesterases

Inhibition of human recombinant AChE (2770 U/mg) or BChE from human serum
(50 U/mg) was determined as described [23] using the Ellman spectrophotometric method
in a 96-well plate procedure. Briefly, test compounds were incubated in phosphate buffer
pH 8.0 in the presence of the enzyme and 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) as the
chromophoric reagent. Incubation samples were made in 96-well, flat-bottomed transparent
polystyrene plates (Greiner Bio-One, Kremsmünster, Austria), at 25 ◦C for 20 min, and
read at 412 nm using an Infinite M1000 Pro plate reader (Tecan, Cernusco s.N., Italy). For
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inhibition kinetics, four concentrations of compound 3e (ranging from 0 to 15 µM), and six
concentrations of acetylthiocholine (from 33 to 200 µM) were used. Inhibition data and
kinetics were obtained as means ± SD from 3 independent experiments, using GraphPad
Prism (version 5.00 for Windows; GraphPad Software, San Diego, CA, USA).

3.2.2. Inhibition of Monoamine Oxidases

Inhibition of human recombinant monoamine oxidases A (250 U/mg) and B (59 U/mg;
microsomes from baculovirus infected insect cells; Sigma Aldrich) was determined as
already described [24], measuring the fluorescence of 4-hydroxyquinoline produced by
MAOs in the oxidative deamination of substrate kynuramine. Briefly, compounds were
tested in coincubation with MAO and kynuramine in phosphate buffer 390 mOsm pH 7.4, at
37 ◦C for 30 min. Assays were performed in 96-well black polystyrene plates (Greiner) using
the Infinite M1000 Pro plate reader (Tecan). Inhibition data were obtained as means ± SD
using GraphPad Prism.

3.3. Solubility and Hydrolytic Stability of 3e and 3n
3.3.1. Aqueous Solubility Measurement and U-HPLC Analytical Condition

The determination of kinetic solubility in aqueous buffer solution (50 mM phosphate
buffer, pH 7.4, 0.15 M KCl) at 37 ◦C by U-HPLC was obtained as described [25], using a
stock solution 10 mM in DMSO of compound (3e and 3n) solubilized in PBS (50 mM) to
final concentration of 200 µM. Following shaking of the suspension in an orbital shaker at
250 rpm for 2 h, the solution was separated by centrifugation (2500 rpm, 3 min) and filtered.
Equal volume of solution was transferred into 1:1 (v/v) mixture of DMSO/PBS. The concen-
tration of compound was determined by U-HPLC and UV detector (255 nm) comparing the
peak area of external standard solution. All data were means of 3 independent experiments
(± SEM). Analytical condition: mobile phase: MeOH/Ammonium formate 10 mM pH 4.5
(72:28); column: Kinetex C18, 150 × 2.1 mm, 2.6 µm; flow: 0.3 mL/min; injection: 2 µL
(3e) and 5 µL (3n). HPLC analyses were performed on an Agilent U-HPLC 1260 Infinity
Quaternary LC system (Agilent Technologies, Milan, Italy) (Table 4).

3.3.2. Hydrolytic Stability in Water-Buffered Solution and U-HPLC Analytical Condition

Hydrolytic stability of compounds 3e and 3n was determined as described [26], using
10 mM stock solution in MeOH, solubilized in MeOH and aqueous buffer solution (50 mM
phosphate buffer, pH 7.4 in 0.15 M KCl) to 25 µM final concentration, and incubated
with shaking at 25 ± 0.5 ◦C. At appropriate time intervals, samples were withdrawn and
analyzed by U-HPLC using a 1290 Infinity Quaternary LC system (Agilent Technologies,
Milan, Italy) equipped with autosampler and photodiode array detector. A Phenomenex
Kinetex C18 column 2.6 µm (150 × 2.1 mm i.d.) was used as stationary phase. The analyte
was eluted with 8 min in isocratic mobile phase: MeOH/ammonium formate (10 mM,
pH 4.5)/(68:32, v/v) at constant flow rate of 0.3 mL/min, injection volume: 2 µL (3e) and
5 µL (3n), UV detector: 255 nm. Pseudo-first-order rate constants (kobs) for the hydrolysis
of the compound were calculated from the slopes of the linear plots of log (% remaining
compound) against time. Each kinetic experiment was performed in triplicate (Table 4).

4. Conclusions

The conversion of 1-methoxymethylethynyl-substituted isoquinolines under the action
of terminal alkynes in various alcohols was studied. It was shown that under the same
reaction conditions, the transformations of the allene fragment depends on the substituent
at C6 position in 3-benzazecines. A decrease in the yield of 6-methoxymethyl decorated
allenes was observed in long-term and/or high-temperature reactions in protic solvents.
A protocol for the synthesis of new 6-methoxymethyl substituted 3-benzazecines with an
allene fragment and 6-methoxymethylene-3-benzazecines was developed.

A preliminary in vitro evaluation of the inhibition activity against the main target
enzymes related to neurodegeneration revealed that the allene 3-benzazecine derivative
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3e, bearing the 6-methoxymethyl polar group, competitively inhibits AChE with a single-
digit micromolar Ki. Compound 3e resulted in an inhibitor equipotent with the 6-phenyl
analogue 3n, but 90-fold more soluble in buffered aqueous solution at pH 7.4. This higher
water-solubility property, joined with the potential of the core structure to inhibit P-gp
efflux pumps and consequently to favor brain disposition [20], makes us confident that 3e
can be a candidate for further optimization of novel brain-permeant AChE inhibitors.

Supplementary Materials: The 1H and 13C NMR spectra of all the newly synthesized compounds
are reported in the supplementary file available online at https://www.mdpi.com/article/10.3390/
molecules27196276/s1.
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