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Background: Influenza viruses (FLUV) are continuously evolving, which explain the occurrence of sea-
sonal influenza epidemics and the need to review the vaccine strain composition annually. The aim is
to describe the genetic diversity and clinical outcomes of FLUV detected at a tertiary university hospital
in Barcelona (Spain) during the 2012-2016 seasons.
Methods: The detection of FLUV from patients attended at the Emergency Department or admitted to the
hospital was performed by either immunofluorescence or PCR-based assays. A specific real-time one-step
multiplex RT-PCR was performed for influenza A (FLUAV) subtyping. The complete coding haemagglu-
tinin domain 1 (HA1) and neuraminidase (NA) (2015-2016) protein sequences from a representative
sampling were molecular characterised.
Results: A total 1774 (66.1%) FLUAV and 910 (33.9%) influenza B (FLUBV) cases were laboratory-
confirmed. The hospitalisation rate was different between seasons, being the highest (81.4%) during
the 2014-2015 season. FLUV were genetically close to vaccine strains except to the 2014-2015, in which
most characterised A(H3N2) viruses belonged to a genetic group different from the vaccine strain. During
the 2015-2016 season, B/Victoria-like viruses were the most predominant, but this component was not
included in the trivalent vaccine used. Mutations D222G or D222N in HA1-domain were found in 3 A
(H1IN1)pdmO9 strains from ICU-admitted cases. Three A(H1N1)pdmO09 strains carried the NA H275Y
(2) and S247N (1) mutations, respectively related to resistance or decreased susceptibility to oseltamivir.
Conclusions: The circulation of drifted A(H3N2) strains during the 2014-2015 season was related to the
high hospitalisation rate due to the mismatch with the vaccine strains. The predominance of a FLUBV lin-
eage not included in the trivalent influenza vaccine during the 2015-2016 season highlights the need to
use a tetravalent influenza vaccine. Virological surveillance of viral variants carrying protein changes that
alter tropism and susceptibility to antivirals features should be strengthened in hospital settings.

© 2019 Elsevier Ltd. All rights reserved.
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FLUV are single-stranded, negative-sense, segmented RNA
viruses belonging to the Orthomyxoviridae family [3,4]. Based on

1. Background

Influenza viruses (FLUV), one of the main causative agents of
respiratory infections, are related to high morbidity and mortality
in the community, mainly in high-risk patients such as the elderly,
those with underlying comorbidities or pregnant women [1,2].
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genetic and antigenic features, three different types of human
FLUV (A, B and C) are currently described. According to antigenic
properties of the surface proteins, haemagglutinin (HA) and neu-
raminidase (NA), influenza A viruses (FLUAV) are divided into dif-
ferent subtypes (HIN1pdm09 and H3N2) [3,5], as well as influenza
B viruses (FLUBV) into two major lineages, B/Victoria/2/87-like
(FLUBV/VIC) and B/Yamagata/16/88-like (FLUBV/YAM) [6].

FLUV are continuously evolving through amino acid substitu-
tions altering antigenic properties (antigenic drift) or, less fre-
quently, by segment reassortment events (antigenic shift) [7].
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Some amino acid substitutions in the HA receptor binding site
(RBS) can alter the cellular host tropism, conditioning the species
range and tissue tropism, which may be also related to viral viru-
lence [8]. The high mutation rate of the NA protein can also affect
the antiviral susceptibility to currently available neuraminidase
inhibitors (NAls) drugs [9]. In addition, changes in the antigenic
features of FLUAV or FLUBV, mainly in HA, explain the occurrence
of seasonal influenza epidemics and are the reason for the annual
vaccine composition update needed for a more effective preven-
tion of disease and the related complications in high-risk patients
[10]. Vaccination is the most effective public health action for pre-
venting influenza. A higher vaccination enhances the achievement
of community immunisation [11]. In Catalonia, the influenza vacci-
nation is recommended to individuals over 60 years of age, espe-
cially those living in nursing homes, children over 6 months of
age and adults with high risk comorbidities for clinical complica-
tions due to influenza infection, such as pregnancy or chronic dis-
eases. It is also recommended to healthcare professionals and
people working for public services (police, firefighters or teachers).
The influenza vaccines available in Catalonia are subunit, adju-
vanted and cell-based vaccines. The tetravalent vaccines have only
been available since the 2016-2017 season for the vaccination of
high-risk patients at hospital settings [12]. The vaccination cover-
age in our region is variable and goes from 10 to 70% depending on
the age group, although the mean coverage is around 35% each sea-
son [13].

The aim of this study is to describe the genetic features of
detected viruses and the clinical outcome of influenza cases
attended at Vall d’Hebron University Hospital (Barcelona, Spain)
from the 2012-2013 to the 2015-2016 seasons.

2. Material and methods
2.1. Sampling

Vall d’'Hebron University Hospital is the largest tertiary hospital
in Catalonia and the second one in Spain, covering more than
450.000 inhabitants. From October 2012 (epidemiological week
40/2012) to May 2016 (epidemiological week 20/2016), upper
(nasopharyngeal aspirates or swabs) and lower (bronchoalveolar
lavages, bronchoaspirates or tracheal aspirates) respiratory tract
specimens were collected for influenza and other respiratory
viruses laboratory-confirmation from patients with suspicion of
acute respiratory tract infection who were attended at the Emer-
gency Department that accomplished the criteria to be admitted
to the hospital; from patients that could benefit from antiviral
treatment without needing hospitalisation; or from hospitalised
patients that acquired influenza nosocomial infection. Based on
medical records, some demographic features (age and sex), hospi-
talisation, Intensive Care Unit (ICU) admission, outcome and the
administration of antiviral treatment were retrospectively col-
lected from influenza laboratory-confirmed cases.

2.2. Definition of SARI cases

According to the Catalan Public Health Agency, a severe hospi-
talised patient is described as that case with pneumonia due to
influenza virus or to bacterial infection, septic shock, multiorganic
failure, acute respiratory distress or admission to Intensive Care
Unit (ICU). Moreover, antiviral (NAIs) treatment was administered
when influenza infection was laboratory-confirmed for those
patients who are hospitalised due to the severity of the disease
or belonging to high-risk groups [14] to prevent further disease
complications.

2.3. Detection of respiratory viruses

The detection of FLUV and other respiratory viruses (respiratory
syncytial virus, metapneumovirus, adenovirus, rhinoviruses, enter-
oviruses, coronaviruses, parainfluenza viruses and bocavirus) was
carried out by either immunofluorescence antigen detection
(SOFIA Influenza A + B, Quidel, California, USA; and D3 Ultra 8TM
DFA Respiratory Virus Screening & Identification Kit Diagnostic
HYBRIDS, USA) or PCR-based assays (Anyplex Il RV16 Detection
Kit, Seegene, Korea; and, GeneXpert Flu, Cepheid, USA). Prior to
PCR-based assays, total nucleic acids were extracted using Nucli-
Sens easyMAG (bioMérieux, Marcy I'Etoile, France) according to
the manufacturer’s instructions, and kept frozen (—20°C) until
use. An in-house real-time one-step multiplex RT-PCR [15] was
performed for HA subtyping of seasonal influenza A viruses
(H1pdmO09 and H3).

2.4. Amplification and sequencing of influenza haemagglutinin and
neuraminidase genes

The complete coding region of HA1-domain of a representative
number of influenza laboratory-confirmed specimens from hospi-
talised patients was sequenced for phylogenetic analysis and
molecular characterisation. In addition, during the 2015-2016 sea-
son, the complete NA coding region was also sequenced for the
screening of amino acid substitutions associated with a reduced
antiviral susceptibility [9,16]. HA and NA amplifications were car-
ried out by a one-step RT-PCR assay using the one-step RT-PCR Kit
(Qiagen, Hilden, Germany) with the primers and PCR protocols
shown in Supplementary Table 1. PCR products purification was
subsequently performed using Exo-SAP-IT (USB, Affymetrix Inc.
Cleveland, Ohio, USA) and sequenced by the ABI Prism Big Dye Ter-
minator cycle sequencing kit v3.1 (Thermo Fisher Scientific, Wal-
tham, MA, USA) on the ABI PRISM 3130XL Genetic Analyzer
(Thermo Fisher Scientific, Waltham, MA, USA) with the sequencing
primers (Supplementary Table 1). Nucleotide sequences were edi-
ted and assembled using SeqScape v2.6 software (Thermo Fisher
Scientific, Waltham, MA, USA). Sequences of the present study
were submitted to the Global Initiative on Sharing Avian Influenza
Data (GISAID available at www.platform.gisaid.org).

2.5. Detection of polymorphisms and phylogenetic analysis

Phylogenetic analyses of complete HA1-domain coding region
sequences were performed using the reference sequences by sub-
type (FLUAV) or by lineage (FLUBV) by season in the Northern
Hemisphere recommended by the European Centre for Disease
Prevention and Control (ECDC) (Supplementary Table 2). Both mul-
tiple nucleotide sequence alignment using the MUSCLE algorithm
[17] and the molecular evolutionary model analysis were con-
ducted in MEGA v5.2 [18]. The phylogenetic trees were constructed
using a neighbor-joining (N]) distance method as implemented in
MEGA v5.2 with the nucleotide substitution model with the lowest
Bayesian information criterion (BIC) score [18]. The topological
accuracy of the internal branch was evaluated by the bootstrap
method (1000 replicates).

In order to detect amino acid substitutions in the complete
HA1-domain and NA coding regions, the deduced amino acid
sequences from aligned nucleotide sequences were compared to
those of the vaccine strains recommended by the World Health

Organisation (WHO) (A(H1N1)pdmQ9: A/California/07/2009
(2012-2016); A(H3N2): A/Victoria/361/2011 (2012-2013); A/Tex-
as/50/2012 (2013-2015); and A/Switzerland/9715293/2014

(2015-2016); B/Yamagata: B/Wisconsin/01/2010 (2012-2013); B/
Massachusetts/02/2012 (2013-2015); and B/Phuket/3073/2013


http://www.platform.gisaid.org

2472

(2015-2016); B/Victoria: B/Brisbane/60/2008 (2012-2016)). Pri-
mers and protocols are available under request.

2.6. Statistical analysis

Statistical analysis was performed using STATA v14 (StataCorp.
2015 Stata Statistical Software: Release 14. College Station, TX:
StataCorp LP). A descriptive analysis was performed, calculating
the median as a measure of central tendency as well as the
interquartile range as a measure of its dispersion. Categorical
variables were described through frequencies and proportions.
Chi-squared test was calculated to assess associations between
categorical variables. P values <0.05 were considered to be
statistically significant.

3. Results

A total of 18,405 specimens from 12,680 cases (median age:
14.5 years; female: 46%) were received for respiratory viruses’
laboratory-confirmation, of which 2866 (16%) specimens from
2684 (21%) patients (median age: 36 years; female: 49%) were
laboratory-confirmed for 1774 (66.1%) FLUAV (female: 48.4%)
and 910 (33.9%) FLUBV (female: 50.2%). FLUV detection was usu-
ally reported in winter months, and only a few sporadic cases were
detected during the interseason periods (Fig. 1). In addition, detec-
tion of FLUV steadily increased during the study period (p < 0.001).
A variable co-circulation of the different influenza types was
shown, since FLUAV circulated during all seasons, while FLUBV
did not circulate during the 2013-2014 season. Moreover, a partic-
ular influenza type or subtype was also predominant in each stud-
ied season: FLUBV during the 2012-2013 season; A(H3N2) during
the 2013-2014 and 2014-2015 seasons; and A(H1IN1)pdmO09 and
FLUBV during the 2015-2016 season, as shown in Fig. 1.

Data regarding demographic features (age and sex), hospitalisa-
tion rate, ICU-admission, antiviral treatment administration and
fatal outcomes of influenza-confirmed cases by season are sum-
marised in Table 1. Overall, the median age of FLUAV-confirmed
cases (44years; IQR 5-70years) was significantly higher
(p <0.001) than that of FLUBV-confirmed cases (23 years; IQR 4-
62 years). However, no significant differences (p = 0.489) between
A(H1N1)pdmO09 (42 years; IQR 3-67 years) and A(H3N2) (46 years;
IQR 7-74 years) were found. Though, differences in the distribution
by age groups were found between influenza types (p < 0.001) or
subtypes (p < 0.001).

The hospitalisation rate for influenza laboratory-confirmed
cases was overall 55.7% (1494/2684 cases), with a balanced
male:female proportion (female: 49.0%; p =0.398). Furthermore,
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the hospitalisation rate was different between seasons
(p<0.001), being the highest (81.4%) during the 2014-2015 sea-
son. The hospitalisation rates were also significantly different
between influenza types (FLUAV: 60.8% vs. FLUBV: 45.6%;
p<0.001) or FLUAV subtypes (HIN1pdmO09: 55.9% vs. H3N2:
64.6%; p<0.001). Among hospitalised patients, ICU-admissions
were also different by season throughout the study period and
showed a decreasing trend (p <0.001). While no differences on
ICU admissions between influenza types (FLUAV: 3.5% vs. FLUBV:
2.6%; p=0.444) were observed, these were different between
FLUAV subtypes (A(H1N1)pdmO09: 3.9% vs. A(H3N2): 2.2%;
p = 0.037). Through the study period, there was also a decreasing
trend in mortality (p = 0.003), but no differences were observed
between influenza types (p=0.116) or FLUAV subtypes
(p=0.572). Nevertheless, the high number of fatal cases attributed
to A(H1N1)pdmO09 during the 2012-2013 season was remarkable
(7.8%) in comparison with later seasons.

Phylogenetic analyses of HA1 sequences revealed the high
genetic diversity of FLUV, distinguishing different genetic clades
and subclades, represented in Fig. 2(A-D) and Supplementary
Table 3. Regarding A(H1N1)pdmO09 viruses, all sequences (2 6 8)
clustered into clades 6 and 7 during the 2012-2013 season. During
the following seasons, sequences fell into two subgroups (6B.1 and
6B.2) within clade 6B (Fig. 2A), in which the strains (6B.1) gained a
new glycosylation site (S162N) [19]. In addition, all A(H3N2)
sequences (386) but one clustered within genetic clade 3
(A/Slovenia/537/2011-like), in different genetic subgroups (3C.2a,
A/HongKong/4801/2014-like; 3C.3, A/Samara/73/2013-like; and
3C3a, A/Switzerland/9715293/2013-like) (Fig. 2B). However,
during three seasons the detected strains were closely related to
the included vaccine strains, while during the 2014-2015
season A(H3N2) viruses belonged to the 3C.2a genetic subset
(A/HongKong/4801/2014-like) that showed different antigenic
features from vaccine strain included that season according to
WHO/ECDC data [20]. Furthermore, during the 2015-2016 season
there was a shift in the predominance of FLUBV lineage to
FLUBV/VIC (Fig. 2C) (57 sequences), which was not included in
the trivalent vaccine, since during the previous seasons, all FLUBV
viruses belonged to FLUBV/YAM lineage (Fig. 2D). FLUBV/YAM
viruses (134) detected during the 2012-2013 season belonged
mostly to clade 2 (B/Massachusetts/02/2012-like) and only a few
to clade 3 (B/Phuket/3073/2013-like), while all FLUBV/YAM
detected during 2014-2015 corresponded to clade 3 (B/Phuket/
3073/2013-like).

The characterisation of amino acid sequences of coding HA1-
domain sequences also revealed the detection of some viral vari-
ants carrying the following amino acid substitutions in the RBS
[21,22]: S137F (1 case), [192S (1 case) and 1192T (2 cases) among
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than FLUBV and A(H1N1)pdm09, respectively. However, the asso-
ciation of A(H3N2) with a higher hospitalisation and lower ICU-
admission rates than A(HIN1)pdmO09 might be explained due to
the high number of hospitalised cases during the 2014-2015 sea-
son when a drifted A(H3N2) virus was circulating [20]. Mortality
rate was declining along the study period, not showing differences
between FLUV types or subtypes, but highlighting the high mortal-
ity rate for A(HIN1)pdmO09 during the 2012-2013 season when a
low number of FLUAV cases was reported. This decreasing mortal-
ity rate over the four seasons could be related to the increase fre-
quency of sampling due to the introduction of PCR-based
methods to speed diagnostic and treatment and reducing
complications.

Based on phylogenetic analysis of HA1 sequences, A(H3N2)
showed a higher heterogenicity than A(H1N1)pdmO09. Despite the
emergence, the spread and the genetic divergence of A(HIN1)
pdmO09 strains into different genetic subgroups (6B.1 and 6B.2)
within A(H1N1)pdmO09 6B clade, as reported worldwide [33], the
current A(H1IN1)pdmO09 viruses remained antigenically similar to
the vaccine strain since the beginning of the pandemic [20,34].
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Fig. 2. (A-D): Phylogenetic trees of HA1-domain sequences from influenza A(H1N1)pdmO09 (A), A(H3N2) (B), B/VIC (C) and B/YAM (D)

However, despite antigenic stability, AC(HIN1)pdmO09 is still caus-
ing severe hospitalisations.

On the other hand, A(H3N2) virus has shown a great capability
to evolve quickly due to maybe the immune pressure from the
human population infected because it has been globally circulat-
ing for more than 50 years. During the last seasons, A(H3N2)
viruses acquired a great number of amino acid substitutions,
diverging in different genetic clades and subclades as shown in
the present study, and continuously changing the potential glyco-
sylation features of HA. In fact, as previously commented, the
high activity of A(H3N2) viruses during the 2014-2015 season
was related to the circulation of A(H3N2) viruses antigenically
different from the vaccine strain used [20]. However, the unpre-
dictable evolution of FLUV together with the current challenges
for the correct antigenic characterisation of A(H3N2) viruses,
make difficult to forecast the vaccine composition for upcoming
seasons [20].

Regarding FLUBV, there was co-circulation of both lineages, but
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with gamma-distribution was used to carry out the analysis. Almost all sequences corresponding to influenza viruses detected during the 2012-2016 season are compressed,
although some of them are labelled in green. Sequences used as reference are labelled in red and seasonal vaccine strains, in blue and bold. Only those bootstrap values over
70% are shown. Amino acid substitutions that define every phylogenetic cluster are marked in purple at the nodes, underlined those related to antigenic sites, and derived
from each reference sequence (A(H1IN1)pdm09: A/California/07/2009, A(H3N2): A/Perth/16/2009, B/Yamagata: B/Florida/04/2006, B/Victoria: B/Malaysia/2506/2004). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2 (continued)

with the strain lineage included in the trivalent vaccine composi-
tion. The shift on the predominance of both lineages is well-
known, and sometimes the circulating lineage is not included in
the trivalent vaccine, which highlights the need of using the
tetravalent influenza vaccine to give a better and wider protection
to the high-risk population. Therefore, the vaccination with
tetravalent vaccines in primary care would both improve the atti-
tude towards influenza vaccination and have a beneficial effect on
population coverage.

In addition to the circulation of both FLUBV lineages, FLUBV also
showed a continuous evolution based on HA sequences. Therefore,
FLUBV/YAM viruses belonged to two genetically and antigenically
divergent genetic clades (clade 2 and 3) [29], one of which (clade
3) was not represented by the corresponding vaccine strain during
the 2012-2013 season.

In regard to the detection of virulence and resistance markers, A
(H1IN1)pdmO09 has the capability to acquire mutations that can
alter the tropism or the antiviral susceptibility during the infection
[24,35]. On one hand, A(HIN1)pdmO09 strains from ICU-admitted
cases carrying mutations D222G or D222N in HA1, which are still
the unique genetic markers related to disease severity [23-26],
were detected during the 2012-2013 season but not in later sea-
sons, when a higher A(H1N1)pdmO09-related mortality rate was
reported. Surely, the prevalence of variants carrying these muta-
tions might be underestimated due to a suboptimal characterisa-

tion of severe influenza cases, since the virological surveillance of
influenza viruses is overall carried out from samples collected from
community-based surveillance networks. On the other hand, the
emergence of genetically resistant variants to antiviral drugs is
one of the main concerns of influenza surveillance and Public
Health worldwide [9,16]. In the present study, three viruses carry-
ing the mutations H275Y and S247N, associated with resistance or
reduced susceptibility to NAls, were found in respiratory
specimens from hospitalised patients under standard oseltamivir
treatment during the 2015-2016 season. The fact that immuno-
suppression status and antiviral treatment administration are con-
sidered high-risk factors for the selection and emergence of
resistant strains [35], conditions that are accomplished by many
of the patients hospitalised in tertiary centres, highlights the
importance to strengthen the virological surveillance of influenza
viruses in hospital settings. While surveillance tasks in
community-based networks is highly valuable, the information
reported in hospital settings, where cases of severe disease or
antiviral resistance are attended, should be always considered to
monitor circulating viruses, in particular those with novel pheno-
typic features.

In summary, our results highlight the prevalence of FLUV in
patients admitted to a tertiary hospital and its variable and unpre-
dictable circulation. The capability of FLUV to acquire genetic
diversity that can affect viral features related to antigenicity, trop-
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ism, and susceptibility to antivirals makes virological surveillance,
where these variants can be monitored, highly recommended in
hospital settings.
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