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Abstract
The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003,

and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available; thus, the

development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was

constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain

(RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant

expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity

to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive

inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensin-

converting enzyme 2 (ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be

useful for the development of therapeutics against SARS.

Keywords Severe acute respiratory syndrome coronavirus (SARS-CoV) � Receptor-binding domain (RBD) �
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Introduction

Coronaviruses are a large family of viruses within the

family Coronaviridae, and the order Nidovirales, which are

mainly divided into four groups. They may cause diseases

of different severities in various animals (Zaki et al. 2012).

The first human coronavirus that caused a global outbreak

was severe acute respiratory syndrome coronavirus (SARS-

CoV), which was first found in Guangdong Province,

China in November 2002 (Ksiazek et al. 2003; Peiris et al.

2003). Several weeks later, it had spread to 25 countries

causing at least 8000 infections. By July 3, 2003, 8439

cases had been reported, resulting in 812 deaths (Kuiken

et al. 2003). On July 5, 2003, the World Health Organi-

zation declared the world free of ongoing SARS trans-

mission. However, there were four sporadic SARS cases

reintroduced from animals in Guangdong China in late

2003 and early 2004, of which the virus isolates were

different from the previous outbreak (Liang et al. 2004). In

total, three instances of laboratory-acquired infections

occurred in Singapore, Taiwan and Beijing (Anderson and

Tong 2010). Thus, the possibility of reintroduction of

SARS-like-CoVs from animals and the leakage of SARS-

CoV from the laboratory are still concerned (Du et al.

2009). Although no case has been reported for years, there

is a possibility of a new outbreak of SARS. Unfortunately,

there are no effective antivirals or licensed vaccines to treat

or prevent SARS.

As they both belong to lineage B of the Betacoronavirus

genus, SARS-CoV, and the ongoing disastrous SARS-

CoV-2 share 79% genome sequence identity (Lu et al.

2020), the latter of which has led to over 194 million

infections and 4 million deaths (https://covid19.who.int).
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The genome of SARS-CoV encodes four major structural

proteins: spike (S), membrane (M), envelope (E), and

nucleocapsid (N) proteins (Tsunetsugu-Yokota et al. 2006).

The S protein is a type I membrane glycoprotein that

consists of two distinct functional domains. The S1 domain

near the amino terminus mediates the binding between

SARS-CoV and its receptor, angiotensin-converting

enzyme 2 (ACE2). The S2 domain near the carboxy ter-

minus mediates membrane fusion. Neutralizing antibodies

are mainly induced by the S protein (Gallagher and

Buchmeier 2001). Furthermore, the receptor-binding

domain (RBD), which is located in the middle of S1 where

S interacts with ACE2, contains neutralizing epitopes that

induce potent neutralizing antibodies in animal models (He

et al. 2004).

Neutralizing antibodies play an important role in pro-

tecting against infectious diseases. Previous studies have

reported that SARS patients receiving SARS convalescent

plasma therapy showed clinical improvement (Pearson

et al. 2003; Cheng et al. 2005). Moreover, passive transfer

of serum from mice immunized with SARS-CoV to naı̈ve

mice resulted in reduced lung viral load following virus

challenge (Subbarao et al. 2004). A monoclonal antibody-

based on the B cells of a convalescent patient significantly

reduced the viral load in the upper respiratory tract of mice

that received antibody treatment before challenge (Traggiai

et al. 2004). Another monoclonal antibody identified from

immunized human immunoglobulin transgenic mice alle-

viated viral load and associated pathological findings in a

golden Syrian hamster model after exposure (Roberts et al.

2006). These results revealed that neutralizing antibodies

are potent prophylactic and therapeutic agents.

Nanobodies from heavy chain antibodies naturally occur

in camels (Hamers-Casterman et al. 1993), representing an

attractive weapon against infectious diseases. Its size,

2.5 nm in diameter and nearly 4 nm high, with a molecular

weight of about 15 kDa, makes it the smallest antigen-

binding antibody fragment to date (Wang et al. 2019). It is

quite stable at extreme temperatures and pH values

(Ebrahimizadeh et al. 2013). It can also recognize unique

epitopes that are not accessible to conventional antibodies

(Lauwereys et al. 1998). These characteristics give

nanobodies their great therapeutic value.

In this study, we established a phage-displayed nano-

body library from alpacas immunized with recombinant

SARS-CoV RBD protein. Further screening and charac-

terization identified a nanobody, S14, with potent neutral-

ization against SARS-CoV. The platform described here

provides a useful tool to rationally develop novel

nanobodies against emerging viruses with global impact.

Materials and Methods

Cells and Proteins

All cells used in this study were cultured at 37 �C with 5%

CO2. Dulbecco’s minimum essential medium (DMEM)

complete medium containing 10% fetal bovine serum and

1% penicillin/streptomycin was used for cell growth and

replaced with DMEM without any additives after trans-

fection. 293T cells were used for recombinant RBD protein

expression and SARS-CoV pseudovirus production. HeLa

cells stably expressing human ACE2 (HeLa-ACE2), kindly

provided by Prof. Zheng-Li Shi (Wuhan Institute of

Virology, Chinese Academy of Sciences), were used for

flow cytometry.

Recombinant SARS-CoV RBD protein fused with rabbit

IgG-Fc tag (RBD-rFc; SinoBiological) was used for alpa-

cas immunization, bio-panning, identification, and flow

cytometry. Recombinant rabbit IgG-Fc protein (rFc;

SinoBiological) was used to remove rFc-specific phage

antibodies during bio-panning.

Alpacas Immunization

A one-year-old female alpacas was subcutaneously

immunized with 200 lg recombinant SARS-CoV RBD-rFc

protein plus Freund’s complete adjuvant, and boosted three

times with the same protein plus Freund’s incomplete

adjuvant every two weeks. Before immunization, blood

samples of alpacas were collected for SARS-CoV-RBD-

specific antibody detection. The housing and care of

alpacas and the study protocols were approved by the

Animal Experimentation Ethics Committee of Shanxi

Agricultural University (2018).

Construction of SARS-CoV-RBD-Specific Phage-
Displayed Nanobody Library and Bio-Panning

A phage-displayed library was constructed as previously

described (Zhao et al. 2018). Briefly, ten days after the final

immunization, anticoagulant blood was collected from the

jugular vein (Fig. 1). Peripheral blood mononuclear cells

(PBMCs) were isolated by Ficoll-Paque gradient centrifu-

gation and total RNA was extracted using TRIzol reagent.

First-strand cDNA synthesis was performed by reverse

transcription PCRusing total RNAas a template. The gene of

the variable region of the heavy chain of heavy chain anti-

body (VHH) was amplified by nested PCR. The first primer

pair (forward: 50-GGTGGTCCTGGCTGC-30; reverse:
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50-GGTACGTGCTGTTGAACTGTTCC-30) amplified two

segments. The smaller band (* 700 bp) was retrieved to

amplify the VHH gene using the second primer pair (for-

ward: 50-TTTCTATTACTAGGCCCAGCCGGCCGAGTC
TGGAGGRRGCTTGGTGCA-30; reverse: 50-AAACCGT
TGGCCATAATGGCCTGAGGAGACGRTGACSTSGGT

C-30) (the SfiI restriction site is underlined). The SfiI-digested
VHH and phagemid vector pCANTAB5Ewere ligated using

T4 ligase (Thermofisher) and electro-transformed into TG1.

SARS-CoVRBD-rFc protein and rabbit IgG-Fc proteinwere

used for bio-panning. After four rounds of panning, mono-

clonal phages were identified using ELISA. Four positive

clones were selected for expression.

Recombinant Protein Expression of SARS-CoV-
RBD-Specific Nanobodies and SARS-CoV RBD
with Its Mutants

The VHH genes of the four positive clones were cloned

into the protokaryon vector pCold I (Takara) and trans-

formed into E.coli. The recombinant nanobodies with an

N-terminal 6 9 His tag were expressed in E.coli induced

by isopropyl-beta-D-thiogalactopyranoside (IPTG) and

purified using Ni–NTA resin.

The recombinant SARS-CoV RBD and its mutant pro-

teins (Y442A, L472A, N479A, D480A, and T487A) fused

with human IgG-Fc tag (SinoBiological) were expressed in

293T cells using the eukaryotic vector pFUSE-IgG1-Fc2

and purified by Protein A resin.

ELISA

The binding activity between SARS-CoV RBD and

nanobodies was detected by ELISA. The ELISA plate was

coated with SARS-CoV RBD-rFc protein (or mutant RBD-

Fc proteins for epitope analysis) at 1 lg/mL overnight at

4 �C. After blocking with 3% BSA for 1 h at 37 �C, seri-
ally diluted nanobodies were added and incubated for

45 min at 37 �C. Next, horseradish peroxidase (HRP)-

conjugated mouse anti-His-tag antibody (1:5000) was

added and incubated for 30 min at 37 �C. And then

3,30,5,50-tetramethylbenzidine (TMB) substrate was added
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Fig. 1 Generation and

identification of SARS-CoV-

RBD-specific nanobody.

A Schematic illustration of the

construction of SARS-CoV

nanobody library and generation

of SARS-CoV-RBD-specific

nanobody. RBD-rFc SARS-

CoV RBD with rabbit IgG-Fc

tag (Sino biological), FCA
Freund’s complete adjuvant,

FICA Freund’s incomplete

adjuvant, VHH variable region

of heavy chain antibody.

B SDS-PAGE analysis of

purified SARS-CoV

nanobodies. M Marker. The

molecular weight is indicated on

the left. C Evaluation of the

binding activity between SARS-

CoV RBD and nanobodies.

Results are presented as the

mean values of optical density

at the absorbance of

450 nm ± standard deviation

(n = 2).
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and stopped with 1 N H2SO4. The absorbance at 450 nm

was measured using a microplate reader (BioTeck).

A MERS-CoV-RBD-specific nanobody NbMS10 (Zhao

et al. 2018) was used as a negative control.

Competitive ELISA was performed in a similar manner.

Briefly, the plate was coated with SARS-CoV S1 protein

(SinoBiological) at 6 lg/mL overnight at 4 �C. After

blocking with 3% BSA for 1 h at 37 �C, ACE2 protein

fused with human IgG-Fc tag (SinoBiological) at 6 lg/mL

and serially diluted nanobodies were simultaneously added

and incubated for 45 min at 37 �C. Then, HRP-conjugated
goat anti-Fc-tag antibody (1:4000) was added and incu-

bated for 30 min at 37 �C. The subsequent procedures were
the same as described above.

Pseudovirus Neutralization Assay

The SARS-CoV pseudovirus neutralization assay was

performed as previously described (Zhao et al. 2013).

Briefly, 293T cells were co-transfected with a plasmid

encoding Env-defective and luciferase-expressing HIV-1

genome (pNL4-3.Luc.R-.E-) and a plasmid expressing

SARS-CoV spike protein. After 36 h, the supernatant

containing SARS-CoV pseudovirus particles was harvested

and stored at - 80 �C. Then, 500 TCID50 of SARS-CoV

pseudovirus was incubated with serially diluted nanobodies

for 1 h at 37 �C. Huh-7 cells were added and cultured for

48 h. Substrate (PerkinElmer) containing lysis was added

and reacted for 2 min. The mixture was transferred into a

white plate and the relative light unit (RLU) was read using

a luminometer (Promega). The inhibition rate was calcu-

lated as follows:

Inhibition rate %ð Þ ¼ RLU of pseudovirus controlð Þ½
� RLU of samplesð Þ�= RLU of pseudovirus controlð Þ½
� RLU of cell controlð Þ� � 100%:

The IC50 (the 50% inhibition concentration) was calculated

by GraphPad Prism.

Bio-layer Interferometry

The binding affinity between SARS-CoV RBD-Fc and S14

was measured using a gator (Probe Life). Recombinant

SARS-CoV RBD-Fc protein (100 nmol/L) was captured

using anti-Fc probes. The probes were individually inserted

into buffer (0.2% IgG-free BSA and 0.01% Tween20 in

PBS) containing S14 of different concentrations (from

25 nmol/L to 1.56 nmol/L) for association and then inser-

ted into buffer (0.2% IgG-free BSA and 0.01% tween20 in

PBS) for disassociation. The wave shifts were analyzed

using Gator software and fitted to a 1:1 binding model.

Flow Cytometry

Serially diluted S14 or PBS was incubated with SARS-CoV

RBD-rFc (rabbit Fc) protein (5 lg/mL) for 30 min at room

temperature. Hela-ACE2 cells were then added and incubated

for another 30 min at 37 �C. Fluorescein isothiocyanate

(FITC)-conjugated goat anti-rabbit antibody (1:100)was added

and incubated for 30 min at 37 �C. The cells were analyzed via
flow cytometry. NbMS10 was used as the negative control.

Results

Generation of SARS-CoV-RBD-Specific
Nanobodies

SARS-CoV-RBD-specific nanobodies were generated

using standard phage display technology from alpacas

immunized with recombinant SARS-CoV RBD-rFc

(Fig. 1A). After four rounds of panning and phage clone

identification, a total of four positive clones, named S14,

S15, S21 and S22, were selected by ELISA. Then, their

VHH genes were subcloned into an E. coli expression

vector, and nanobodies were purified via Ni–NTA affinity

chromatography and verified by SDS-PAGE. The results

showed that the molecular weight of the four nanobodies

was approximately 16 kDa, which was in agreement with

their theoretical molecular weights (Fig. 1B). ELISA

results further showed that three of the four nanobodies

(S14, S15, and S21) bound well and S22 bound weakly to

recombinant SARS-CoV RBD-rFc, while the MERS-CoV

nanobody NbMS10 showed no binding activity (Fig. 1C).

Characterization of SARS-CoV Nanobody S14

Based on the ELISA results, S14 was chosen for further

characterization. The results of another ELISA showed that

S14 fused with human IgG-Fc (S14-Fc) bound well to

recombinant SARS-CoV S with an EC50 of 3.76 ng/mL,

while the MERS-CoV antibody NbMS10-Fc showed no

binding activity (Fig. 2A). Bio-layer interferometry was

performed to determine the binding kinetics of S14 to

SARS-CoV RBD. The results showed that S14 has a

favorable binding activity to SARS-CoV RBD, with an

equilibrium dissociation constant (Kd) of 143 pmol/L

(Fig. 2B). The results of the SARS-CoV pseudovirus

neutralization assay showed that S14 could efficiently

inhibit the entry of pseudovirus into the target Huh-7 cells,
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with an IC50 of 4.93 ng/mL (Fig. 2C), while NbMS10

showed no inhibitory activity, as expected. Meanwhile,

S14 showed no binding activity against SARS-CoV-2 RBD

(Fig. 3A) nor neutralization activity against SARS-CoV-2

pseudovirus (Fig. 3B). These results demonstrate that S14

is a potent SARS-CoV-specific neutralizing nanobody.

Neutralization Mechanism of SARS-CoV
Nanobody S14

To investigate the mechanism of S14 mediated neutral-

ization, competitive binding assays were performed. As
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Fig. 2 Characterization of SARS-CoV nanobody S14. A Evaluation

of the binding activity between SARS-CoV S and nanobody S14.

Results are presented as the mean values of optical density at the

absorbance of 450 nm ± standard deviation (n = 2). B Bio-layer

interferometry. The light-wave shifts were recorded and curves were

fitted by gator (Probe life). C SARS-CoV pseudovirus neutralization

assay. The results are presented as the mean inhibition rates

± standard deviation (n = 2).
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shown in Fig. 4A, S14 blocked the binding between sol-

uble ACE2 and SARS-CoV S1 in a dose-dependent man-

ner, while the negative control NbMS10 failed to do so.

Meanwhile, the flow cytometry assay also showed that high

concentrations of S14 blocked the binding of SARS-CoV

RBD to recombinant ACE2 expressed in Hela-ACE2 cells.

However, a low concentration of S14 and NbMS10 did not

affect RBD-ACE2 binding (Fig. 4B). These results showed

that S14 directly impaired the interaction between SARS-

CoV RBD and ACE2.

Epitope Analysis

The structure of SARS-CoV spike RBD complexed with

ACE2 has already been well resolved (Li et al. 2005). In

the complex interface, residues Y442, L472, N479, D480,

and T487 play an important role in host tropism and cross-

species infections of SARS-CoV (Li 2013). To determine

whether these mutations were involved in S14-mediated

neutralization, we produced a series of RBD mutants,

including Y442A, L472A, N479A, D480A, and T487A,

and subjected them to ELISA. The results showed that S14

reacted well with all of the above mutants (Fig. 5), sug-

gesting that the neutralization activity of S14 was not

affected by these specific mutations.

Discussion

In this study, using routine phage display technology, we

identified a nanobody S14 with high binding affinity to

SARS-CoV RBD (Kd = 143 pmol/L) as well as inhibition

of pseudovirus entry with an IC50 of 4.93 ng/mL, which

was expected to be a potent candidate. SARS-CoV RBD is

a major determinant (Chen et al. 2005). Several antibodies

targeting RBD have shown promising therapeutic value

in vitro and in vivo. MAb201 (Greenough et al. 2005),

generated from human immunoglobulin transgenic mice,

showed an affinity constant (Kd) of 34 nmol/L with S590

(aa 1–590). This could significantly decrease the viral load

in mice challenged with SARS-CoV. The human IgG1

form of 80R (Sui et al. 2004), generated from a non-

immune human antibody library, had a comparable binding

affinity (Kd = 1.59 nmol/L) to S1 with the receptor ACE2

(Kd = 1.70 nmol/L). It reduced more than 4 logs of lung

viral load in BALB/c model at 12.5 mg/kg of body weight

(Sui et al. 2005). Another antibody, IgG1 m396 (Praba-

karan et al. 2006), with the best binding affinity

(Kd = 4.6 pmol/L) has been reported to inhibit pseudovirus

entry with an IC50 of 10 ng/mL. Considering the high

correlation between pseudovirus and authentic coronavirus

(Han et al. 2004; Zhao et al. 2013; Hu et al. 2020), similar

neutralization potency of S14 can be expected in infectious

SARS-CoV. Further validation in animal models of infec-

tious SARS-CoV would provide more efficacy data.

The development of conventional antibodies requires

considerable time and money because they usually require

a mammalian expression system for production. In con-

trast, nanobodies can be easily expressed in microbial

systems, such as bacteria, yeasts, and fungi (Mir et al.

2020). Frenken et al. reported that some nanobodies could

be secreted by S. cerevisiae at levels over 100 mg/L in

shake flask cultures (Frenken et al. 2000). In addition,

nanobodies are thermostable. For example, nanobodies

maintained full binding capacities after one week at 37 �C
(Arbabi Ghahroudi et al. 1997). This may greatly facilitate

storage and transportation for clinical applications without

the requirement of strict cryopreservation. The first

approved caplacizumab (Scully et al. 2019), a therapeutic

nanobody for acquired thrombotic thrombocytopenic pur-

pura (aTTP), suggests an extensive application prospect for

nanobodies. The promising neutralization profile of S14

described here warrants further development as a thera-

peutic nanobody against SARS-CoV.

In summary, we identified and characterized a specific

nanobody against SARS-CoV with high affinity. The

in vitro data showed that S14 can be further tested in live

virus and animal studies with some refinement of S14 to

determine whether it can be used as prophylaxis or treat-

ment of SARS, given that our experiment is no longer

affected by COVID-19. In addition, similar strategies may

be applied to other viruses, such as SARS-CoV-2.
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