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Nervous necrosis virus (NNV) is a neurotropic pathogenic virus affecting a multitude of
marine and freshwater fish species that has a high economic impact on aquaculture farms
worldwide. Therefore, the development of new tools and strategies aimed at reducing the
mortality caused by this virus is a pivotal need. Although zebrafish is not considered a
natural host for NNV, the numerous experimental advantages of this species make
zebrafish an attractive model for studying different aspects of the disease caused by
NNV, viral encephalopathy and retinopathy (VER). In this work, we established the best
way and age to infect zebrafish larvae with NNV, obtaining significant mortalities in 3-day-
postfertilization larvae when the virus was inoculated directly into the brain or by
intramuscular microinjection. As occurs in naturally susceptible fish species, we
confirmed that after intramuscular injection the virus was able to migrate to the central
nervous system (CNS). As expected, due to the severe damage that this virus causes to
the CNS, alterations in the swimming behavior of the zebrafish larvae were also observed.
Taking advantage of the existence of transgenic fluorescent zebrafish lines, we were able
to track the migration of different innate immune cells, mainly neutrophils, to the site of
infection with NNV via the brain. However, we did not observe colocalization between the
viral particles and neutrophils. RNA-Seq analysis of NNV-infected and uninfected larvae at
1, 3 and 5 days postinfection (dpi) revealed a powerful modulation of the antiviral immune
response, especially at 5 dpi. We found that this response was dominated by, though not
restricted to, the type I interferon system, the major defence mechanism in the innate
immune response against viral pathogens. Therefore, as zebrafish larvae are able to
develop the main characteristic of NNV infection and respond with an efficient immune
arsenal, we confirmed the suitability of zebrafish larvae for modelling VER disease and
studying different aspects of NNV pathogenesis, immune response and screening of
antiviral drugs.

Keywords: nodavirus, viral encephalopathy and retinopathy (VER), zebrafish, immune response, RNA-Seq
1 INTRODUCTION

Zebrafish (Danio rerio) are a very versatile animal model widely used in the study of a multitude of
processes and disciplines. Among them, zebrafish are an excellent tool for understanding host–
pathogen interactions during the course of infectious diseases (1, 2). Zebrafish possess innate and
adaptive immunity resembling that of mammals and other higher vertebrates. However, in the early
org March 2022 | Volume 13 | Article 8630961
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stages, the larvae rely exclusively on their innate immune system,
as the cells responsible for the adaptive responses are not
functionally mature until 4 or 6 weeks postfertilization (3).
This fact makes zebrafish larvae a very attractive model for
studying the first line of defence against a pathogen, such as
the action of primary immune cells, macrophages (4) and
neutrophils (5) and the role of the main cytokines involved in
the immune response, without interference from the adaptive
response. In addition, other advantages of using early stages of
zebrafish larvae are the large numbers of offspring, a short
generation time, tolerance to anaesthesia, a small body size,
and transparency, which allows easy visualization of the whole
body by live imaging (6–8). At the genetic level, the zebrafish
genome sequence has been extensively revised and refined,
enabling the rapid accumulation of loss- or gain-of-function
mutants and the generation of transgenic lines that allow
traceability of different cell types.

Although no viruses, with some exceptions, are typically
known to naturally infect zebrafish and cause massive
mortality episodes (9, 10), several viruses (including those
infecting humans) have been studied using zebrafish as a
model of infection. In the case of fish, the main diseases caused
by viruses have been reproduced in zebrafish: rhabdoviruses such
as spring viremia of carp virus (SVCV) (11–15), snakehead
rhabdovirus (SHRV) (16), viral haemorrhagic septicemia virus
(VHSV) (17), and infectious haematopoietic necrosis virus
(IHNV) (7); birnaviruses such as infectious pancreatic necrosis
virus (IPNV) (18, 19); iridoviruses such as infectious spleen and
kidney necrosis virus (ISKNV) (20, 21) or European sheatfish
virus (ESV) (22); and nodaviruses such as nervous necrosis virus
(NNV) (23, 24). Interestingly, two publications reported that
zebrafish can be naturally infected by different nodaviruses (25,
26); this can probably occur as a consequence of increases in
temperature and crowding (27). In both cases, extensive
vacuolations were seen in the brain and retina (25, 26), and
erratic swimming behavior and mortality episodes were reported
by Binesh (25).

Viral encephalopathy and retinopathy (VER) disease, caused
by NNV, is one of the most devastating diseases affecting
commercial fish species around the world, such as European
sea bass (Dicentrarchus labrax), Atlantic cod (Gadus morhua) or
grouper (Epinephelus spp.), among others. This icosahedral
naked positive-sense single-stranded RNA virus has a
neurotropic nature and replicates in the nervous system
(e.g., brain, retina and spinal cord) (28), causing a very
characteristic abnormal and erratic swimming behavior in
susceptible fish species, accompanied by other less specific
signs (exophthalmia, swim bladder hyperinflation, skin
darkening, anorexia or lethargy) (29). Despite the relevance of
this disease and the high economic impact caused by NNV and
although many studies have been conducted in commercial
species to analyse different aspects of NNV infection (30–39),
few studies have leveraged the benefits of zebrafish to investigate
NNV infection. Furusawa et al. (40) tried to establish
experimental infections in adult zebrafish but without success.
Later, Lu et al. (23) were able to reproduce NNV infection in both
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adult zebrafish and larvae, and relevant mortalities were observed
in larvae microinjected with the virus, which was subsequently
confirmed by Morick et al. (24) after bath exposure. The
susceptibility of zebrafish larvae to NNV creates an
opportunity to easily screen anti-NNV compounds in an in
vivo model, as was performed with the antiviral drug ribavirin
(41). Although the immune response to NNV in this fish species
seems to indicate the relevance of the type I interferon (IFN)
system (23, 42–44), a complete transcriptome response to NNV
has not been previously determined in zebrafish.

In this work, we sought to improve the knowledge of VER
disease through the use of zebrafish larvae as an NNV infection
model, leveraging different imaging methods and transgenic fish
lines, and by analysing their transcriptome response after challenge
with the virus. We confirmed that zebrafish larvae are susceptible
to NNV when they are challenged at 3 days postfertilization (dpf),
especially when infections are conducted via the brain or
intramuscularly. Indeed, NNV particles were detected by
immunofluorescence in the heads of larvae infected by
intramuscular injection, confirming the migration of the virus to
nervous tissues. Moreover, as occurs in commercial fish species
susceptible to the virus, the infection altered the swimming
behavior of the larvae, reflecting their suitability as a good model
for studying different aspects of the infection. An efficient immune
response against NNV is mounted in the larvae, with a significant
migration of neutrophils to the brain, although these cells were not
found to colocalize with the virus. At the transcriptome level, a
time-increasing immune response is mounted against the virus,
which is mainly characterized by a large overexpression of those
genes belonging to the type I IFN system but also with a vast
representation of other immune processes.
2 MATERIALS AND METHODS

2.1 Fish
The embryos and larvae used in this study were obtained from
our experimental facilities, where the animals were cultured
using established protocols (45, 46). Different fish lines were
used: wild-type (WT) zebrafish, AB wild-type line (AB),
Tübingen wild-type line (TU), and the transgenic lines Tg
(mpx:GFP), Tg(mpeg:mCherry) and Tg(lyz:DsRed2), with
neutrophils, macrophages and lysozyme-expressing cells,
respectively. The eggs were obtained according to protocols
described in The Zebrafish Book (45) and maintained at 28°C
in E3 egg water (5 mMNaCl, 0.17 mMKCl, 0.33 mMCaCl2, 0.33
mM MgSO4, and 0.00005% methylene blue). All experimental
procedures were reviewed and approved by the CSIC National
Commi t t e e o f B ioe th i c s unde r approva l number
ES3605702020012020/13/FUN.01/INM06/BNG.

2.2 Virus
The nodavirus red-spotted grouper nervous necrosis virus
(RGNNV) (strain 475-9/99) was kindly provided by the
Institute Zooprofilattico delle Venezie (Italy) after isolation
from diseased sea bass (47). The virus was propagated in the
March 2022 | Volume 13 | Article 863096
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snakehead-fish cell line SSN-1 (ECACC 96082808) cultured in L-
15 medium (Gibco) supplemented with 2 mM L-glutamine
(Gibco), 2% FBS (Gibco), and 1% penicillin/streptomycin
solution (Invitrogen) and incubated at 25°C. The viral stock
was titrated into 96-well plates using the Reed-Müench method
(48), and aliquots were stored at −80°C until use.

2.3 Mortality Assays in Zebrafish Larvae
Infected With NNV
To determine the most efficient route and age of infection with
NNV, WT zebrafish larvae were infected at 3 and 14 dpf through
4 different routes: a) via the brain by microinjecting the virus
directly into the area of the head between the eyes to reach the
brain, b) via the duct of Cuvier (DC) to produce a systemic
infection, c) by intramuscular (IM) injection by microinjecting
into the muscle in the middle of the back, and d) by bath by
immersing the larvae in a viral suspension (Figure 1A).
Frontiers in Immunology | www.frontiersin.org 3
Larvae were anaesthetized in zebrafish water containing 160
µg/mL MS-222 (Sigma–Aldrich), placed on an agarose plate and
individually microinjected with a glass microneedle using a
Narishige MN-151 micromanipulator and a FemtoJet 4x
microinjector (Eppendorf). NNV was diluted at an appropriate
concentration (106 TCDI50/mL) in L15 medium with 0.1%
phenol red (a coloured marker to easily visualize the correct
injection of the solution into the larvae) just before
microinjection of 2 nL of viral suspension to the larvae or 2 nL
of L15+0.1% phenol red to the control larvae. Larvae were
infected through microinjection into the brain or DC or
intramuscularly and by immersion in water containing 106

TCDI50/mL NNV. Then, larvae were maintained in Petri
dishes at 28°C on a 12 h light-dark cycle. Mortality was
recorded daily during the next 10 days in the three biological
replicates (10 larvae/replicate) obtained for each condition. The
experiments were repeated three times. Additionally, to confirm
FIGURE 1 | Survival rates of zebrafish larvae challenged with NNV through different infection routes and NNV replication. (A) Schematic representation of the
different infection routes used to determine the susceptibility of zebrafish larvae to NNV. (B) Kaplan–Meier survival curves of NNV-infected and uninfected larvae in 3-
and 14-dpf larvae. Mortality was registered during the next 10 dpi. (C) Quantification of NNV capsid protein gene expression in 3-dpf larvae infected via the brain or
intramuscularly at different sampling points through qPCR; data are presented as the mean ± SEM of biological replicates. Statistically significant differences are
displayed as follows: ***, 0.0001 > p value > 0.001.
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the mortality caused by the microinjection of the virus via the
brain, AB and TU larvae (3 dpf) were also infected.

2.4 Evaluation of NNV Replication
and Gene Expression of Immune
Cell Markers in Zebrafish Larvae
by Quantitative PCR (qPCR)
To evaluate the progress of NNV infection, larvae (3 dpf) were
infected via the brain or intramuscularly, and samples were
collected at 1, 3, 5 and 7 days postinfection (dpi). Whole larvae
were harvested under RNAse-free conditions in pools of 4 larvae
each (3 biological replicates/4 larvae per replicate). Total RNA
was isolated using the Maxwell® RSC simplyRNA Tissue kit
(Promega) in accordance with the manufacturer’s instructions.
cDNA synthesis was performed with the NZY First-Strand
cDNA Synthesis Kit (NZYtech) using 0.2 µg of total RNA. The
qPCRs were performed using specific primers designed with
Primer 3 software (49), and their efficiencies were previously
tested according to the protocol described by Pfaffl (50).
Individual qPCRs were conducted in 25-µl reaction volumes
using 12.5 µL of SYBR GREEN PCR Master Mix (Applied
Biosystems), 10.5 µL of ultrapure water (Sigma–Aldrich), 0.5
µL of each specific primer (10 µM) and 1 µL of cDNA template.
All reactions were performed using technical triplicates in a 7300
Real-Time PCR System thermocycler (Applied Biosystems) with
an initial denaturation step (95°C, 10 min), followed by 40 cycles
of a denaturation step (95°C, 15 s) and one hybridization-
elongation step (60°C, 1 min). Viral replication was detected
by the relative gene expression of the NNV capsid protein gene
(RNA2) (51). For larvae microinjected in the brain, the gene
expression of the neutrophil marker myeloperoxidase (mpx) and
the macrophage marker macrophage receptor with a collagenous
domain (marco) was also evaluated; mpx and marco primers
were previously confirmed to specifically amplify the myeloid
zebrafish population (52). The relative expression levels of the
different genes were normalized using the Pfafflmethod (50) and
18S ribosomal RNA (18S) as a reference gene. The primers used
are listed in Supplementary Table S1.

2.5 Fluorescence Microscopy Images
Whole-mount immunofluorescence assays in zebrafish larvae
were performed as follows. WT larvae (3 dpf) were infected via
IM injection for 2, 6, 24 and 48 h. Then, larvae were fixed
overnight (O/N) at 4°C in 4% paraformaldehyde (PFA) diluted
in phosphate-buffered saline containing 0.1% Tween-20 (PBST).
Larvae were washed twice in PBST, dehydrated in a graded series
of methanol/PBST solutions (25% for 5 min, 50% for 10 min and
75% for 5 min), and stored in 100% methanol O/N at -20°C. For
immunofluorescence processing, larvae were rehydrated in a
graded series of methanol/PBST solutions (75% for 5 min, 50%
for 10 min and 25% for 5 min) and washed 4 times for 5 min with
PBST. Larvae were bleached by incubating them in bleaching
solution (0.8 mL of KOH 10%, 0.3 mL of H2O2 30%, 0.1 mL of
Tween-80 and 8.8 mL of distilled water) for 5 min, and then they
were washed twice for 5 min in PBST. Permeabilization was
achieved by incubation with proteinase K at 10 µg/mL. After 2 h
Frontiers in Immunology | www.frontiersin.org 4
at 37°C, larvae were washed twice in PBST and incubated in 2%
Tween-20 in PBS for 24 h at room temperature (RT). Larvae
were washed and blocked in 1% Tween-20/PBS and 10% lamb
serum O/N at RT. Anti-sea bass encephalitis virus (anti-DIEV,
1:4.000) (53) was diluted in antibody solution (0.2% Tween-20/
PBS and 10% lamb serum) and incubated with the larvae for 3
days at 4°C. Larvae were washed O/N and then incubated for 2
days with Alexa Fluor 546 goat anti-rabbit secondary antibody
(Invitrogen) diluted in antibody solution (1:500). After this,
larvae were washed O/N in PBST and stained with DAPI for
1 h at RT. After 3 washes with PBS, larvae were stored at 4°C
until microscopy examination. Confocal images of fixed larvae
were taken using a TSC SPE confocal microscope (Leica). The
images were processed using the LAS-AF (Leica Application
Suite Advanced Fluorescence) program. The same procedure was
conducted for Tg(mpx:GFP) larvae (3 dpf) infected via the brain
with NNV for 24 h. For the WT larvae, samples were also taken
at the four sampling points for RNA isolation and qPCR analysis
of NNV replication (5 samples of 5 larvae/sample).

Tg(mpx:GFP), Tg(mpeg:mCherry) and Tg(lyz:DsRed2)
transgenic larvae (3 dpf) were infected by 4 different routes as
explained in Section 2.3, and after 1, 2 and 3 dpi, images of whole
larvae were taken using a Nikon AZ100 fluorescence microscope.
Larvae were anaesthetized with a 0.01% MS-222 solution. The
different immune cells labelled in the transgenic lines were
counted using a macro of ImageJ (54) to calculate the
percentage of cells that migrated to the brain during infection.

2.6 Video Recording of the
Swimming Behavior
To analyse the swimming behavior of the fish larvae, two Petri
dishes of 10 larvae each, inoculated by the same route (via brain
or IM), one containing infected larvae and the other uninfected
control larvae, were placed in the same plane of a video recording
for 2 consecutive minutes. Recordings of 3- and 14-dpf larvae
were made at 3, 6 and 10 dpi with a Leica camera of 48 Mpx, and
the images were processed with Photoshop and ImageJ (54)
using the Chemotaxis and Migration Tool plugin. The data
obtained allowed us to reconstruct the larval movements to
calculate the velocity, the accumulated and Euclidean distances
and the directionality, parameters that were used to compare the
swimming behavior between infected and uninfected
control larvae.

2.7 High-Throughput
Transcriptome Sequencing
To analyse the transcriptome response to NNV in zebrafish
larvae infected via the brain, the samples collected in Section 2.4
and corresponding to sampling points 1, 3 and 5 dpi were used
for high-throughput transcriptome sequencing. The RNA
concentration and purity were measured with a Nanodrop
ND-1000 spectrophotometer (Nanodrop Technologies Inc.,
USA), and RNA integrity was analysed in an Agilent 2100
Bioanalyzer (Agilent Technologies Inc., USA) according to the
manufacturer’s instructions. All samples showed an RNA
integrity number (RIN) over 8.0 and were used for Illumina
March 2022 | Volume 13 | Article 863096
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library preparation. Double-stranded cDNA libraries were
constructed using the TruSeq Stranded mRNA Kit Sample
Prep Kit (Illumina, USA), and sequencing was performed
using Illumina NovaSeq 6000 technology at Macrogen Inc.,
Korea (Republic of Korea). The raw read sequences were
deposited in the Sequence Read Archive (SRA) (http://www.
ncbi.nlm.nih.gov/sra) under the BioProject accession
number PRJNA799765.

2.8 Raw Data Cleaning, Mapping, RNA-
Seq and Differential Expression Analysis
CLC Genomics Workbench v. 20.0.4 (CLC Bio, Denmark) was
used to filter and trim reads, map the high-quality reads against
the last version of the zebrafish genome (GRCz11) and perform
the differential expression analyses. Raw reads were trimmed to
remove the adaptor sequences and low-quality reads. RNA-Seq
analyses were conducted with the following parameters: length
fraction = 0.8, similarity fraction = 0.8, mismatch cost = 2,
insertion cost = 3 and deletion cost = 3. The expression values
were set as transcripts per million (TPM). Finally, a differential
expression analysis test was used to compare gene expression
levels and to identify differentially expressed genes (DEGs).
Transcripts with fold change (FC) values > |2| and false
discovery rate (FDR) values < 0.05 were retained for further
analyses. To identify and quantify the directions of variability in
the data, a principal component analysis (PCA) plot was
constructed using the original expression values. Using the
TPM values of the selected DEGs, heatmaps for each sampling
point were constructed using the complete linkage method with
Euclidean distance. Both PCA and heatmaps were constructed
using the web tool Clustvis (55) (https://biit.cs.ut.ee/clustvis/),
and a Venn diagram was constructed with the InteractiVenn web
tool (56) (http://www.interactivenn.net/).

2.9 Gene Ontology (GO) Enrichment and
Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathway Analysis
For the DEGs between NNV-infected and noninfected zebrafish
larvae, we conducted a GO enrichment analysis of biological
processes and a KEGG pathway analysis using the functional
annotation tool DAVID v. 6.8 (57, 58) (https://david.ncifcrf.gov/
summary.jsp). For the GO and KEGG analyses, a p value < 0.05
was employed.

2.10 qPCR Validation of RNA-Seq Data
The RNA-Seq results were validated by qPCR analysis of five
immune genes significantly modulated by NNV infection
(ifnphi1, il1b, mxe, tnfa and marco), as mentioned above for
NNV detection (Section 2.4). The primers used are listed in
Supplementary Table S1. The correlation between the fold
changes obtained by RNA-Seq and qPCR was calculated using
Pearson’s correlation coefficient.

2.11 Statistical Analysis
Kaplan–Meier survival curves were analysed with a log-rank
(Mantel–Cox) test. For the remaining experiments, the results
Frontiers in Immunology | www.frontiersin.org 5
were represented graphically as the mean ± standard error of the
mean (SEM), and significant differences were obtained using
Student’s t test and displayed as **** (< 0.0001, *** (0.0001 < p <
0.001), ** (0.001 < p < 0.01) or * (0.01 < p < 0.05).
3 RESULTS

3.1 Assessment of Susceptibility to NNV in
Zebrafish Larvae Through Different
Infection Routes and Larval
Developmental Stages
Our results showed that the most effective route of infection with
NNV in 3-dpf larvae was via the brain, with the survival of the
larvae being 56%, whereas their corresponding uninfected
controls showed a survival of 100% (Figure 1B). Infection via
IM microinjection also showed significant differences between
NN-infected and uninfected larvae, with a survival of 62% for the
infected larvae and 93% for the control larvae (Figure 1B).
Infections via DC or by bath did not show significantly
different survival rates compared with their corresponding
uninfected controls (Figure 1B). The lower survival of the 3-
dpf WT larvae infected with NNV via the brain was also
confirmed in the AB and TU zebrafish strains (Supplementary
Figure S1). However, when the larvae were inoculated under the
same conditions but at 14 dpf, the survival rates of the infected
larvae were not significantly different from those of the
uninfected controls (Figure 1B).

As significant mortalities after NNV challenge were observed
in 3-dpf larvae infected via the brain and intramuscularly, we
wanted to assess the replication of the virus in these larvae over
time. In larvae inoculated both directly into the brain and
through IM microinjection, time-increasing detection of the
capsid protein gene was observed; however, in the case of IM
microinjection, viral replication seemed to be stable between 5
and 7 dpi (Figure 1C).

3.2 Kinetic Analysis of Swimming Behavior
by a Video Tracking System
Because alterations in swimming behavior are commonly
observed in fish naturally susceptible to NNV, we wanted to
investigate this fact in 3- and 14-dpf zebrafish larvae infected
with NNV via the brain or intramuscularly. For this, a video
tracking analysis was used to determine if the infection produced
changes in their behavioral pattern by analysing certain
measurable parameters of the larvae, such as velocity (mm/
sec), accumulated distance (mm) of larval path, Euclidean
distance (mm) (length of the straight line between the starting
point and endpoint of the larvae), and directionality (calculated
by comparing the Euclidean distance to the accumulated
distance, which represents a measurement of the directness of
larval trajectories). Data are represented as the fold change (FC)
of infected larvae compared with their uninfected controls
(FC = 1, dotted lines).

As shown in Figure 2A, in 3-dpf larvae infected via the brain,
the velocity, directionality and Euclidean distance were found to
March 2022 | Volume 13 | Article 863096
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be significantly different between infected and uninfected larvae
at least at one of the analysed times. On the other hand, IM
microinjection in 3-dpf larvae produced only significant
alterations in velocity. As expected, due to the absence of
significantly different mortalities at 14 dpf between infected
and uninfected larvae, alterations in these parameters were
lower at this age, with only certain significant effects on
velocity and directionality in those larvae inoculated via the
brain and directionality in the larvae inoculated intramuscularly
(Figure 2A). Figure 2B presents an example of the maximum
projections used for the analysis of the videos.
Frontiers in Immunology | www.frontiersin.org March 2022 | Volume 13 | Article 863096
3.3 Distribution of NNV Virions in Zebrafish
Larvae
One of the powerful advantages provided by the use of zebrafish
larvae as a working model is the possibility of performing whole-
mount immunofluorescence staining, as it allows antigen–
antibody interactions to be located without preparing sections
of the larvae. Thus, using the anti-DIEV antibody, we were able
to locate NNV inside the larvae and confirm that the virus can
migrate to the cephalic region after IM infection (Figure 3). The
virus was not detected until 24 h postinfection (data at 2 and 6
hours postinfection (hpi) not shown), but NNV particles were
FIGURE 2 | Image analysis of the swimming behavior of zebrafish larvae (3 and 14 dpf) infected with NNV via brain or IM. (A) Comparison of velocity, directionality,
accumulated distance and Euclidean distance parameters between NNV-infected and the corresponding uninfected control larvae. Video tracking of zebrafish larvae
was conducted at different times postinfection (3, 6, and 10 dpi). The fold change (FC) of infected larvae compared with their uninfected control (Control FC = 1,
dotted lines) was calculated. The graphs represent the mean ± SEM of the biological replicates. Statistically significant differences are displayed as follows:
***, 0.0001 > p value > 0.001; **, 0.001 > p value > 0.01; *, 0.01 > p value > 0.05. (B) Example of maximal projection of the video recorded for 3-dpf larvae infected
via brain and the corresponding controls at 6 dpi.
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already observed after 24 h in different locations of the head, and
at 48 hpi the virus was also detected in the eye area (Figure 3).
According to this, the virus was practically undetectable by qPCR
at 2 and 6 hpi, whereas a time-increasing detection was observed
at 24 and 48 hpi (Supplementary Figure S2).

3.4 Effects of NNV Challenge on Innate
Immune Cells
The existence of transgenic lines in zebrafish provides an easy-to-
use working tool that gives us very useful information. To study
the immune response of zebrafish to NNV infection, different
transgenic lines were used. The transgenic line Tg(lyz:DsRed2)
was used to detect cells expressing the lysozyme c gene (lyz)
corresponding to myeloid precursors with lysozyme activity. The
transgenic line Tg(mpx:GFP) was used to detect cells expressing
the myeloperoxidase gene (mpx), a specific marker of
differentiated neutrophils. On the other hand, the transgenic
line Tg(mpeg:mCherry) was used to detect cells expressing
macrophage-expressed gene (mpeg) (macrophages). The larvae
were infected by 4 different infection routes, and these cell types
Frontiers in Immunology | www.frontiersin.org 7
were counted at 1, 2 and 3 dpi in the cephalic region. The
number of cells that migrated to the head after infection
was determined.

The data represent the differences in the number of cells in
infected larvae compared with the uninfected control larvae
(control FC = 1 in the dotted line). Lyz+ cells showed
significantly higher migration to the head at 48 and 72 hpi
when the infection was carried out via the brain, whereas no
differences were observed for the other infection routes
(Figure 4A). A similar tendency was observed for neutrophils
(Mpx+), which showed significant migration to the head at 24
and 48 hpi in larvae infected via the brain, and no effects were
observed for the other infections (Figure 4B). Although a
significant migration of neutrophils to the brain was observed
in the larvae inoculated via the brain, confocal microscopy
analysis showed that these cells did not colocalize with the
virus (Figure 4D). Finally, no macrophage (Mpeg+) migration
to the brain was observed by any route of infection (Figure 4C).
Interestingly, the expression of the macrophage marker gene
marco significantly increased after NNV infection in a time-
FIGURE 3 | Whole-mount immunofluorescence of zebrafish larvae infected by intramuscular microinjection with NNV. Confocal images of the head from uninfected and
NNV-infected larvae at 24 and 48 hpi. NNV particles are stained red, and cell nuclei are stained blue (DAPI). White arrows denote the position of NNV-infected cells.
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dependent manner, with more marked increases than those
observed for the neutrophil marker gene mpx (Figure 4E).

3.5 High-Throughput Sequencing, Mapping
Information and PCA Distribution
To better elucidate the immune response generated in the larvae
after challenge with NNV, high-throughput transcriptome
sequencing and RNA-Seq analyses were conducted. Samples of
3-dpf larvae infected via the brain with NNV or the corresponding
control larvae were collected at 1, 3 and 5 dpi for transcriptome
sequencing (Figure 5A). A parallel assay of mortality was carried
out to confirm the success of NNV infection (Figure 5B). A total
of 541,547,936 reads were obtained from the 18 sequenced
samples, with an average value of 30,085,996 reads per sample;
of the total raw reads, 99.99% successfully passed the quality
control. From these high-quality reads, 97.27% successfully
mapped to the zebrafish genome. Therefore, only 2.71% of the
reads remained unmapped.

Using the TPM values obtained from RNA-Seq analyses, PCA
was performed to determine the sample distribution and to
identify the presence of outliers. The PCA plot clearly showed
Frontiers in Immunology | www.frontiersin.org 8
that the NNV-infected samples became more differentiated from
the control samples in terms of the overall transcriptome as the
postinfection time increased (Figure 5C). An evident influence
of age on the sample distribution is also observed.

3.6 Differentially Expressed Genes, GO
Enrichment and KEGG Pathway Analysis
RNA-Seq analyses were conducted to evaluate transcriptome
modulation in zebrafish larvae during infection with NNV.
Using the obtained data, differentially expressed genes (DEGs)
between NNV-infected and uninfected larvae were identified for
each sampling point (FC > |2| and FDR value < 0.05)
(Supplementary Files S1–S3). The number of DEGs increased
according to the progression of the infection, with 125 DEGs at 1
dpi, 305 DEGs at 3 dpi, and 1,388 DEGs at 5 dpi. The
representation of these DEGs in stacked column charts
subdividing the number of genes according to the intensity
(FC) and direction of regulation (up or down) revealed that
most of the genes affected by the infection showed positive
regulation (Figure 6B). Indeed, the heatmaps representing the
TPM values of these DEGs across the different samples also
FIGURE 4 | Visualization and analysis of innate immune cell migration to the head of 3 pdf larvae infected through different routes. The transgenic zebrafish lines (A)
Tg(lyz:DsRed2), (B) Tg(mpx:GFP) and (C) Tg(mpeg:mCherry) were used to analyse the migration of myeloid precursors with lysozyme activity, neutrophils and
macrophages, respectively, to the cephalic region. Larvae were infected through the 4 infection routes analysed in this study, and the cells were counted at 1, 2 and
3 dpi. Fluorescent immune cells were counted using ImageJ, and the graphs represent the difference in fold change of the number of cells located in the head from
infected larvae compared to their corresponding uninfected control larvae (control FC = 1 in the dotted line). Representative images of the three transgenic lines at 2
dpi were included. (D) Whole-mount immunofluorescence of Tg(mpx:GFP) transgenic larvae infected via the brain with NNV at 1 dpi; neutrophils are displayed in
green, NNV are displayed in red, and nuclei are displayed in blue. No colocalization between NNV particles and neutrophils was observed. (E) Expression analysis of
marker genes of the two major innate immune cells (mpx – neutrophils, marco – macrophages) in NNV-infected and uninfected larvae at different times postinfection.
Each sample (5 biological replicates, pools of 4 larvae each) was normalized to the 18S gene. The normalized expression values were standardized against their
respective controls (Control FC = 1, dotted lines). For (A–C, E), the graphs represent the mean ± SEM of the biological replicates. Statistically significant differences
are displayed as follows: ***, 0.0001 > p value > 0.001; **, 0.001 > p value > 0.01; *, 0.01 > p value > 0.05.
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revealed this pattern, with the exception of Replicate 3 from
NNV-infected larvae at 1 dpi, whose TMP values of the DEGs at
this sampling point were more similar to those observed in the
uninfected controls (Figure 6A). These differential expression
analyses were validated by qPCR amplification of 5 immune
genes differentially modulated between NNV-infected and
uninfected larvae; a Pearson’s correlation coefficient (r) of
0.9755 was obtained for both data groups (Supplementary
Figure S3).

A Venn diagram was constructed to illustrate the number of
genes that were commonly regulated along the three sample
points (Figure 6C); a total of 93 genes were found to be affected
at the three times, which corresponded to genes mainly involved
in immune response processes. Indeed, when GO enrichment
analyses were conducted to explore the biological processes
enriched during NNV infection, we observed that more than
60% of the significantly enriched terms were linked to immunity
and antiviral response (viral process, response to virus, defence
response to other organisms, innate immune response, etc.)
(Figure 7A). The analysis of the KEGG pathways enriched
during NNV infection resulted in a total of six pathways
enriched at 1 dpi, eight at 3 dpi, and fifteen at 5 dpi (p value <
0.05) (Figure 7B). Four KEGG pathways were modulated
throughout the 3 sampling points, and they corresponded to
“herpes simplex infection”, “RIG-I-like receptor signalling
pathway”, “Toll-like receptor signalling pathway”, and “Jak-
STAT signalling pathway”, and the number of pathways
related to immunity increased over time. The representation of
the TPM values of the DEGs belonging to these pathways in
heatmaps clearly demonstrated that the number of genes
Frontiers in Immunology | www.frontiersin.org 9
induced by NNV challenge increased substantially over time
(Supplementary Figure S4).

3.7 Expression Analysis of the Main Gene
Groups Linked to Innate Immune
Response
Different heatmaps were constructed to easily visualize the
expression pattern of some of the main groups of immune
genes regulated in zebrafish larvae during infection with NNV.
As type I IFNs are the main regulators of the antiviral immune
response in vertebrates, a heatmap was constructed with those
DEGs directly linked to this antiviral mechanism and modulated
at least at one of the sampling points by infection with NNV. For
this, both interferon regulatory factors (IRFs), the type I IFNs
themselves and a multitude of interferon-stimulated genes
(ISGs) were considered. As expected, based on the time-
increasing replication of NNV, some of these genes were
already affected at 1 dpi, but the number of DEGs modulated
substantially increased with time as the infection progressed
(Figure 8). Due to the pivotal role of type I IFNs in the defence
against viruses, these cytokines were considered separately from
the other types of cytokines (chemokines, interleukins, colony-
stimulating factors and tumour necrosis factors). A heatmap
representing these other differentially expressed cytokines also
reflected a strong overexpression of a multitude of them during
the course of infection, with the exception of chemokine (C-C
motif) ligand 34b, duplicate 1 (ccl34b.1), which was significantly
inhibited at 5 dpi by NNV (Figure 9A).

All of these cytokines mentioned above are induced after the
recognition of pathogen-associated molecular patterns (PAMPs)
FIGURE 5 | Transcriptome analysis of 3-dpf zebrafish larvae infected with NNV via the brain. (A) RNA-Seq experimental design: Zebrafish larvae were microinjected
via the brain, and three pools of infected and uninfected larvae were sampled at 1, 3, and 5 days postinfection for RNA isolation and Illumina sequencing. (B)
Kaplan–Meier survival curves of NNV-infected and uninfected larvae conducted in parallel to RNA-Seq sampling. Statistically significant differences are displayed as
follows: ****, p value < 0.0001. (C) Principal component analysis (PCA) of the samples.
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FIGURE 6 | Differentially expressed genes in zebrafish larvae infected with NNV. (A) Heatmaps representing the TPM expression values of the DEGs (FC > |2|; FDR <
0.05) modulated at 1, 3 and 5 dpi. Expression levels are represented as row-normalized values on a blue–red colour scale. (B) Stacked column chart reflecting the
number and intensity (in FC value) of the DEGs identified at the 3 sampling points. (C) Venn diagram reflecting the common and exclusive DEGs at each sampling point.
FIGURE 7 | GO terms and KEGG pathways enriched during NNV infection of zebrafish larvae. (A) GO biological process terms significantly enriched at 1, 3, and 5
dpi. (B) KEGG pathways enriched at 1, 3, and 5 dpi; the four common pathways significantly enriched over time are boxed.
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by different pattern recognition receptors (PRRs). As mentioned
above, the KEGG pathway enrichment analysis showed that two
PRR pathways, the “RIG-I-like receptor signalling pathway” and
the “Toll-like receptor signalling pathway”, were highly
modulated by the virus at the three sampling points, and the
“NOD-like receptor signalling pathway” was also enriched at 5
dpi. Therefore, we wanted to analyse in a more detailed way how
the different differentially expressed PRRs were affected by the
virus. As expected, numerous PRRs (tlr1, tlr2, tlr3, tlr4ba, tlr4bb,
tlr8b, tlr9, tlr21, tlr22, nod1, and marco) and downstream
signalling components (irak1, irak3, tank, and traf3) were also
upregulated in a time-increasing manner (Figure 9B). Similar
results were observed for different members of the complement
system (Figure 9C) and the galectin family (Figure 9D).
4 DISCUSSION

VER disease has an important economic impact on marine
aquaculture worldwide, although natural outbreaks have also
been detected in several freshwater species (59). While
considerable advances in the knowledge of the disease and
Frontiers in Immunology | www.frontiersin.org 11
genetic variability of NNV have been conducted in recent years
(59), host–virus interaction mechanisms need to be further
studied to help develop effective antiviral strategies.

Zebrafish are a model organism widely used for biomedical
research (60) and for studying different concerns linked to fish
aquaculture production, such as skeletal malformations (61),
pigmentation abnormalities (62), adaptation to prevalent
stressful conditions in the aquaculture industry (63), nutrition
(64) and infectious diseases (65). It is well known that zebrafish
provide significant advantages for understanding host–pathogen
interactions in the context of a complete vertebrate. For that
reason, zebrafish have been increasingly used for modelling
infectious diseases, including those caused by viruses (10),
although their use in studying NNV infection remains
poorly explored.

Although Furusawa et al. (40) reported that zebrafish were
not susceptible to NNV, a year later, Lu et al. (23) were able to
reproduce nodavirus infection in this fish species after
intraperitoneal injection. They observed a time-increasing viral
replication in the brain that peaked at 3 dpi, and histological
studies of this tissue revealed lesions similar to those observed for
naturally susceptible species (23). Moreover, zebrafish larvae
FIGURE 8 | Heatmap representing the DEGs linked to the type I IFN system at 1, 3, and 5 dpi. A heatmap was constructed with the TPM expression values of the
DEGs. Expression levels are represented as row-normalized values on a white–purple colour scale.
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microinjected with NNV showed a high mortality rate at 24 hpi
(98%) compared with the mock-injected larvae (24%), although
the age of the larvae and route of microinjection were not
specified by the authors (23). In that work, the pivotal role of
the type I IFN system in protection against NNV was also
demonstrated, as the treatment of zebrafish larvae with
recombinant IFN conferred protection against viral infection
(23). Afterwards, Morick et al. (24) described the infection of
zebrafish larvae by bath challenge and the protection conferred
by ribavirin treatment (41). However, these works did not fully
use all of the advantages that this model species offers to us. In
this study, we wanted to propose the use of zebrafish as a model
species for this disease and to use techniques that allow us a
deeper understanding of what happens during this viral disease.

First, we aimed to determine the most effective route and age
of infection for zebrafish larvae to conduct further studies. After
the infection of 3-dpf larvae via the brain, via the duct of Cuvier
(DC), intramuscularly (IM) and by bath challenge, we found that
the route that offered a significantly lower percentage of survival
against NNV was microinjection via the brain followed by
Frontiers in Immunology | www.frontiersin.org 12
microinjection IM. However, DC and bath challenges did not
cause significant mortality to the larvae compared with the
uninfected control larvae. This contrasts with the data
published by Morick et al. (24), who found that 4-dpf larvae
were highly susceptible to NNV by bath challenge, although the
mortality significantly decreased in 6- and 8-dpf larvae. Based on
this, we wanted to determine whether the age of the larvae
influenced the susceptibility to the virus; therefore, larvae at 14
dpi were infected under the same conditions as the 3-dpf larvae,
and no significant mortalities were observed for any of the
infection routes. In agreement with Morick et al. (24), older
larvae are more resistant to the virus, which could be due to a
more developed immune system.

Therefore, 3-4-dpf larvae would be optimal for studying
NNV–zebrafish larvae interactions not only for their higher
susceptibility but also for their transparency, enabling the use
of different imaging techniques. Among them, whole-mount
immunofluorescence allowed us to confirm that, as occurs in
naturally susceptible species, after IM infection, NNV can
migrate to the brain and ocular region. Although different
FIGURE 9 | Heatmaps representing the DEGs belonging to different immune categories at 1, 3 and 5 dpi: (A) cytokines; (B) pattern recognition receptors; (C)
complement system; and (D) galectins. Heatmaps were constructed with the TPM expression values of the DEGs. Expression levels are represented as row-
normalized values on a white–purple colour scale.
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natural routes of infection have been proposed for NNV
(epithelial cells, gills, and nasal and oral cavity) (59), the
process of viral migration from the muscle to the central
nervous system (CNS) was largely confirmed, and due to the
higher infective efficiency of the IM route (66), it is the most
extensively used route for experimental infection in farmed fish
species (32, 34, 38, 67, 68). The spread of infection from the
muscle to the CNS may occur through nerve axonal transport
(29, 69). As a consequence of the damage caused by NNV in the
CNS, one of the main characteristic symptoms of VER disease is
the erratic swimming of infected fish. The small size of the
zebrafish larvae allows us to better control the experimental
conditions in vivo, as very large spaces are not required;
therefore, certain variables, such as the temperature, are more
controlled. When the swimming behavior of 3- and 14-dpf
NNV-infected larvae was compared with that of uninfected
larvae, changes in velocity, directionality, and Euclidean and
accumulated distance were specifically observed in 3-dpf larvae
infected via the brain, which is probably due to the faster and
higher replication of the virus in these larvae.

However, as expected, zebrafish larvae are already able to
respond to the virus at early stages of development. The use of
zebrafish transgenic lines to analyse the migration of innate
immune cell types to the brain after NNV infection through this
route revealed a significant migration of neutrophils (Mpx+
cells) and myeloid precursors with lysozyme activity (Lyz+)
but not macrophages (Mpeg+). Although the lyz gene is
expressed in both granulocytes and macrophages, its
expression is considerably higher in granulocytes (70), which
was also determined in mammals (71). Therefore, the similar
migratory trend observed for the Mpx+ and Lyz+ cells is because,
in both cases, these cells most likely correspond exclusively to
neutrophils. Neutrophils are the first immune cells recruited to
sites of infection, where they play important protective functions,
including the phagocytosis of infectious agents (72).
Nevertheless, although certain viruses have been detected
inside neutrophils, it is not clear whether that is a consequence
of the active infection and propagation of these specific viruses
within neutrophils (72). Neuroinvasion is a rare phenomenon,
but certain neuronal viruses, such as NNV, have the ability to
colonize the CNS. Among the strategies to reach the brain, a
highly protected organ, is the so-called ‘Trojan horse’ strategy,
consisting of the camouflage of the pathogen inside immune
cells, such as neutrophils and macrophages (72). However,
immunofluorescence analysis showed that NNV and Mpx+
cells do not colocalize; consequently, neutrophils do not appear
to phagocytose NNV particles as a protection strategy, but they
are not used as ‘Trojan horses’ either.

Interestingly, although we did not observe migration of
macrophages to the site of injection, the expression of the
macrophage marker gene marco significantly increased during
the course of the infection, reaching higher fold-change values
than that observed for the mpx gene. It is possible that
macrophages migrate to the brain at later infection stages, as
cell migration was evaluated until 3 dpi; at this sampling point,
the expression of marco was not affected by the infection,
Frontiers in Immunology | www.frontiersin.org 13
reaching significant overexpression at 5 and 7 dpi. In contrast,
the mpx gene showed higher overexpression at 3 dpi. Because
both specific markers are already present in 2-dpf larvae (73, 74),
these results could suggest a similar pattern to that observed in
mammals: resident low immunoreactive macrophages recognize
the pathogens and produce neutrophil chemoattractants and,
after a rapid influx of neutrophils to the site of infection, they
release chemoattracting factors involved in the recruitment of
other immune cells, in particular inflammatory macrophages
(75). However, more investigation will be needed to elucidate
neutrophil–macrophage interactions after NNV infection.

To shed more light on the immune response of zebrafish
larvae to NNV, we conducted RNA-Seq analyses of NNV-
infected and control larvae at 1, 3 and 5 dpi. As expected, due
to the time-increasing replication of the virus, the number of
DEGs also increased with time, with most of them being
overexpressed in the infected larvae compared with the
controls. The GO terms and KEGG pathway enrichment
analyses revealed a strong enrichment in immune processes.
Among the KEGG pathways, the signalling cascades of the three
main types of PRRs (Toll-like, RIG-I-like and NOD-like) were
enriched, and a heatmap representing the DEG PRRs and
downstream signall ing molecules revealed a strong
overexpression of a multitude of them at 5 dpi, especially
different TLRs. A variety of TLRs were also found to be
induced by NNV infection in European sea bass leucocytes
(76) and brain DLB-1 cell line (77), although this intense TLR
response was not observed in other RNA-Seq studies of fish or
fish cells infected with NNV (38, 39, 68, 78–81). Although
endosomal TLRs (TLR3, TLR7/8 and TLR9) are typically
considered the antiviral TLRs, since they are specialized in the
recognition of viral nucleic acids, certain TLRs anchored to the
cellular membrane, such as TLR2 and TLR4, are able to
recognize viral proteins (82). Ours results suggest the
induction of TLRs involved in both nucleic acid and protein
recognition. Interestingly, although RIG-I-like receptors have
been described as pivotal PRRs in response to NNV infection
(42, 43), we did not observe the induction of this type of
receptors in our results.

The interaction of viral PAMPs with different PRRs initiates
the recruitment of adapters and the activation of downstream
transcription factors that express a multitude of cytokines,
including type I IFNs (83). The expression of type I IFNs, the
main cytokines orchestrating antiviral defence, mediates their
protective effects through the induction of numerous ISGs (84).
The relevance of the type I IFN response was well documented in
fish after NNV infection, including zebrafish (23, 42–44).
However, how the complete repertoire of members of the type
I IFN system responds to NNV challenge in zebrafish remains
unexplored. As expected, we found a powerful modulation of a
multitude of genes involved in this pathway, which indicates a
highly efficient response of zebrafish larvae to the virus.
Interestingly, contrary to that observed by Chen et al. in the
zebrafish cell line ZF4 (42), we did not observe induction in the
expression of the different type I IFNs (ifnphi1, ifnphi2, ifnphi3,
ifnphi4). This fact if probably due to the fast overexpression of
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these interferons after NNV infection, returning to basal levels at
24 hpi. Nevertheless, the high representation of ISGs highlights
the relevance of the type I IFN system. This contrasts with the
total absence of a type I IFN response observed in European sea
bass brain and head kidney samples at 24 and 72 hpi, which is
mainly characterized by activation of the hypothalamic–
pituitary–interrenal axis (stress response axis) (38). More
investigation will be needed to elucidate whether the high
susceptibility of European sea bass to NNV is a consequence of
an impaired antiviral response to this virus. Indeed, when the
expression of ISG mx was analysed in brain samples from
European sea bass and in gilthead seabream (Sparus aurata), a
fish species classically considered resistant to NNV, the
induction of mx expression was substantially lower in
European sea bass than in gilthead seabream (32).

In addition to the type I IFNs, a multitude of other cytokines
were induced, reflecting a powerful inflammatory response to
NNV, which is probably mediated in the first instance by
neutrophils and then by neutrophils and macrophages (75).
Indeed, the early migration of neutrophils to the cephalic
region of zebrafish larvae after challenge with the virus could
be triggered through the production of a multitude of
chemokines and the infiltration of more neutrophils and
macrophages. Increases in proinflammatory cytokines have
also been observed in different organisms infected with NNV,
such as Atlantic halibut (85), European sea bass and gilthead
seabream (32), turbot (34), zebrafish (24), or different species of
grouper (81, 86). Interestingly, the expression of tumour necrosis
factor alpha (tnfa) was previously suggested to be substantially
higher in species susceptible to NNV, such as European sea bass,
compared with its expression in species resistant to NNV, such as
gi l thead seabream, which could indicate that this
proinflammatory cytokine may be responsible for a large
inflammatory reaction in the areas of infection of this virus,
such as the brain, retina and spinal cord, producing a
neurodegenerative process that the fish cannot overcome (32).
However, this result contrasts with the total absence of
overexpression of proinflammatory genes observed after an
RNA-Seq analysis of brain samples from European sea bass
infected with NNV (38), which could be a consequence of
different degrees of disease severity or different evolution
patterns as a consequence of a multitude of experimental
factors (age and size of the animals, virulence of the NNV
stock, temperature, etc.).

The complement system has the ability to recognize viruses
and virus-infected cells and trigger effector pathways aimed at
neutralizing viruses or killing infected cells (87). The strong
induction of a multitude of components of the complement
system also evidenced the importance of this immune
mechanism in the defence against NNV. The overexpression of
different complement members after infection with this virus was
already observed in brain (38) or liver (88) samples from
European sea bass or in leucocytes infected in vitro (76).
Moreover, increases in the complement haemolytic activity of
serum samples from NNV-infected gilthead seabream were
Frontiers in Immunology | www.frontiersin.org 14
observed at 24 hpi, although this activity was not significantly
affected in European sea bass (88), which could also contribute to
the different susceptibilities to the virus. Indeed, some viruses are
able to develop complement evasion strategies (87), and this
ability could vary depending on the fish species. However,
whether members of the Nodaviridae family are able to
destabilize the complement response remains to be elucidated.

Finally, the other group of genes standing out from the DEGs
in zebrafish larvae were galectins. These b-galactose-binding
lectins, which could also be considered PRRs, are expressed in
a multitude of cell types and play major roles in defence against
pathogens (89). However, little is known about the role of
galectins in viral infections, and although they clearly have a
function in viral infections, their mode of action is not
completely understood (89). Indeed, some investigations have
reported antiviral activity of galectins against certain viruses, but
other works attributed a proviral role to certain galectins (88).
The recurrent overexpression of different galectin genes in
different fish species challenged with NNV (67, 68, 76, 90) also
evidence a function of these lectins in the response to this virus.
Indeed, zebrafish galectin family members showed antiviral
activity against the fish virus infectious haematopoietic
necrosis virus (IHNV) through direct interaction with the viral
glycoprotein, resulting in reduced viral adhesion to the cells (91,
92). Recombinant Paralichthys olivaceus Galectin 1 also showed
the ability to neutralize lymphocystis disease virus (LCDV) and
exert anti-inflammatory activity during infection with LCDV,
but the lower expression of proinflammatory genes could be a
consequence of lower viral replication in fish treated with the
recombinant protein (93). Similar results were observed for the
recombinant European sea bass Galectin 1 against NNV, with a
significant reduction in the inflammatory response, although the
concrete antiviral mechanism mediated by this galectin remains
to be elucidated. Moreover, the overexpression of 7 different
zebrafish galectin members after NNV observed in this work
could indicate nonredundant and complementary roles in the
fight against NNV.

While the numerous advantages of zebrafish as a model
organism in biomedical and aquaculture research have been
extensively noted in recent years, this work reaffirms the
foundations of zebrafish larvae to be considered a model of
infection, not only for NNV but also for many other viruses. The
experimental challenge of zebrafish larvae can reproduce the
disease and mimic the course of the infection, as occurs in other
NNV hosts. Zebrafish larvae showed susceptibility to this virus,
with significant mortalities after intramuscular microinjection or
by directly inoculating the virus into the brain. As in the farmed
fish species susceptible to NNV, the virus was able to migrate to
the brain after an intramuscular infection, and alterations in
swimming behavior were observed during infection, suggesting
CNS damage. Larvae were also able to mount an efficient
antiviral response at both the cellular and humoral levels.
Based on these results, different aspects of NNV pathogenesis,
immune response and screening of antiviral drugs could be easily
studied in zebrafish larvae.
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