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REVIEW

therapy (ARRT) and related technology occurred, leading to 
the modern techniques of continuous renal replacement 
therapy (CRRT). In this process of evolution, the centre of 
Vicenza has always been leading the edge and it has sig-
nificantly contributed to the birth of a new speciality called 
Critical Care Nephrology. In Figure 1 we report the history 
timeline of CRRT as seen from our point of observation. It 
may be incomplete or partial, but certainly every single min-
ute of this history has been personally lived with passion and 
dedication.

The era of CAVH

The introduction of CAVH made it possible to perform 
renal replacement therapy even in ICUs not fully equipped 
or trained for hemodialysis. Our first patient was treated in 
Vicenza with the original Amicon 20 diafilter in 1978. We 
further refined our understanding and knowledge of CAVH 
by collaborating with Juan Bosch at the Mount Sinai Hospi-
tal in New York (2). In the late 1970s we extended the use 
of the technique used in adults to neonates with the use of 
specific Minifilters (Fig. 2) (3, 4). We developed specific fil-
ters with reduced flow resistance, suitable for operating in 
arterio-venous mode that are today preserved in our Vicen-
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Introduction

Exactly forty years ago Peter Kramer treated the first pa-
tient with continuous arterio-venous hemofiltration (CAVH) 
in the intensive care unit (ICU) of Gottingen, Germany (1). 
Acute renal failure was mostly treated with peritoneal dialy-
sis or haemodialysis, but in critically ill patients, these mo-
dalities were often contraindicated or precluded due to se-
vere cardiovascular instability. CAVH was well tolerated and 
easy to institute in ICUs where haemodialysis was not rou-
tinely performed. In the year following the first description 
of CAVH, a significant evolution of acute renal replacement 
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za Dialysis Museum. In spite of several advantages, CAVH 
soon demonstrated limitations in efficiency and frequent 
complications due the need for arterial cannulation. This 
spurred new research for alternative techniques.

The discovery of CAVHD and CAVHDF

A remarkable increase in treatment efficiency and urea re-
moval was achieved with the addition of diffusion. New filters 
with 2 ports in the dialysate/filtrate compartment allowed the 
use of counter-current flow of dialysate, giving birth to continu-
ous arteriovenous hemodiafiltration or hemodialysis (CAVHDF 
or CAVHD) (5). CAVHD- CAVHDF made it possible to treat hyper-
catabolic patients, simply by increasing dialysate the flow rate 
up to 1.5 or 2 L/h. In the case of excessive ultrafiltration, fluid 
losses were partially or completely replaced, allowing accurate 
fluid balance control. The problem of arterial cannulation was 
still the main drawback of the technique.

Fluid balance control

Manual control of ultrafiltration was initially achieved by 
positioning the filtrate bag at different heights, thus modify-
ing the negative (suction) pressure generated by the filtrate 
column. Delivery of replacement fluid was initially regulated 
manually and later new systems were designed to provide 
automatic fluid balance (6). The systems operated by grav-
ity, using scales and electronic clamps, although peristaltic 
pumps soon replaced these simple mechanisms with more 
advanced equipment.

CVVH, CVVHD and CVVHDF

Because arterial-venous techniques were associated with 
significant complications related to arterial cannulation and 
low blood flow in the extracorporeal circulation, continuous 
veno-venous hemofiltration (CVVH) or hemodialysis (CVVHD) 

Fig. 1 - Timetable of the forty years of evolution in CRRT.

Fig. 2 - Vicenza, 1978: First CAVH 
treatment in an adult critically ill 
patient and first CAVH treatment in 
the world of a neonate with acute 
renal failure.
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hemodiafiltration (CVVHDF) took over thanks to the availabil-
ity of double lumen venous catheters and machines with a 
peristaltic blood pump (7-10). These changes improved the 
safety and performance of extracorporeal treatments in the 
ICU, allowing the use of high blood flows (>150 mL/min) and 
large dialyzers (>1.0 m2). This resulted in better control of hy-
per-catabolic states and other severe pathophysiological de-
rangements. Initially veno-venous circuits took advantage of 
already existing technology, often creating a combination of 
devices (blood pump, UF pump, reinfusion pump, anticoagu-
lation, etc.) that were not integrated and, therefore, unable 
to communicate and operate together, with the possibility of 
amplifying errors and complications. Adoptive technology al-
lowed significant advances to be made, but it soon proved 
inadequate when a clear need for integrated and safer de-
vices became evident in clinical practice.

Integrated technology

In Vicenza we started the process of integration of blood 
and dialysate filtrate pumps in a single machine and pushed 
the industry of the field toward new research to create dedi-
cated devices for CRRT. With this effort, companies mostly in-
volved in chronic hemodialysis began to collect components 
from chronic machines and to integrate them into machines 
for CRRT (11, 12). Using this approach, several companies 
made new equipment: B.Braun moved from TRIO (3 separate 
pumps) to the compact ECU Carex machine (Fig. 1) designed 
by the engineer, Mr. Frigato, in Mirandola. Baxter moved to 
the integrated BM 25; and Hospal generated the DM 32 from 
the blood module of the Monitral machine. Medica built an 
integrated version of the Equapump and Equaline, while in 
Germany, Fresenius Medical Care commercializsed the DM08 
with 1 blood pump and 2 pumps for dialysate or fluid bal-
ance (13-15). Bellco utilized the blood module of the Multi-
mat chronic machine to create the Multimat B Acute version, 
and Gambro adjusted a special version of the AK 10 module 
for continuous dialysis. All these machines derived from the 
technology generated for chronic hemodialysis, but they rep-
resented the seeds for the upcoming generation of specific 
CRRT equipment (16, 17).

The PRISMA® revolution

With the progress in understanding the pathophysiol-
ogy of AKI and its clinical implications, the targets for renal 
replacement therapy became clearer (18-25). The indica-
tions for CRRT were defined and the practice of CRRT was 
better identified in the first edition of the book Critical Care 
Nephrology, edited by Bellomo and Ronco. New standard of 
treatments were required as well as new simplified meth-
ods to expand the application of CRRT to all ICUs. Special 
requirements for easier institution of CRRT and easier moni-
toring of treatment had led to the development of the first 
generation of CRRT integrated machines with several pumps 
and different technique capabilities. It was now the time for 
a revolution with a second-generation CRRT machine, and 
this happened with the launch of the PRISMA®, the first in-
tegrated CRRT platform designed specifically for Acute RRT in 
intensive care. The pre-assembled circuit and the auto-prim-

ing feature, together with the 4 pumps made CRRT possible 
in almost every ICU, with improved safety and performance 
even when performing complex techniques such as CVVHDF.

CRRT dose quantification

Started in 1995, in Vicenza we concluded the first ran-
domized trial on treatment dose in the year 2000 (26). We 
underlined the importance of a minimum quantity (dose) of 
treatment and we indicated 35 mL/kg per hour as the op-
timal target according to the trial result. This target, with a 
minimum of 80% delivery of the prescribed dose, began the 
golden standard for adequate CRRT and improved clinical 
outcomes. Subsequent studies have demonstrated that low-
er doses can be equally safe and successful in treating the 
critically ill patient (27-33), although effective delivery often 
differs significantly from the prescription (34-37). The new 
machines developed by industry with the possibility of mov-
ing toward more sophisticated techniques such as coupled 
plasma filtration-adsorption (CPFA) and high-volume hemofil-
tration (HVHF) fulfilled these new performance requirements 
(38-41). Improved usability and user-friendly interfaces with 
systematic instructions made CRRT machines popular and 
widely used in every ICU (17).

CRRT in sepsis

The original observation that higher doses of treatment 
could be beneficial in patients with sepsis introduced the 
rationale for HVHF and CPFA with the intent to remove chem-
ical mediators (42-45). HVHF or CPFA showed potent immu-
nomodulatory effects in sepsis. Since a cytokine network that 
is synergistic, redundant, autocatalytic and self-augmenting 
characterizes sepsis and systemic inflammatory response 
syndrome, it is unlikely to achieve the control of such a non-
linear system by simple blockade or elimination of some 
specific mediators. Thus, we hypothesized that the unselec-
tive nature of mediator removal by extracorporeal therapies 
could be a potential advantage, capable of reconstituting the 
immune-homeostasis of the septic patient, as suggested by 
the ‘peak concentration’ hypothesis (42). Higher volumes and 
complex techniques were made possible by the third gen-
eration of CRRT machines such as the Prismaflex (Gambro), 
the Equasmart (Medica), The Lynda (Bellco), The Multifil-
trate (Fresenius Medical Care), The Acquarius (Edwards Life 
Sciences) and others.

From renal replacement to multiple organ  
support therapy

The effect of different modalities of CRRT on length of stay 
and recovery of renal function in the general population is still 
under evaluation, since the case mix changes in every study 
and the population treated is not homogeneous. Further re-
search is needed in this field, although it has become evident 
that Precision CRRT (personalized prescription) should be ad-
opted in order to optimize results in single patients, even in 
the absence of the documented benefits of 1 specific technol-
ogy for the general population. Adequate technological sup-
port becomes mandatory to fulfil all these expectations and 
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new machines have been upgraded with specific circuits to 
support organs other than the kidney. The possibility of sup-
porting or partially replacing the function of organs such as 
the liver, the lung and the heart with modified extracorporeal 
circuits, make multiple organ support therapy (MOST) a real-
ity in the critical care setting. CRRT machines become plat-
forms for multiple organ support via extracorporeal therapies 
carried out with specific biomaterials and devices (45, 46).

Sorbent therapies

Hemoperfusion has been available for detoxification pur-
poses since the second part of the last century. Zeolites and 
charcoal were the most common sorbents, although soon a 
new generation of more hemocompatible materials became 
available. In recent years, cartridges with polymixin-B-coated 
polystyrenic fibres designed for the adsorption of endotox-
in have been used for the treatment of sepsis. This therapy 
seems particularly beneficial in patients with post-surgery 
abdominal septic shock (47, 48). New sorbents, derived from 
the original experience carried out by our group in the early 
years of the new century, are today appearing as a new op-
tion for the treatment of sepsis (49-53).

Latest generation of CRRT machines

The latest generation of machines available on the market 
today, which represent the evolution of the past 4 decades of 
research and development is shown in Figure 3. Specific ma-
chines have now been designed to permit safe and reliable 
performance of the therapy. These new devices are equipped 
with a user-friendly interface that allows for easy perfor-

mance and monitoring. The apparent complexity of the cir-
cuit is made simple by a self-loading circuit or a cartridge that 
includes the filter and the blood and dialysate lines. Prim-
ing is performed automatically by the machine and pre- or 
post-dilution (reinfusion of substitution fluid before or after 
the filter) can easily be performed by changing the position 
of the reinfusion line. These new machines permit all CRRT 
techniques to be performed by programming the flows and 
the total amounts of fluid to be exchanged or circulated as a 
counter-current dialysate throughout the session.

Precision CRRT

The Acute Disease Quality Initiative consensus group has 
stressed the importance of applying the principles of precision 
medicine to CRRT (54). The group has invited CRRT experts 
and manufacturers to utilize a standardized nomenclature 
and sign a document called “Charta of Vicenza” (55) agree-
ing to follow the recommendations proposed by 2 detailed 
publications (56, 57). This was a starting point to generate 
a harmonized terminology and to advance in a standardized 
environment for the generation of useful pragmatic trials. 
Today we have several examples of new machines that in-
clude software and terminology coherent with the recom-
mended nomenclature.

The consensus group also focused on the identifica-
tion of patients requiring CRRT and the correct timing of 
application, technological needs and expected advances, 
pointing out the desirable characteristics of new equip-
ment, membranes and the importance of integration of in-
formation technology into the process of patient care and 
decision-making (58-61).

Fig. 3 - Timetable of the forty years of evolution in pediatric CRRT.
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Information technology and connectivity

The ADQI group has recently recommended the use of 
modern information technology (IT) tools to improve practice 
and patient care. Such tools can be used for data acquisition 
and storage but also for treatment monitoring (62). Manual, 
authorized or automatic feedback technology is available today 
in chronic dialysis machines and has been advocated for CRRT 
machines as well. Integration of patient and machine signals 
through IT tools and connectivity with electronic health record 
(EMR) and data collection systems will be required to allow 
pragmatic trials and make big data registries available for analy-
sis. Data can then be used for Quality Assurance (QA) and for 
Continuous Quality Improvement (CQI) purposes in the centre, 
in the region and even in multinational data collection studies.

Machine connectivity can be provided via different tools. 
Machine and patient chip-cards can be used to extract data 
from single treatments from the front-end terminal (CRRT 
machine). Cable or wireless connectivity may permit the 
download of technical and clinical parameters from single 
or multiple machines and to analyse single treatment data 
as well as trends or statistics in multiple treatments. Cloud-
based connectivity could help clinicians to generate virtual 
registries and analyse the performance of single treatments 
or centres in absolute terms, or relative to other units. This 
may result in important feedback to clinicians, to either strict-
ly control outliers, or to change policies and procedures in the 
event of repeatedly unsatisfactory results.

Data collected and stored in EMRs may be rapidly evalu-
ated and managed by ad hoc designed electronic sniffers 
that can alert clinicians about dangerous trends or unwanted 
effects of CRRT. Solutions to the problem may be listed as sug-
gestions or even automatically fed back into devices such as 
pumps and CRRT machines. The feedback may either require 
manual application of the necessary change by a nurse/physi-
cian, authorization of an operational change proposed by the 
system, or operate automatically.

Current and future perspectives

There are several areas of investigation where evolution 
in new therapeutic options and new devices is likely to occur. 
Different biomaterials and surface modifications have been in-
troduced on semipermeable membranes to increase biocom-
patibility, to reduce thrombogenicity and the tendency toward 
fouling, and finally to modify sieving and adsorption properties. 
Vitamin E-coated membranes represent an example in which 
alpha-tocopherol has been covalently bound to a polysulfone 
membrane to reduce oxidant stress (63). These and other new 
membranes should be further investigated to elucidate the po-
tential for improving the inflammatory pattern in sepsis.

Software integration should become a tool for new equip-
ment to perform safer and more efficient CRRT treatments. 
The integration of bioimpedance and on-line haematocrit 
measurements may result in important effects on hemody-
namic stability and treatment delivery (64). The integration 
of blood temperature monitoring may have the potential to 
control thermal energy balance and the patient’s tempera-
ture. This could allow a specific energy balance (KJ/h) or a 
target temperature control to be achieved by adjusting the di-

alysate or replacement fluid temperature according to signals 
coming from temperature sensors placed on blood and dialy-
sate lines. A significant heat loss can in fact occur when the 
extracorporeal circuit is exposed to room temperature (65).

Automated circuit pressure control with flow adjustment 
feedback could provide the best possible blood flow in pres-
ence of a malfunctioning catheter or could provide early 
warning of access malfunction, preventing inadequate treat-
ment delivery.

On-line chemical sensors for acid-base and electrolytes 
may provide the basis for continuous control via biochemi-
cal feedback on dialysate and replacement fluid composition.

Miniaturized and wearable technology

There is a great deal of interest in applying nanotechnol-
ogy, microfluidics and other emerging sciences to the field of 
renal replacement. In Vicenza we tested the first wearable 
system for ultrafiltration (66). For the original wearable belt, 
we mostly used components off the shelf, but we recently 
made new developments by creating a new design and apply-
ing newly conceived, dedicated technology (67-69). Wearable 
devices are mostly conceived for ambulatory care and out-
of-hospital patients. Nevertheless, it seems that miniaturized 
systems may become useful even in the acute patient, allow-
ing mobility, low-priming-volume extracorporeal circuits and 
better care at the bedside.

Specific technology for small infants and paediatric 
applications

An interesting development in the process of machine 
and device miniaturization is the application of small-sized 
components for infants and children for whom the adult tech-
nology seems to be clearly inadequate. The requirement for 
specific technology in the field of paediatric CRRT emerged 
in the early 1980s (70). Over the years we personally contrib-
uted to a significant evolution of the field (71-74) and the his-
torical milestones of paediatric CRRT are reported in Figure 
3. Quite recently, based on the observation that every CRRT 
machine is conceived for adult patients and the use in neo-
nates and small infants is precluded or off-label, we decided 
to undertake a special project for the creation of miniaturized 
equipment specifically designed for these small patients. We 
started from scratch and we moved, through artisanal design 
and rough assembly of prototypes, to an industrially designed 
machine called CARPEDIEM (Cardio Renal Pediatric Dialysis 
Emergency Machine). This evolution has captured new in-
terest in the treatment of AKI in neonates and has allowed 
different techniques to be performed with the possibility of 
precisely adjusting the treatment dose and fluid balance in 
babies with body weights as low as 1.5 kg (75, 76) (Fig. 4). 
There is a consensus that such a specific technology will prob-
ably modify the outcome of AKI in neonates and small infants.

Conclusions

Over the last 40 years, CRRT has been widely utilized for 
the management of AKI in critically ill patients (77-79). The 
Vicenza Centre has heavily contributed to important tech-
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nological advances in machine design, to the expanded ap-
plication of novel and complex modalities and, finally, to the 
optimization of extracorporeal therapies in the ICU, ultimate-
ly leading to improved patient outcomes.

We pushed the transition from CRRT as renal replacement 
therapy to the concept of MOST (Multiple Organ Support 
Therapy) (80), upgrading the extracorporeal circuit to pro-
vide support for patients with multiple organ dysfunctions. 
Information and communication technology together with big 
data collection represent the new frontier (81-85) for person-
alized prescriptions and measurement of results to achieve 
the desired level of precision CRRT (86).

I strongly recommend using the history of the last 40 years 
of CRRT not only for a simple celebration of an important an-
niversary, but also for building the future of our discipline 
with improved treatment of acute kidney injury and organ 
dysfunction in the critically ill patient.
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