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Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty
liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma.
Compared with fatty liver, NASH is characterized by increased liver injury and
inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a
hallmark of NASH, play a critical role in promoting the progression of fatty liver to
NASH. Neutrophils are the first responders to injury and infection in various tissues,
establishing the first line of defense through multiple mechanisms such as phagocytosis,
cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap
formation; however, their roles in the pathogenesis of NASH remain obscure. The current
review summarizes the roles of neutrophils that facilitate the progression of fatty liver to
NASH and their involvement in inflammation resolution during NASH pathogenesis. The
notion that neutrophils are potential therapeutic targets for the treatment of NASH is
also discussed.
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1 INTRODUCTION

Neutrophils are the most populous subset of leukocytes in the circulation and participate in various
processes of immune reactions and inflammation (1). Neutrophils act as an effector of innate
immunity to handle microorganism infection and execute a series of reactions to maintain
homeostasis during tissue injury (2–4). Neutrophils are equipped with a variety of protective
mechanisms against infection. These include phagocytosis, reactive oxygen species (ROS)
production, oxidative burst, release of proteolytic enzymes via degranulation, and formation of
web-like structures called neutrophil extracellular traps (NETs) that extrude genomic DNA and
enzymes to fight against microorganisms (5). With regard to sterile inflammation, neutrophils are
also activated and recruited to the site of injury as one of the first responders and participate in the
inflammatory response to restore the physiological function of the tissue (3, 4). Because of their
versatile functions, neutrophils have been highlighted as a critical mediator of diseases in multiple
organs, including the liver.

Although hepatitis C virus (HCV) and hepatitis B virus (HBV) infections have traditionally been
the leading causes of chronic liver disease that requires liver transplantation, the position of HCV
and HBV infection has recently been challenged by several other etiologies, among which is
n.org October 2021 | Volume 12 | Article 7518021
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nonalcoholic steatohepatitis (NASH) whose cases are rapidly
increasing (6). NASH has recently become prevalent: fatty liver is
observed in approximately 25% of the adult population, and 25%
of the individuals with fatty liver are estimated to proceed to
NASH (7). In the USA, NASH has become the second most
common indication for liver transplantation (8, 9). NASH is
marked by liver inflammation and damage caused by fat
accumulation in the liver (10). The inflammatory properties of
NASH are closely associated with the recruitment of innate
immune cells, including neutrophils and monocytes; thus,
investigators have recently focused on the role of neutrophils
in exacerbating inflammation and tissue damage during NASH
development (11). In this review, we summarize the recent
advances in our understanding of the pathological role of
neutrophils in the development of NASH (Figure 1), as well as
their potential as therapeutic targets. The current review also
discusses the protective function of neutrophils in NASH
pathogenesis, which has recently gained attention (12).
2 PATHOGENESIS OF NASH

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease
spectrum that ranges from fatty liver to NASH, cirrhosis, and
hepatocellular carcinoma (13). Fatty liver is the benign and
reversible stage of NAFLD and is caused by excessive fat
accumulation in hepatocytes (defined as the presence of lipid
Frontiers in Endocrinology | www.frontiersin.org 2
droplets in >5% of hepatocytes) (14). NASH is the more severe
form of fatty liver and is characterized by the presence of liver
injury, inflammation, and fibrosis (15), which are not remarkably
observed in the fatty liver of obese humans and mice fed with a
high-fat diet (HFD) (16). The mechanism underlying the
progression of fatty liver to NASH has been extensively
investigated to identify a therapeutic target for the
pharmacological intervention of NASH; however, no
medications have been approved for use in the treatment of
NASH (17). Because this review focuses on the role of
neutrophils in NASH pathogenesis, this section highlights the
inflammatory basis of the pathogenic events in NASH
development and the link between lipotoxicity, hepatocyte
injury, and inflammation.

2.1 Hepatic Fat Accumulation and
Lipotoxicity
Fat accumulation in the liver is a priming factor in the
development of NAFLD (18). This event is accompanied by
the conversion of surplus energy sources such as carbohydrates
and fatty acids into triglycerides, which are stored in the liver as
lipid droplets (19). Hepatic fatty acids can come from a variety of
sources: i) adipocyte-derived fatty acids generated by lipolysis of
triglycerides, ii) de novo lipogenesis from sugars (e.g., glucose
and fructose), and iii) intake of dietary sugar and lipid species
(17). Fatty acid is relatively toxic and thus is preferred to be
converted into triglycerides for storage, and mitochondrial fatty
FIGURE 1 | Role of neutrophils in the development of NASH. Metabolic syndrome is often associated with excessive lipid accumulation in the liver. Under these
conditions, the probability of hepatocytes being exposed to lipotoxic lipid species, such as fatty acids, ceramides, cholesterol, and sphingolipids, is high. Lipotoxic
hepatocytes release neutrophil-recruiting chemokines, including CXCL1 and IL-8. Infiltrating neutrophils exert various actions that facilitate NASH development.
Activated neutrophils produce ROS via an oxidative burst that involves the activity of enzymes, such as NADPH oxidase 2. ROS may directly cause hepatocyte injury.
ROS also activate and recruit macrophages, which further enhance hepatocyte injury and inflammation by releasing inflammatory cytokines. Cytokines released by
macrophages (e.g., transforming growth factor-b) activate hepatic stellate cells (HSCs) and promote fibrosis. Neutrophil-derived ROS also contribute to HSC
activation. Neutrophil granule proteins, such as LCN2, MPO, and NE, have increasingly been recognized to contribute to sterile inflammation, although the exact
mechanisms through which they contribute to NASH are unclear. NETs mediate inflammation during NASH development through mechanisms that are not yet fully
understood. Neutrophil-derived factors such as ROS and granule proteins (e.g., MPO and NE) contribute to NET formation. Hepatocyte injury, inflammation, and
fibrosis are the three hallmarks of NASH. MetS, metabolic syndrome; InsR, insulin resistance.
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acid beta oxidation is another way to dispose of fatty acids (20).
However, when there is excessive accumulation of fat in the liver,
these protective mechanisms normally fail to completely
eliminate fatty acids that can cause cellular stresses in a variety
of ways that are discussed in more detail below. In addition, fatty
acids serve as a source of several lipotoxic lipid classes (e.g.,
ceramides and sphingolipids), and they increase in amount
during NAFLD progression (21). Free cholesterol is another
type of toxic lipid that is elevated in the liver of patients with
NASH (22). It is increasingly regarded as a contributing factor
to NASH pathogenesis and is widely used as a supplement with
NASH-inducing diets in experimental models.

2.2 Cellular Stress and Cell Death
Accumulation of lipotoxic lipid species in the liver causes cellular
stress in hepatocytes, eventually leading to hepatocyte death (23).
At the subcellular organelle level, lipotoxicity induces different
types of stress in distinct locations such as the endoplasmic
reticulum (ER), lysosomes, and mitochondria (24–26). Among
the multiple types of lipotoxic lipids, palmitic acid has been
particularly well documented as an inducer of hepatocyte stress.
Palmitic acid is increased in the liver of NASH patients and
experimental NASH models (27–29), and it triggers ER stress
(30). Under the conditions with chronic ER stress, the unfolded
protein response may facilitate inflammation and the death of
hepatocytes (31). Exposure of hepatocytes to palmitic acid also
disrupts mitochondrial and lysosomal functions (32). Severe
injury in hepatocytes upon exposure to palmitic acid readily
provokes hepatocyte death through the mechanisms involving
molecular players that mediate organelle stress. For example,
palmitic acid stimulates apoptosis of hepatocytes via the extrinsic
and intrinsic pathways. Mitochondrial dysfunction and
cytochrome c release are critical elements that activate the
intrinsic apoptosis pathway (33, 34). Hepatocytes express death
receptors such as tumor necrosis factor (TNF)-related apoptosis-
inducing ligand (TRAIL) receptors that mediate apoptosis,
especially via the extrinsic pathway, and the expression of
these receptors is increased in NASH patients and mouse
models (35). There are also other types of cell death, such as
necrosis and pyroptosis, that can be observed in lipotoxic
hepatocytes (36–38).

Lipotoxic hepatocytes undergoing cell death release
chemokines and cytokines, which recruit and activate the
innate immune cells, such as neutrophils and macrophages, for
the initiation and amplification of inflammation (39–41). These
inflammatory cells also release factors that signal through death
receptors on hepatocytes (e.g., TRAIL-R1, TRAIL-R2, TNFR1,
and Fas), which may further stimulate hepatocyte death and
inflammation, thereby creating a positive feedback loop (36).

2.3 Gut Dysfunction
In addition to hepatocyte stress and death, other factors may also
enhance inflammation in the pathogenesis of NASH. For
example, gut barrier dysfunction is profound in NASH, which
is believed to cause the translocation of gut bacteria to the
circulation and further to the liver via portal vein (42). The
compromise in the integrity of intestinal epithelial barrier may
Frontiers in Endocrinology | www.frontiersin.org 3
also promote the migration of the proinflammatory bacterial
products such as endotoxin to the circulation and cause
endotoxemia (43). Under endotoxic conditions, the influx of
the proinflammatory bacterial products such as lipopolysaccharides
to the liver is enhanced and trigger hepatic inflammation and
NASH development.

Mouries et al., demonstrated that intestinal epithelial barrier
and gut vascular barrier were disrupted in mice with diet-
induced NASH (44). Mice with defective intestinal epithelial
barrier develop more severe NASH when fed a diet high in fat,
fructose, and cholesterol (45). The intestines of NAFLD patients
are characterized by the disruption of intestinal tight junction
and an increase in cytokine secretion and intestinal
inflammation (46).

The diversity of microbial species become altered in NASH
patients. Jiang et al. demonstrated that Escherichia,
Anaerobacter, Lactobacillus, and Streptococcus were more
abundant in the gut microbiota of NAFLD patients, while
Alistipes and Prevotella were less abundant in NAFLD patients
compared to healthy individuals (46). The diversity of microbial
species is important for the integrity of the intestinal epithelial
barrier and the regulation of metabolic functions; thus the
change in their diversity may also contribute to the
development of NAFLD and NASH (46, 47).

2.4 Inflammation
The progression of fatty liver to NASH is driven by innate
immunity, where liver-resident macrophages (also known as
Kupffer cells), infiltrating monocytes, and neutrophils play a
critical role (48, 49). In the early phase of liver injury, Kupffer
cells are activated and release chemokines and proinflammatory
cytokines, including C-C motif chemokine ligand 2 and TNF-a,
which result in the recruitment of monocytes and neutrophils
into the injured liver (50, 51). Interleukin (IL)-1b and IL-6
released by Kupffer cells can further enhance NASH
pathogenesis by increasing the lipogenesis and insulin
sensitivity in hepatocytes (52–54). The recruited monocytes
express high levels of lymphocyte antigen 6C (defined as
LY6Chi monocytes) and differentiate into M1 type
macrophages that exacerbate inflammation by releasing
cytokines and ROS (55–59). Some of these cytokines, including
transforming growth factor-b, may also directly act on hepatic
stellate cells (HSCs), causing their transformation into
myofibroblasts that promote fibrogenesis (60, 61). Different
types of macrophages also play an important role in
inflammation resolution, which are referred to as either
alternatively-activated macrophages or M2 type macrophages.
M2 macrophages are known to counteract the proinflammatory
environment and participate in tissue repair (62); however, they
also promote fibrotic changes in the liver that occur during the
pathogenesis of NASH (63, 64).

The advent of single-cell analysis has expanded our
understanding of the diverse subsets of infiltrating monocytes
and macrophages in the liver, which can be characterized by the
expression of distinct surface marker proteins. More recent
studies reported that a specific subset of macrophages called
NASH-associated macrophages, which express unique marker
October 2021 | Volume 12 | Article 751802
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proteins, such as triggering receptor expressed on myeloid cells 2
(TREM2) and CD9, are enriched in the livers of NASH mouse
models and patients (65, 66). Remmerie et al. demonstrated a
reduction in Kupffer cells and an increase in a unique population
of macrophages expressing SPP1 (also known as osteopontin) in
the liver during NASH progression (67). The group of Philippe
Gual reported that CD44 which is expressed in macrophages is
upregulated during NASH progression and enhances NASH
progression by controlling macrophage polarization and
infiltration (68). However, whether and how these specific
macrophage subsets affect the development of NASH are not
fully understood.

Other types of immune cells that contribute to the
pathogenesis of NASH include cytotoxic T cells, B cells, T-
helper cells (e.g., Th1, Th2, and Th17), dendritic cells, natural
killer cells, and innate lymphoid cells, and there is accumulating
evidence supporting the pathogenic roles of these immune cells
(69, 70). However, the overall pathogenic mechanisms of NASH
encompass a broad range of biological events and molecular
players, and thus are beyond the scope of the current review.
Building upon the information stated in this section regarding
the inflammatory aspects of NASH pathogenesis, primarily
involving the action of macrophages, the following section will
elaborate on the role of neutrophils in NASH development.
3 INVOLVEMENT OF NEUTROPHILS IN
NASH PATHOGENESIS

Neutrophils are the first type of immune cells that respond to
inflammatory changes in various tissues, including the liver, and
execute a program that eventually induces a chronic
inflammatory state by promoting macrophage recruitment and
interacting with antigen-presenting cells (71–73). Thus,
neutrophils have been studied as crucial players in the
development of inflammatory liver diseases, including NASH.
Treatment with a monoclonal antibody against Ly6G, which is
present on neutrophils, results in a partial depletion of
neutrophils in mice and thus has been used to investigate the
role of neutrophils in the development of a variety of diseases
(74, 75). Depletion of neutrophils in HFD-fed mice using Ly6G
monoclonal antibody treatment significantly reduced the body
weight gain, blood glucose levels, and hepatic triglyceride
accumulation (76). It also repressed the expression of
inflammatory and fibrotic proteins in the liver and decreased
the activity of transaminases (e.g., alanine aminotransferase and
aspartate aminotransferase), indicating that neutrophils are
implicated in metabolic dysregulation, inflammation, and
fibrosis during NASH development (76). The neutrophil-to-
lymphocyte ratio (NLR) is closely related to the severity of
NAFLD. In particular, NLR was correlated with the degree of
hepatocyte ballooning, lobular inflammation, and fibrosis in a
study of NASH patients (77). A more recent study also reported
that NLR was associated with NAFLD activity score, hepatocyte
degeneration, steatosis, inflammation, and fibrosis, indicating the
possibility that NLR could function as a marker for histological
Frontiers in Endocrinology | www.frontiersin.org 4
grade and fibrosis stage of NASH (78). Although these studies
emphasize the correlation between the abundance of neutrophils
and the severity of NASH, there has been a recent increase in our
understanding of the mechanism by which hepatic neutrophil
infiltration accelerates NAFLD progression, which is further
discussed below.

Neutrophil infiltration in the liver is a salient feature of
alcoholic steatohepatitis (ASH) and NASH (79), both of which
are regarded as the leading causes of end-stage liver disease and
liver transplantation (6). In the context of ASH pathogenesis, the
mechanisms by which neutrophil population is increased in the
circulation, how neutrophils undergo hepatic infiltration, and
how these neutrophils are implicated in the exacerbation of liver
injury and inflammation have been well-documented (79, 80). In
particular, multiple studies have investigated the pathogenic
roles of neutrophils in murine models of ASH, such as chronic
and binge ethanol feeding (the National Institute on Alcohol
Abuse and Alcoholism model) (81–85). Neutrophils produce
and release ROS, proteases, and inflammatory mediators to
enhance hepatocyte injury and subsequent inflammation and
fibrosis (80).

Although the histopathological features of NASH and ASH
are similar to each other, albeit not identical, their
immunological pathogenic mechanisms are different (86). For
example, lipotoxicity-induced immune cell activation is regarded
important to NASH pathogenesis, while the concept of
lipotoxicity has not been highlighted in the field of ASH
research although fatty liver stage is involved in the spectrum
of alcoholic liver disease. Thus, it is not recommended to simply
apply the knowledge obtained from ASH research to the
understanding of NASH pathogenesis and the identification of
NASH therapeutic targets. Compared with the well-documented
role of neutrophil infiltration in the development of ASH, the
contribution of neutrophils to NASH development has been
relatively obscure, in part because of the lack of appropriate
animal models that can recapitulate the NASH-associated
elevation in hepatic neutrophil population as well as molecular
features corresponding to the activation and recruitment
of neutrophils.

3.1 HFD+CXCL1-Induced NASH Mouse
Model With Increased Hepatic Neutrophil
Infiltration
Diet-induced obesity is a widely used model to study fatty liver in
mice; however, it is generally difficult to embody a NASH-like
environment in the liver of mice by simply feeding them with an
HFD chronically. Obesity, diabetes, and hyperlipidemia are
major risk factors for NAFLD in humans, and long-term HFD
feeding in mice gives rise to these risk factors. However, long-
term HFD feeding seldom induces hepatic inflammation or
hepatic infiltration of neutrophils (82).

Inflammation is a key event that promotes the progression of
fatty liver to NASH, and the inflammation observed in NASH
patients is characterized by a significant infiltration of
neutrophils in the liver and other immune cells such as
macrophages (61, 87). NASH-associated neutrophil infiltration
October 2021 | Volume 12 | Article 751802
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in the liver is often accompanied by elevated expression of
chemokines for neutrophil chemotaxis. Bertola et al. reported
that NASH patients had a higher hepatic expression of
chemokines that recruit neutrophils, such as C-X-C motif
chemokine ligand 1 (CXCL1) and IL-8, than obese individuals
with fatty liver (88).

Recent studies have revealed several differences in neutrophil
biology between mice and humans, which may confer resistance
to fatty liver to NASH progression in mice. First, mice have
relatively fewer neutrophils in the circulation (~1 × 109/L) than
humans (~4 × 109/L) (1, 85). In addition, inflamed mouse
hepatocytes have less ability to attract neutrophils than
inflamed human hepatocytes as the human IL-8 gene has no
counterpart in mice, and mouse hepatocytes induce CXCL1 less
effectively than human hepatocytes when exposed to
inflammatory mediators (89). Accordingly, metabolic
dysregulation and injury in the mouse liver less effectively
recruit neutrophils, which could partially explain why HFD-fed
mice were more likely to develop fatty liver than NASH.

Although there is no experimental model that reflects the full
spectrum of NAFLD progression in mice (90), several dietary
NASHmodels have recently been established by adding lipotoxic
materials (e.g., cholesterol) and carbohydrates to a regular HFD
(90). Some of these NASH models have been reported to show
increased neutrophil infiltration in the liver (91–93).

Experimental NASH mouse models have been mostly
induced by dietary compositions that provide overnutrition
and contribute to liver injury; however, recent studies have
reported new approaches that exploit the molecular
mechanisms that mediate hepatic neutrophil infiltration and
thus accelerate the progression of fatty liver to NASH.
Adenovirus-driven overexpression of Cxcl1 in 3-month HFD-
fed mice enhanced the expression of neutrophil-recruiting
chemokines in hepatocytes and promoted the recruitment of
neutrophils in the liver (16, 89). CXCL1-driven neutrophil
infiltration promotes ROS production and activates stress
kinases, including apoptosis signal-regulating kinase 1 and p38
mitogen-activated protein kinase (p38MAPK), which relay
oxidative stress to cell death signaling (94). ROS also impair
the proper folding of proteins, resulting in ER stress, which is
often observed in NASH patients (31, 95, 96). CXCL1-induced,
neutrophil-driven liver damage further led to inflammatory and
fibrogenic processes and facilitated the progression of NASH; the
expression profiles of the genes involved in inflammation and
fibrosis were similar to those found in NASH patients (16). The
overexpression of the human IL-8 gene in mice could also
increase hepatic neutrophil infiltration and facilitate the
progression of fatty liver to NASH; the concomitant
overexpression of Cxcl1 and IL-8 further amplified the effect of
the single overexpression of either Cxcl1 or IL-8 (89).

Neutrophilic oxidative bursts are crucial for ROS production
by activated neutrophils (5). CXCL1-induced liver injury in
HFD-fed mice was found to be dependent on neutrophil
cytosolic factor 1 (also known as p47phox), which is one of the
components of the NADPH oxidase 2 complex that mediates
oxidative burst (97, 98), corroborating the importance of
Frontiers in Endocrinology | www.frontiersin.org 5
neutrophilic ROS production in neutrophil-driven NASH
development (16). In addition, CXCL1-induced NASH was
ameliorated by treatment with IL-22, which is a cytokine
produced by immune cells such as Th17, Th22, and type 3
innate lymphoid cells (ILC3s) (99) but acts on epithelial cells,
including hepatocytes, by upregulating various genes with
cytoprotective and anti-oxidative properties (100, 101). In
particular, the protective effect of IL-22 against neutrophil-
driven NASH was reversed in mice lacking the genes encoding
the two antioxidant enzymes, namely, metallothionein-1 and
metallothionein-2, which implies the important function of ROS
in neutrophil-driven NASH development. Interestingly,
neutrophil elastase (NE) or NET was not crucial in CXCL1-
induced NASH development because deletion of the gene
encoding NE or peptidyl arginine deiminase-4 (PAD4) failed
to reverse the NASH-inducing ability of CXCL1 overexpression
in HFD-fed mice (16).

CXCL6 is another chemokine that recruits neutrophils by
binding CXCR1 and CXCR2 (102). Due to the similar function
of CXCL6 to that of CXCL1 and IL-8, it is reasonable to speculate
that CXCL6 might be involved in the pathogenesis of NASH.
However, the role of CXCL6 in NASH pathogenesis is still
obscure. For neutrophils to be recruited from the blood to the
affected sites, neutrophils interact with adhesion molecules such
as E-selectin expressed on endothelial cells. E-selectin has been
reported to be upregulated in the liver of NASH patients
compared with the fatty liver (88). In CXCL1-induced NASH
model, the expression of E-selectin was also highly elevated in the
liver, indicating the involvement of E-selectin in the
development of NASH in mice (16).

3.2 Role of Neutrophil-Specific MicroRNA-
223 in NASH Development
miRs have emerged as important regulators of various genes
involved in metabolism and inflammation in the liver (103–105).
Several miRs, including miR-122, miR-192, miR-223, miR-21,
and miR-29, affect the pathogenesis of NAFLD in vitro and in
experimental animal models (106–113). These miRs usually have
specific cell types, where they show the highest expression. For
example, miR-122 and miR-192 are highly expressed in
hepatocytes, miR-21 is commonly found in the circulation, and
miR-29 is enriched in HSCs (114). MiR-223 is particularly
interesting and is expressed at the highest levels in neutrophils,
whose activation and maturation are repressed by miR-223
(115–117). Although miR-223 is also expressed in
macrophages and is involved in macrophage polarization, its
expression levels in macrophages are approximately 10% that in
neutrophils (118); thus, it is regarded as a neutrophil-specific
miR (119). miR-223 is upregulated in hepatocytes in HFD-fed
mice and NASH patients (107, 109). miR-223 targets and inhibits
several genes in mice that are involved in inflammation and
tumorigenesis, such as C-X-C motif chemokine ligand 10
(CXCL10) and transcriptional coactivator with PDZ-binding
motif (TAZ), and deletion of the miR-223 gene in HFD-fed
mice promoted the development of NASH and NASH-associated
hepatocellular carcinoma (109). Mechanistically, He et al.
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reported that miR-223, which is abundantly expressed in
neutrophils, was transported to hepatocytes through the
extracellular vesicles (EVs) derived from neutrophils (118). In
particular, the transfer of miR-223-enriched EVs is mediated by
the interaction between low-density lipoprotein receptor (LDLR)
in hepatocytes and apolipoprotein E (APOE) in EVs (118). In
addition, miR-223 protects against liver fibrosis by targeting
multiple genes in hepatocytes and HSCs (120), which may
contribute to the role of miR-223 in preventing NASH
progression. The IL-6 signaling in myeloid cells, such as
neutrophils, is important for the generation and release of
miR-223-enriched EVs, which may inhibit the progression of
fibrosis in NASH-associated fibrosis (121, 122). As miR-223 is
expressed by both hepatocytes and neutrophils, specific deletion
of miR-223 in each cell population by crossing miR-223-floxed
mice with either Albumin Cre or Lysozyme M Cre mice will help
better understand its role in the pathogenesis of NASH.

Elevation of miR-223 levels in the circulation and liver in
NASH patients may be a compensatory mechanism to modulate
the proinflammatory environment that prevails during NAFLD
progression; thus, the deletion of miR-223 gene could accelerate
NASH development in HFD-fed mice. Along with the model
that is characterized by an increase in neutrophil infiltration in
the liver, inhibition of the anti-inflammatory function of
neutrophilic miR-223 could be another method to develop a
genetic NASH model (85, 116, 117, 123).

3.3 Role of Neutrophil-Derived Specific
Molecules in NASH Development
Neutrophil granules are sites where a large amount of protein is
expressed, which mediates various neutrophil functions (124).
Neutrophil granule proteins are released into the phagosome or
extracellular space by degranulation and execute their functions
(125). The different types of granules include azurophilic
granules, specific granules, gelatinase granules, and secretory
granules (Table 1) (126, 127). In particular, emerging evidence
has demonstrated that the proteins expressed by azurophil
granules [e.g., myeloperoxidase (MPO) and NE] and specific
granules [e.g., lipocalin 2 (LCN2)] play a key role in various
inflammatory processes during NASH pathogenesis. S100
calcium-binding protein A8 (S100A8, also known as MRP8)
and S100 calcium-binding protein A9 (S100A9, also known as
MRP14) are Ca2+-binding proteins that constitute 40% of
neutrophil cytosolic protein weight. Their roles in NASH have
Frontiers in Endocrinology | www.frontiersin.org 6
also been discussed (128). In addition, neutrophils can produce a
large number of inflammatory cytokines, chemokines, and
inflammatory mediators, which likely play an important role in
controlling NASH development and progression (129). Here, we
primarily discussed the role of neutrophil-derived specific
molecules in NASH development and progression. The
changes in the levels of these molecules in experimental NASH
as well as in clinical settings and the consequences of genetic or
pharmacologic modulation of these factors in experimental
NASH were also summarized (Tables 2 and 3).

3.3.1 Myeloperoxidase
Myeloperoxidase (MPO) catalyzes the generation of ROS, which
is crucial for the ability of neutrophils to kill microorganisms (5).
ROS production by MPO is also involved in the occurrence of
tissue damage and inflammation in chronic inflammatory
diseases (143). Rensen et al. reported that the number of
neutrophils was increased in the liver of NASH patients than in
those with fatty liver, and the enhanced inflammation observed in
NASH patients was associated with increased expression and
activity of MPO (130). The plasma MPO levels and number of
MPO-positive cells in the liver were increased in patients with
NASH (130). In addition, NASH patients showed an increase in
the accumulation of proteins modified by hypochlorite and
nitrates which can be formed by the MPO-H2O2 system (130).
An increased population of MPO-positive cells was also
associated with the upregulation of CXC chemokines and
hepatic neutrophil infiltration in the liver of NASH patients (130).

The contribution of MPO to fatty liver to NASH progression
was further clarified by another study conducted by Rensen et al.
(132). In this study, NASH was induced by feeding LDLR-deficient
mice with an HFD. LDLR-null mice with MPO deficiency in the
hematopoietic system showed reduced inflammation and fibrosis
in the liver, indicating that neutrophil-derived MPO plays a crucial
role in the development of NASH in mice. Furthermore, MPO-
deficient mice showed a reduction in hepatic cholesterol, which is
known to exacerbate NASH progression.

Feeding mice with a methionine and choline-deficient diet
(MCD) is a classic method of inducing NASH in mice (90, 144).
MCD-induced NASH is accompanied by an increase in MPO
expression by neutrophils in the liver (131). Whole-body
deletion of the MPO gene attenuates hepatocyte death and the
severity of NASH and fibrosis (131). Mechanistically, MPO-
derived oxidative stress causes hepatocyte injury through
TABLE 1 | Types of neutrophil granules and their contents.

Granule type Contents

Azurophilic
granules

myeloperoxidase, neutrophil elastase, cathepsin G, defensins, proteinase 3, azurocidin, lysozyme

Specific granules collagenase, gelatinase, lipocalin 2, pentraxin 3, cathelicidin, matrix metalloprotease 8, lactoferrin, haptoglobin, lysozyme, cytochrome b558, CD11b,
formyl peptide receptor

Gelatinase
granules

Collagenase, acyl transferase, cathepsins, gelatinase

Secretory
granules

CD11b, cytochrome b558, alkaline phosphatase, formyl peptide receptor
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mitochondrial permeability transition and activates HSCs, which
results from the crosstalk between neutrophilic MPO,
hepatocytes, and HSCs (131).

MPO deficiency could also prevent the development of
NASH in mice by attenuating liver injury and fibrosis induced
by feeding a high-fat, high-cholesterol, high-carbohydrate diet
(91), a widely used dietary model of NASH with a combination
of different types of toxic substances (145). This study also
reported that pharmacological inhibition of MPO through
treatment with AZM198, an MPO inhibitor, could repress
NASH progression and liver fibrosis induced by feeding a
high-fat, high-cholesterol diet (HFHCD) (91).
Frontiers in Endocrinology | www.frontiersin.org 7
3.3.2 Neutrophil Elastase
Neutrophil elastase (NE) is a serine protease that is released by
neutrophils during inflammation through the degranulation
process (146). NE is also important in NET formation because
it contributes to the histone degradation and chromatin
decondensation during NET formation (147, 148). NE is not
only implicated in pathogen infection but also in sterile
inflammation, which commonly develops in the liver of NASH
patients (126).

NE that is released into the extracellular space is bound to
alpha-1-antitrypsin (AAT), which inhibits the activity of NE;
thus, the ratio of NE to AAT in the serum is used to predict the
TABLE 2 | Elevation of neutrophil-related factors in NASH patients and experimental NASH models.

Level change in NASH Location NASH induction model Reference

MPO ↑ Liver and plasma NASH patients (130)
↑ Plasma NASH patients (91)
↑ Liver MCD-fed mice (131)
↑ Liver Ldlr−/− mice fed an HFD (132)
↑ Liver CXCL1 overexpression in HFD-fed mice (16)

NE ↑ (NE to AAT ratio) Circulation NASH patients (133)
↑ Liver Western diet-fed mice (134)

LCN2 ↑ Circulation and hepatic non-parenchymal cell fraction Apoe−/− mice fed an HFHCD (135)
↑ Circulation and liver NASH patients (135)
↑ Liver NASH patients (136)
↑ Liver Mice fed a high-fat, high-sugar diet (137)
↑ Liver FLS mouse model (138)

NET formation ↑ Liver STAM mice (92)
↑ (MPO-DNA levels) Serum NASH patients (92)
↑ (citrullinated histone H3) Liver NASH patients (139)
↑ Liver Mice fed an MCDHFD (140)
October 2021 | Volume 12 | Art
AAT, alpha-1-antitrypsin; APOE, apolipoprotein E; CXCL1, C-X-C motif chemokine ligand 1; FLS, fatty liver Shionogi; HFD, high-fat diet; HFHCD, high-fat, high-cholesterol diet; LCN2,
lipocalin 2; LDLR, low-density lipoprotein receptor; MCD, methionine-choline-deficient diet; MCDHFD, methionine-choline-deficient high-fat diet; MPO, myeloperoxidase; NASH,
nonalcoholic steatohepatitis; NE, neutrophil elastase; NET, neutrophil extracellular trap; STAM, Stelic animal model of NASH.
TABLE 3 | Modulation of neutrophil-related factors that affect the degree of experimental NASH.

Modulation method NASH induction model Effect on NASH pathology Reference

MPO Deletion of the gene encoding MPO HFHCD feeding in mice ↓ liver injury and liver fibrosis (91)
Pharmacological inhibition of MPO by AZM198
treatment

HFHCD feeding in mice ↓ liver injury and liver fibrosis (91)

NE Deletion of the gene encoding NE HFD feeding in mice ↓ hepatic lipid content and inflammation (141)
Deletion of the gene encoding NE Western diet feeding in

mice
↓ steatosis and liver inflammation (134)

NE inhibition by sivelestat HFHCD feeding in Apoe
−/− mice

↓ steatosis, liver injury, inflammation, and NASH score (142)

LCN2 Deletion of the gene encoding LCN2 HFHCD feeding in Apoe
−/− mice

↓ liver injury, inflammation, and NASH score (135)

Treatment of recombinant LCN2 HFHCD feeding in Apoe
−/− mice

↑ liver injury, inflammation, and NASH score (135)

NET
formation

DNase treatment STAM mice ↓ hepatic macrophage infiltration, liver inflammation, and NASH
activity score

(92)

Deletion of the gene encoding PAD4 STAM mice ↓ hepatic macrophage infiltration, liver inflammation, and NASH
activity score

(92)

DNase treatment MCDHFD feeding in mice ↓ liver injury, inflammation, and fibrosis (140)
CXCL1, IL-
8

Overexpression of CXCL1 and/or IL-8 HFD feeding in mice ↑ liver injury, inflammation, and fibrosis (16, 89)
APOE, apolipoprotein E; CXCL1, C-X-C motif chemokine ligand 1; HFD, high-fat diet; HFHCD, high-fat, high-cholesterol diet; IL-8, interleukin-8; LCN2, lipocalin 2; MCDHFD, methionine-
choline-deficient high-fat diet; MPO, myeloperoxidase; NASH; nonalcoholic steatohepatitis; NE, neutrophil elastase; NET, neutrophil extracellular trap; PAD4, peptidyl arginine deiminase-
4; STAM, Stelic animal model of NASH.
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activity of NE (149–151). In a study that recruited NAFLD
patients and healthy controls, the ratio of NE to AAT was
higher in NAFLD patients and was closely associated with liver
inflammation in patients with NASH, indicating that it can be
used as a marker to evaluate the severity of NASH in humans
(133). Another clinical study reported that the plasma
concentration of NE was associated with the severity of
NAFLD. The advanced stages of NAFLD with NASH and
fibrosis features are characterized by higher levels of hepatic
NE (152). This study also showed that the hepatic levels of
proteinase 3, another type of neutrophil serine protease, were
correlated with the severity of NAFLD (152, 153).

Talukdar et al. demonstrated that HFD feeding increased the
infiltration of neutrophils in the liver of mice, and liver-
infiltrating neutrophils inhibited the insulin signaling by
degradation of insulin receptor substrate 1 (141). They also
showed that NE possibly mediated these effects of neutrophils
on liver metabolism because deletion of the Elane gene, which
encodes NE, increased the hepatic insulin sensitivity and reduced
the expression of hepatic inflammatory genes in HFD-fed mice
(141). Elane−/− mice were also resistant to western diet-induced
NASH, with decreased hepatic expression of lipogenic and
inflammatory genes and reduced hepatic levels of ceramides
that promote inflammation through a variety of signaling
pathways (134). The pharmacological inhibition of NE by
treatment with sivelestat reduced the serum transaminase
activity, expression of inflammatory mediators, and NASH
score in Apoe-deficient mice fed with an HFHCD that showed
NASH phenotypes (142). This study also showed that the MCD-
induced NASH was prevented by the Ly6G monoclonal
antibody-induced depletion of neutrophils (142).

Although previous studies have suggested that NE contributes
to the pathogenesis of NAFLD, our recent data revealed that
deletion of the Elane gene did not affect the serum ALT levels in
HFD+CXCL1-fed mice (16). Conflicts among these data may be
because of the different models and wild-type control mice used
(littermate controls were used in our studies).

3.3.3 Lipocalin 2
Lipocalin 2 (LCN2) is a proinflammatory cytokine found in
specific granules of neutrophils. LCN2 has biological functions in
various processes, ranging from innate immunity to cell death,
cell proliferation, and metabolism (154–158). LCN2 has been
implicated in the development of inflammatory and metabolic
diseases (159, 160) and is generally induced by injury and
inflammatory conditions in the liver (161). The LCN2 levels
are elevated in the experimental models of NASH and promote
inflammation by attracting neutrophils and inducing the
expression of proinflammatory cytokines (e.g., TNF-a, IL-1b,
MCP-1) (135, 162). In addition, LCN2 was found to be elevated
in the livers of NASH patients. The mRNA and protein levels of
LCN2 in the liver were higher in NASH patients than in those
with fatty liver (136). This increase is thought to be because of the
proinflammatory environment in NASH, as evidenced by the
upregulation of LCN2 in the HepG2 hepatoma cell line upon
exposure to proinflammatory mediators, such as TNF-a and IL-
Frontiers in Endocrinology | www.frontiersin.org 8
6 (136). The expression of LCN2 in the liver was highly increased
in fatty liver Shionogi (FLS) mouse model (138) which features
spontaneous development of fatty liver that progresses to NASH
and eventually hepatocellular carcinoma (163, 164). In the FLS
model, CXCL1 was found to be elevated, which might further
exacerbate the progression of NASH in concert with LCN2 (138).
In line with these studies, Xu et al. reported that LCN2 mRNA
levels were increased by more than 28-folds in a high-fat, high-
sugar-induced NASH mouse model; their protein-protein
interaction analysis using Search Tool for the Retrieval of
Interacting Genes (STRING, http://string-db.org) database
supported the notion that LCN2 might physically interact with
various inflammatory mediators (e.g., IL-1R2, IL-3, IL-6, IL-18,
and IL-17A) or might be involved in the inflammatory cascades
mediated by inflammatory mediators (137). HFHCD-induced
NASH was accompanied by an upregulation of LCN2 expression
in the liver, in which the major LCN2-enriched cell type was
neutrophils (135). Genetic ablation of LCN2 in Apoe-null mice
significantly suppressed the severity of hepatic injury and
inflammation, whereas chronic administration of recombinant
LCN2 enhanced the severity of HFHCD-induced NASH (135).
Mechanistically, LCN2 promoted the activation of C-X-C motif
chemokine receptor 2-mediated extracellular signal-regulated
kinase (ERK), which enhances the crosstalk between
neutrophils and macrophages in the liver and induces
inflammatory responses (135).

3.3.4 Potential Roles of Neutrophil-Derived S100A8/
A9 in NASH Development
S100A8 and S100A9 are Ca2+-binding proteins that belong to the
S100 family and account for a substantial proportion of the
neutrophil cytosolic protein population (165–167). S100A8 and
S100A9 preferentially form heterodimers; the S100A8/A9
heterodimer is released by activated neutrophils and is
implicated in the pathogenesis of various diseases as an innate
immune mediator (168–170). The expression of S100A8 and
S100A9 is elevated in the visceral adipose tissues of obese
patients with diabetes (171). However, the contribution of
S100A8/A9 to NASH development is not well understood
although the serum levels of S100A8 and S100A9 are elevated
in NASH patients (172). As it has been increasingly recognized
that the crosstalk between the liver and adipose tissue plays a
crucial role in NASH development, it is reasonable to further
examine the role of adipose tissue proteins S100A8/A9 in NASH
development. Indeed, S100A8 and S100A9 are upregulated in the
adipose tissue samples of NASH patients and CXCL1-induced
experimental NASH models, and the administration of
paquinimod, a S100A9 inhibitor, attenuated the CXCL1-
induced NASH in mice (128). This finding further supports
the possibility that neutrophil-derived specific molecules might
be implicated in the crosstalk between organs that
exacerbates NASH.

3.4 Role of NET in NASH Development
NET is a web-like structure of DNA fibers composed of histones
and granule proteins (173). NETs are formed by expulsion of the
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nuclear materials of neutrophils into the extracellular space
(147). NET was originally reported to be a mechanism through
which neutrophils participate in host defense by capturing and
killing microorganisms and preventing their dissemination
(174); however, increasing evidence has supported the role of
NET as a critical mediator of sterile inflammation, which is
critically implicated in the development of various diseases
including cancer (175–177). NET also potentiates neutrophil
function through a positive feedback loop and thus has attracted
attention as a therapeutic target for inflammatory diseases (178).

NET formation is stimulated in experimental NASH models.
In the Stelic animal model of NASH (STAM), neonatal
streptozotocin treatment and HFD induces NASH and
hepatocellular carcinoma in mice by creating a diabetic and
obesogenic environment (179). STAM mice showed elevated
neutrophil infiltration and NET formation in the liver (92).
Inhibition of NET formation through deoxyribonuclease
(DNase) treatment or the deletion of the gene encoding PAD4
attenuated the monocyte infiltration and inflammation in the
liver of STAM mice, although steatosis was not significantly
improved (92). In addition, DNase treatment or PAD4 deletion
inhibited the NASH-associated hepatocellular carcinoma
development in STAM mice. Moreover, the serum levels of
MPO-DNA, which is a marker of NET, were elevated in
NASH patients than in healthy individuals (92). A more recent
study revealed that not only the serum marker but also the
hepatic marker of NET formation (e.g., citrullinated histone H3)
was increased in the liver of NASH patients and that NET was
correlated with NAFLD severity (139).

NET formation was also promoted in a methionine-choline-
deficient high-fat diet (MCDHFD)-induced NASH model. In
mice fed with an MCDHFD, NETs were detected in the early
stages of NASH, and the depletion of NETs by intraperitoneal
injection of DNase I alleviated the MCDHFD-induced liver
injury, inflammation, and fibrosis (140). During the
development of MCDHFD-induced NASH, hepat ic
sphingosine 1-phosphate (S1P) levels were correlated with
NET formation. S1P activated p38MAPK- and ERK-mediated
ROS production in neutrophils via the S1P receptor 2 signaling
pathway, which switched apoptosis to NETosis and promoted
NASH development (140).
4 POTENTIAL BENEFICIAL FUNCTIONS
OF NEUTROPHILS IN NASH

Damaged or infected tissues undergo a series of inflammatory
processes, where neutrophil infiltration is one of the first events to
remove pathogenic microorganisms or overcome injuries. These
inflammatory processes are usually followed by tissue repair;
however, excessive and prolonged inflammation that is not
properly resolved by various repair mechanisms may lead to
chronic destructive inflammation and fibrosis, which are critically
implicated in the development of various inflammatory diseases.

Resolution of inflammation is a coordinated and active
process that is designed to maintain tissue homeostasis (180,
Frontiers in Endocrinology | www.frontiersin.org 9
181). Timely resolution of inflammation is important because
tissue integrity and function are impaired during inflammation;
thus, prolonged inflammation may lead to collateral tissue
damage (182, 183). Neutrophil infiltration is correlated with
the severity of tissue damage and inflammation (184). Thus,
neutrophil apoptosis and the clearance of apoptotic neutrophils
are tightly regulated in order to resolve the inflammation (185,
186). Apoptotic neutrophils are normally cleared from the
affected site by the macrophages through the process of
efferocytosis (187).

Neutrophils are generally thought to initiate and aggravate
inflammation; the current review has so far discussed the
deleterious function of neutrophils, that is, exacerbation of
tissue injury and inflammation during the pathogenesis of liver
diseases. However, recent publications have increasingly
described the pro-resolving and tissue-restorative functions of
neutrophils (12, 188). A study by Wang et al. reported the
cooperation of neutrophils with macrophages which promotes
the conversion of proinflammatory monocytes to pro-resolving
macrophages to orchestrate the resolution of tissue inflammation
and repair (189). Proteases derived from neutrophils, such as NE,
inhibit the production of IL-1b and TNF-a and cause the
degradation of these cytokines (190). Neutrophils also inhibit
the production of cytokines induced by lipopolysaccharides or
the fragment of the cell wall of gram-positive bacteria (191).
Although NETs promote inflammation, they capture and
degrade proinflammatory mediators, especially in sites where
the density of neutrophils is high, which is thought to be
associated with the action of neutrophilic proteases that are
components of NETs (192).

Formyl peptide receptor 2 binds multiple pro-resolving
ligands, including annexin A1, lipoxin A4, 15-epi-lipoxin A5,
and 17-epi-resolvin D1, which contribute to multiple processes
that mediate the maintenance of tissue homeostasis under
inflammatory conditions (193). Some of these processes
include inhibition of neutrophil infiltration and attachment
and stimulation of neutrophil apoptosis, thereby attenuating
tissue injury and accelerating inflammation resolution (193).
Interestingly, neutrophils produce and release some of these
pro-resolving ligands (e.g., annexin A1) via the membrane-
derived microvesicles, through which neutrophils can actively
participate in the resolution of inflammation (194–197).

Researchers in the field of hepatology have also recently
demonstrated the pro-resolving role of neutrophils in several
models of liver diseases, including NASH. Calvente et al.
reported that depletion of neutrophils in mice recovering from
MCD-induced NASH or CCl4-induced fibrosis prolonged the
period of tissue damage, inflammation, and fibrosis (198).
Mechanistically, neutrophils participate in the resolution of
inflammation by transferring miR-223 from neutrophils to
macrophages via the neutrophil-derived EVs or as a complex
with lipoproteins or argonaut 2 (198). In macrophages, miR-223
inhibited the activity of NOD-, LRR-, and pyrin domain-
containing protein 3 (NLRP3) inflammasomes and induced the
polarization of restorative macrophages, which release cytokines
such as IL-10, leading to the resolution of inflammation and
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fibrosis. The anti-inflammatory role of miR-223 was also
observed in a study by He et al.; they showed that miR-223-
deficient mice were more vulnerable to diet-induced NASH and
hepatocellular carcinoma (109). It was later demonstrated that
neutrophil-derived EVs deliver miR-223 to hepatocytes where
they exert their anti-inflammatory and anti-tumorigenic
functions (109, 118).

Advancements in single-cell analysis have made it possible to
study the function of different subsets of immune cells in the
development of various diseases (199). In particular, recent
publications have elucidated several distinct subsets of
macrophages that are enriched in the livers of humans and
mice with NASH (65, 67). However, neutrophils have been
traditionally thought to be homogeneous, and little is known
about the different subsets of neutrophils that may function
distinctively during the development of NASH. The notion that
neutrophils are both proinflammatory and pro-resolving
warrants further investigation of the heterogeneity of
neutrophils in the context of NASH development.
5 NEUTROPHILS AS POTENTIAL
THERAPEUTIC TARGETS FOR THE
TREATMENT OF NASH

The involvement of neutrophils in multiple processes in the
pathogenesis of liver diseases has made them attractive targets
for therapeutic intervention. As discussed in this review,
neutrophils generally exacerbate inflammation and liver injury,
which have established strategies to deplete neutrophils or inhibit
the activity of neutrophils. Blockade of granulocyte colony-
stimulating factor 3 receptor with monoclonal antibodies
inhibits the production and activation of neutrophils and has
been suggested to ameliorate several diseases, including arthritis
(200, 201). Neutrophils are short lived and susceptible to
apoptosis, and deletion of the Foxo3a gene that is needed for
neutrophils to survive prevented inflammatory diseases in mice
due to excessive neutrophil apoptosis (202). However, whether
pharmacological interventions to reduce the neutrophil
population in the circulation or at the site of inflammation are
useful for treating NASH should be investigated further.

Because proteins expressed by neutrophil granules significantly
contribute to the pathogenic functions of neutrophils, researchers
have attempted to develop pharmacological modulators that
can control the activities of granule proteins, such as NE, MPO,
and LCN2. Elafin and AAT are endogenous factors that have
the ability to inhibit NE, and emerging evidence has
demonstrated that they may attenuate several diseases in
experimental models (203, 204). Elafin is an antimicrobial
and anti-inflammatory protein with a molecular weight
of approximately 6 kDa (205). Lentiviral overexpression of elafin
inhibits HFD-induced steatosis in mice (206). MPO has also
been studied as a target of anti-neutrophil therapies because it
mediates multiple steps in neutrophil-induced inflammation
and tissue damage (207). It has been attempted to inhibit
the activity of MPO using chemicals that block the active site
Frontiers in Endocrinology | www.frontiersin.org 10
of MPO, remove MPO from the chlorination reactions, or scavenge
HOCl; however, whether these strategies are valid for the treatment
of NASH in experimental animal models remain unknown (208–
214). The therapeutic potential of LCN2 inhibition has been
examined for the treatment of various diseases, including cancer
(215, 216), which has led to the investigation of biological
therapeutics such as monoclonal antibodies, RNA interference
technology, and nanoparticle-based LCN2 modulators (158, 161,
217–219).

NET formation was originally highlighted as an immune
response of neutrophils against microorganism infection;
however, accumulating evidence has suggested the involvement
of NETs in sterile inflammation, which has facilitated the
investigation of the potential application of anti-NETosis
therapy in the treatment of inflammatory diseases (147). PAD4
is regarded as one of the most important enzymes involved in
the formation of NETs (220), and deletion of the gene
that encodes PAD4 or pharmacological inhibition of PAD4
has been widely implemented to study the pathogenic role
and therapeutic potential of NETs (221). The study by
Tsung et al. on the role of NET in the development of NASH-
associated hepatocellular carcinoma corroborates the applicability
of anti-NETosis therapy in the treatment of full-spectrum
NAFLD (92).

Neutrophils have been actively studied as targets for
pharmacological intervention in multiple diseases including
autoimmune diseases, atherosclerosis, asthma, infectious
diseases, psoriasis, and sepsis (222). Either enhancement or
inhibition of the function of neutrophils has been studied as
the strategic approach against these diseases. For example,
blocking neutrophil recruitment, blocking neutrophil-derived
mediators, and targeting NETs have been attempted to inhibit
the excessive tissue damage caused by neutrophils in pulmonary
diseases, atherosclerosis, and psoriasis (125). However, little is
known about whether these strategies can produce positive
outcomes for the treatment of NASH. Considering the
involvement of neutrophils in the multiple processes of NASH
pathogenesis that have been discussed in this review, it is
justifiable to further explore the feasibility of anti-neutrophil
therapy as a therapeutic strategy for NASH.
6 CONCLUSIONS

Knowledge on the role of neutrophils has rapidly expanded in
recent years, which has not only enhanced our understanding of
the pathogenic mechanism of NASH, but also laid the foundation
for its application in establishing an experimental NASH model
that may be utilized for drug screening. Although the clinical data
to support the applicability of the neutrophil-modulating
approach have yet to be presented, the potential benefit of this
strategy has been increasingly supported by studies conducted in
NASH animal models. Moreover, the population of neutrophils
can be more heterogeneous than we currently recognize.
Advances in analytical techniques, such as the advent of single-
cell RNA sequencing, have further raised questions regarding the
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different subsets of neutrophils that may distinctively participate
in NASH pathogenesis. Elucidation of these remaining questions
will help us better elucidate the role of neutrophils in NASH
development and open new avenues for the therapeutic
intervention of NASH.
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125. Németh T, Sperandio M, Mócsai A. Neutrophils as Emerging Therapeutic
Targets. Nat Rev Drug Discov (2020) 19(4):253–75. doi: 10.1038/s41573-019-
0054-z

126. Pham CT. Neutrophil Serine Proteases: Specific Regulators of Inflammation.
Nat Rev Immunol (2006) 6(7):541–50. doi: 10.1038/nri1841

127. Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule Protein
Processing and Regulated Secretion in Neutrophils. Front Immunol (2014)
5:448. doi: 10.3389/fimmu.2014.00448

128. Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ait-Ahmed Y, et al.
E-Selectin-Dependent Inflammation and Lipolysis in Adipose Tissue
Exacerbate Steatosis-To-NASH Progression via S100A8/9. Cell Mol
Gastroenterol Hepatol (2021). doi: 10.1016/j.jcmgh.2021.08.002

129. He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, et al.
Immunopathobiology and Therapeutic Targets Related to Cytokines in
Liver Diseases. Cell Mol Immunol (2021) 18(1):18–37. doi: 10.1038/
s41423-020-00580-w

130. Rensen SS, Slaats Y, Nijhuis J, Jans A, Bieghs V, Driessen A, et al. Increased
Hepatic Myeloperoxidase Activity in Obese Subjects With Nonalcoholic
Steatohepatitis. Am J Pathol (2009) 175(4):1473–82. doi: 10.2353/
ajpath.2009.080999

131. Pulli B, Ali M, Iwamoto Y, Zeller MW, Schob S, Linnoila JJ, et al.
Myeloperoxidase-Hepatocyte-Stellate Cell Cross Talk Promotes
Hepatocyte Injury and Fibrosis in Experimental Nonalcoholic
Steatohepatitis. Antioxid Redox Signal (2015) 23(16):1255–69.
doi: 10.1089/ars.2014.6108

132. Rensen SS, Bieghs V, Xanthoulea S, Arfianti E, Bakker JA, Shiri-Sverdlov R,
et al. Neutrophil-Derived Myeloperoxidase Aggravates Non-Alcoholic
Frontiers in Endocrinology | www.frontiersin.org 14
Steatohepatitis in Low-Density Lipoprotein Receptor-Deficient Mice. PloS
One (2012) 7(12):e52411. doi: 10.1371/journal.pone.0052411

133. Zang S, Ma X, Zhuang Z, Liu J, Bian D, Xun Y, et al. Increased Ratio of
Neutrophil Elastase to a1-Antitrypsin is Closely Associated With Liver
Inflammation in Patients With Nonalcoholic Steatohepatitis. Clin Exp
Pharmacol Physiol (2016) 43(1):13–21. doi: 10.1111/1440-1681.12499

134. Chen J, Liang B, Bian D, Luo Y, Yang J, Li Z, et al. Knockout of Neutrophil
Elastase Protects Against Western Diet Induced Nonalcoholic Steatohepatitis
in Mice by Regulating Hepatic Ceramides Metabolism. Biochem Biophys Res
Commun (2019) 518(4):691–7. doi: 10.1016/j.bbrc.2019.08.111

135. Ye D, Yang K, Zang S, Lin Z, Chau HT, Wang Y, et al. Lipocalin-2 Mediates
non-Alcoholic Steatohepatitis by Promoting Neutrophil-Macrophage
Crosstalk via the Induction of CXCR2. J Hepatol (2016) 65(5):988–97.
doi: 10.1016/j.jhep.2016.05.041

136. Auguet T, Terra X, Quintero Y, Martıńez S, Manresa N, Porras JA, et al. Liver
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