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Abstract: The exploration of high-performance and low-cost electrocatalysts towards the oxygen
evolution reaction (OER) is essential for large-scale water/seawater splitting. Herein, we develop a
strategy involving the in situ generation of a template and pore-former to encapsulate a Ni5P4/Ni2P
heterojunction and dispersive FeNi alloy hybrid particles into a three-dimensional hierarchical porous
graphitic carbon framework (labeled as Ni5P4/Ni2P–FeNi@C) via a room-temperature solid-state
grinding and sodium-carbonate-assisted pyrolysis method. The synergistic effect of the components
and the architecture provides a large surface area with a sufficient number of active sites and a hierar-
chical porous pathway for efficient electron transfer and mass diffusion. Furthermore, a graphitic
carbon coating layer restrains the corrosion of alloy particles to boost the long-term durability of
the catalyst. Consequently, the Ni5P4/Ni2P–FeNi@C catalyst exhibits extraordinary OER activity
with a low overpotential of 242 mV (10 mA cm−2), outperforming the commercial RuO2 catalyst
in 1 M KOH. Meanwhile, a scale-up of the Ni5P4/Ni2P–FeNi@C catalyst created by a ball-milling
method displays a similar level of activity to the above grinding method. In 1 M KOH + seawater
electrolyte, Ni5P4/Ni2P–FeNi@C also displays excellent stability; it can continuously operate for
160 h with a negligible potential increase of 2 mV. This work may provide a new avenue for facile mass
production of an efficient electrocatalyst for water/seawater splitting and diverse other applications.

Keywords: FeNi alloy; Ni5P4/Ni2P heterojunction; solid-state grinding; in situ template; oxygen
evolution reaction

1. Introduction

Developing eco-friendly and sustainable energy technologies is urgent due to the
need to address global environmental issues and energy depletion; nevertheless, it re-
mains a challenge [1]. Hydrogen energy is considered to be a promising alternative to
conventional fossil fuels [2]. Electrochemical water splitting presents an effective and
economical approach to producing clean hydrogen, but the sluggish kinetics of the oxygen
evolution reaction (OER) on anodes require a large overpotential to undergo a four-electron
transfer process, which severely impedes the overall efficiency of water splitting [3,4]. At
present, Ir/Ru-based catalysts are considered the most advanced catalysts for the OER, but
their scarcity and high cost hinder the expansion of large-scale industrial applications [5].
Therefore, much effort has been devoted to developing highly active, cost-effective and
earth-abundant non-precious-metal electrocatalysts [6]. Recently, a tremendous amount
of research has been focused on 3D transition-metal-based non-noble catalysts [7], includ-
ing transition metal oxides/hydroxides, sulfides, selenides, alloys, phosphates, nitrides,
phosphides and so on [8].
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Among them, transition metal phosphide (TMP) electrocatalysts have attracted
widespread attention due to their tunable structure, unique physicochemical properties
and high intrinsic catalytic activity [9]. In particular, the phosphorus and metal sites in
TMPs can serve as acceptors for protons and hydrides, respectively, which may enhance the
intrinsic OER catalytic activity. Several research studies reported that a TMP heterostruc-
ture displayed superior performance compared to a single-phase metal phosphide during
the phosphorization process [10]. Meanwhile, the formation of a TMP heterojunction
interface can effectively lower the chemisorption free energies of H*/OH* and acceler-
ate the separation of intermediates [11], contributing to a superior OER electrocatalytic
performance. For instance, a heterostructure interface made of metallic phosphides usu-
ally provides abundant active sites and synergistically promotes the kinetics of proton
and electron transport, accelerating the OER process [12]. Ren et al. reported that het-
erogeneous Ni2P–Fe2P microsheets on nickel foam produced by a growth-ion exchange
and phosphidation method exhibit excellent catalytic activity [13]. Hou et al. reported
that Ni/Ni2P hetero-nanoparticles on N-doped carbon nanofiber catalysts displayed good
OER activity, with an overpotential of 285 mV (10 mA cm−2) in a 1 M KOH solution [14].
In addition, TMP catalysts usually exhibit surface reconstruction under OER conditions;
this generates amorphous or metal (oxy)hydroxide species that are recognized as the
real active sites and are responsible for enhanced levels of activity. For example, hollow
nanostructured Ni5P2/FeP4 nanoboxes undergo deep reconstruction to NiOOH/FeOOH
nanosheets, which exhibit superior OER activity and stability [15]. Although well-defined
heterostructured catalysts usually exhibit superior electrocatalytic activity, TMPs demon-
strate thermodynamic instability at high oxidation potentials due to the dissolution of
the phosphorus in the electrolyte [16]. Furthermore, TMP catalysts with a well-defined
heterostructure usually require tedious synthesis procedures, so feasible fabrication and
the scale-up of production remain a challenge for practical applications.

In addition to TMPs, transition metal alloys have recently been studied as promising
OER electrocatalysts [17]. A simple mechanical alloying process that involves the physical
mixing of diverse elements is the common approach. The multiple components in transition
metal alloys can synergistically regulate the electronic structure to promote conductivity
and charge transfer [18]. However, bare alloy catalysts suffer from severe erosion and
aggregation during electrochemical cycles; in particular, 3D transition metal alloys suffer
serious instability in highly oxidative operating conditions and conditions with high
levels of alkaline electrolytes, causing a drastic decline in catalytic performance [19]. The
coupling/embedding of alloys with carbon-based substances seems an effective approach
to enhancing the OER activity and stability [20] since carbon-based layers wrapped around
the alloys prevent direct exposure to electrolytes and inhibit the agglomeration of adjacent
metal particles [21]. Wei et al. prepared a catalyst of NiFe alloy nanoparticles encapsulated
in nitrogen-doped carbon nanofibers (NiFe@NCNFs) using an electrospinning method; this
catalyst exhibited enhanced OER activity and durability. Nevertheless, alloy particles are
inclined to aggregate to large crystal sizes during the alloying process, which reduces the
accessible surface area and number of catalytic sites [22].

Inspired by the above background, we herein develop a method for the facile and
scalable synthesis of a Ni5P4/Ni2P heterojunction and FeNi alloy hybrid encapsulated
by three-dimensional hierarchical porous carbon (denoted by Ni5P4/Ni2P–FeNi@C) via
a room-temperature solid-state grinding and sodium-carbonate-assisted pyrolysis strat-
egy [18]. Unlike the previous works [17–22], the sodium-carbonate-assisted pyrolysis
strategy can simultaneously induce the in situ generation of a template and pore-former.
The process can not only impart a 3D porous nanocrystal-assembled carbon skeleton but
also restrain the excessive coalescence of alloy particles and assist in implanting the FeNi
alloy into the carbon framework [23]. After phosphorization treatment, the integrated
electrocatalyst comprises a Ni5P4/Ni2P heterojunction and FeNi alloy encapsulated into
a carbon shell, dispersedly interspersed into the interconnected carbon framework. The
components and architectures create synergistic effects between the Ni5P4/Ni2P hetero-
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interfaces and the FeNi alloy; these effects, as well as the hierarchical porous carbon,
regulate the electronic structure and provide a large surface area with a sufficient number
of available active sites, contributing to efficient electron transfer and mass diffusion. Con-
sequently, the Ni5P4/Ni2P–FeNi@C catalyst displays superior OER activity compared to
commercial RuO2, with an overpotential of 242 mV (10 mA cm−2) and long-term stability in
a 1 M KOH electrolyte solution. Furthermore, the Ni5P4/Ni2P–FeNi@C catalyst also shows
promising potential for application in seawater electrolysis, requiring an overpotential of
445 mV to deliver 500 mA cm−2 in alkaline natural seawater at 25 ◦C. Ni5P4/Ni2P–FeNi@C
also retains an extraordinary long-term stability; it lasts for 160 h with a negligible potential
increase of 2 mV in a 1 M KOH + seawater medium.

2. Materials and Methods
2.1. Reagents and Chemicals

The reagents used included nickel chloride hexahydrate (NiCl2 6H2O), nickel nitrate
hexahydrate (Ni(NO3)2 6H2O), ferric chloride hexahydrate (FeCl3 6H2O), ferric nitrate
hexahydrate (Fe(NO3)3 6H2O), anhydrous sodium carbonate (Na2CO3), sodium bicar-
bonate (NaHCO3), chitosan ((C6H11NO4)n), potassium hydroxide (KOH, 98%), absolute
ethanol (C2H5OH) and sodium chloride (NaCl). All of the above were analytical grade
(AR) and were purchased from Sinopharm Group. Nafion (C5HF17O5S, 5%) and ruthenium
oxide (RuO2) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China).

2.2. Preparation of the Ni–FeNi@C and FeNi3@AC Catalysts

Appropriate amounts of FeCl3·6H2O (0.625 mmol), NiCl2·6H2O (1.876 mmol), Na2CO3
(4.717 mmol) and chitosan (1 g) were vigorously ground in an agate mortar to a homoge-
nous mixture. Then, these powders were annealed at 700 ◦C for 2 h in an argon atmosphere.
Subsequently, the product was rinsed repeatedly with de-ionized water and ethanol, fol-
lowed by drying at 60 ◦C for 2 h. The carbonized sample was named Ni–FeNi@C. The
contrast samples were prepared without the addition of sodium carbonate and are denoted
as FeNi3@AC.

2.3. Preparation of the Ni5P4/Ni2P–FeNi@C and Ni5P4/Ni2P–Fe–FeNi3@AC Catalysts

For a typical preparation of Ni5P4/Ni2P–FeNi@C, 1 g NaH2PO2 on a quartz boat was
placed on the upstream side of the tube furnace, while 100 mg of Ni–FeNi@C was placed on
the downstream side. Then, the furnace was kept at 350 ◦C for 2 h at 5 ◦C min−1 in an argon
atmosphere. The final black products were denoted as Ni5P4/Ni2P–FeNi@C. When the pre-
cursor was FeNi3@AC, the phosphating sample was labeled as Ni5P4/Ni2P–Fe–FeNi3@AC.

2.4. Characterization

Morphological features were evaluated by SEM (JSM-7001F, JEOL, Tokyo, Japan) and
TEM (Tecnai G2F30, Hillsboro, OR, USA). XPS was performed on an ESCALAB 250Xi
X-ray photoelectron spectrometer (Thermo Scientific, Waltham, MA, USA). XRD patterns
were tested on DX2700 equipment (Dandong, China). The Nitrogen adsorption–desorption
measurement was performed by a physical adsorption apparatus (ASAP 2020, micromerit-
ics). Raman spectra analyses were performed on LabRAM Aramis (Raman, HORIBA, Ltd.,
Kyoto, Japan) using a 532 nm excitation laser.

2.5. Electrochemical Measurements

All electrochemical tests were carried out using an electrochemical workstation
(VSP-300, BioLogic, Seyssinet-Pariset, France). An EIS test was performed at an am-
plitude of 5 mV and at frequencies ranging from 106 to 0.01 Hz. All potentials against
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Hg/HgO (EHg/HgO) were converted into the reversible hydrogen electrode (RHE) using
the following equation:

ERHE = EHg/HgO + 0.0592 × pH + 0.098 (1)

Catalyst ink was prepared by dispersing 5 mg catalyst in a 500 µL solution containing
490 µL of ethanol/water (the volume ratio was 1:1) and 10 µL of 5 wt% Nafion. The working
areas of GCE and carbon cloth were 0.07065 and 0.25 cm−2, respectively. Quantities of 5 µL
and 17.7 µL catalyst ink were dropped on the GCE and carbon cloth substrates, respectively.

3. Results and Discussion
3.1. Schematic Diagram of the Synthesis Process

As schematically illustrated in Figure 1, the catalysts were prepared via a solid
grinding method followed by a carbonization pyrolysis and phosphorization process.
Briefly, a homogenous solid mixture of hydrated metal chloride (including FeCl3·6H2O
and NiCl2·6H2O), Na2CO3 and chitosan was obtained by vigorously grinding in an agate
mortar. Here, chitosan serves as a carbon source. This product was labeled as Ni–FeNi@C,
and the product without the addition of Na2CO3 was labeled as FeNi3@AC. Then, the
mixture was calcined at 700 ◦C in an argon atmosphere. Subsequently, the pyrolysis
product was rinsed repeatedly with de-ionized water and ethanol. Finally, the pyrolysis
sample underwent a phosphorization process with NaH2PO2 as its phosphorous source.
The phosphatized samples from the initial mixture with or without Na2CO3 were labeled
as Ni5P4/Ni2P–FeNi@C or Ni5P4/Ni2P–Fe–FeNi3@AC, respectively. More experimental
details were presented in the Experimental Section and Supplementary Materials.
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Ni5P4/Ni2P–FeNi@C.

3.2. Structural Analysis

X-ray diffraction (XRD) measurement was employed to study the composition of the
samples obtained by Na2CO3-assisted pyrolysis. As the XRD patterns of the pyrolysis
products show in Figure 2a, the diffraction peak at 26.3◦ is well indexed to the (002) plane
of graphitic carbon (JCPDS No.41-1487); the diffraction peaks at 44.3◦, 51.6◦ and 76◦ are
ascribed to the (111), (200) and (220) planes, respectively, of metal Ni (JCPDS No.97-007-
6667). In addition, the peaks at 43.5◦, 50.7◦ and 74.5◦ are ascribed to the (111), (200) and
(220) planes, respectively, of FeNi alloys (JCPDS No.97-063-2933). The results indicate that
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the metal Ni and FeNi hybrid alloys, as well as the graphitic carbon matrix (denoted by
Ni–FeNi@C), are obtained by the Na2CO3-assisted pyrolysis. The XRD pattern in Figure 2b
reveals the appearance of several new diffraction peaks, but the original peaks of graphitic
carbon and the metal NiFe alloy, as well as the new diffraction peaks, are well indexed to
Ni5P4 (JCPDS No.89-2588) and Ni2P (JCPDS No.74-1385). These results suggest the metal
Ni in the Ni–FeNi@C sample converts into a Ni5P4 and Ni2P hybrid, while the FeNi alloy
and graphitic carbon are well preserved; the result is labeled as Ni5P4/Ni2P–FeNi@C.
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For comparison, a similar pyrolysis and phosphorization route was repeated based
on the same solid-state mixture except without Na2CO3. The XRD pattern in Figure 2c
shows the peaks that are assigned to the FeNi3 alloy (JCPDS No.65-3244); the broad bulge
at 20–30◦ is ascribed to the amorphous carbon, indicating that the sample obtained by
carbonization pyrolysis without the addition of the Na2CO3 precursor is composed of
the FeNi3 alloy and amorphous carbon (denoted by FeNi3@AC). Meanwhile, the XRD
pattern of the phosphating product in Figure 2d detects Ni5P4 (JCPDS No.89-2588), Ni2P
(JCPDS No.74-1385), the FeNi3 alloy (JCPDS No.65-3244) and even metal Fe (JCPDS No.97-
004-4862), but not amorphous carbon, indicating that FeNi3@AC undergoes Fe-leaching
together with the phosphorization of Ni metal during the phosphorization process; the
result is labeled as Ni5P4/Ni2P–Fe–FeNi3@AC.

These controlled experiments reveal that Na2CO3 plays a vital role in establishing
the composition and phase state of the carbonization pyrolysis product, and that it has
an effect on the phosphatized sample [24]. To determine the effect of Na2CO3, the initial
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solid-state grinding mixture was evaluated by XRD. As shown in Figure S1a, the diffraction
peaks of NaCl (JCPDS No.99-0059) and NaHCO3 (JCPDS No.15-0700) are detected in the
ground mixture that includes the Na2CO3 precursor, while only the original metal chloride
diffraction peaks are found in the mixture without the addition of Na2CO3 (Figure S1b),
indicating that NaCl and NaHCO3 are formed in situ during the physical grinding of
Na2CO3 and hydrated metal chloride. The sodium ion (Na+) captures chloride ions (Cl−)
in metal salt to form NaCl; meanwhile, the excess Na2CO3 reacts with H2O molecules from
hydrated metal chloride to gradually generate NaHCO3. Thus, the difference observed for
Na2CO3-assisted pyrolysis can be ascribed to the synergetic effect of NaCl and NaHCO3.
Therefore, it can be concluded that NaCl and NaHCO3 command the Ni–Fe-based alloy
phase and the carbonization of chiston. NaCl and NaHCO3 impel the precursors to form
the stable FeNi alloy with the residual Ni metal and well aligned graphitic carbon [25]. In
contrast, the metal chloride and chitosan precursor is inclined to generate the FeNi3 alloy
and amorphous carbon without the addition of Na2CO3. In the subsequent phosphorization
process, the residual Ni metal in the Ni–FeNi@C sample converts into Ni5P4/Ni2P while
the FeNi alloy is well preserved, whereas the FeNi3 alloy in the FeNi3@AC sample results
in Ni5P4/Ni2P and the occurrence of Fe-leaching [26].

The morphology and structure of the as-fabricated samples were investigated by
scanning electron microscope (SEM) and transmission electron microscope (TEM). A typical
SEM image of FeNi3@AC (Figure 3a) exhibits vast agglomerated alloy particles of micron
size, which are irregularly dispersed in the caked carbon matrix. A zoomed-in image
(Figure 3b) displays these alloy particles are, on the whole, suspended and not in close
contact with the carbon substrate. After the phosphorization treatment, the particles in
Ni5P4/Ni2P–Fe–FeNi3@AC (Figure 3c) explode, and a magnified image in Figure 3d shows
that the smooth surface becomes rough and resembles the texture of pinecones. However,
the samples created with the Na2CO3 precursor, Ni–FeNi@C, as shown in Figure 3e, present
a porous granular morphology with nanoparticle clusters. A magnified image (Figure 3f)
displays a mass of nanoparticle-assembled sheets interconnected to build a hierarchical
porous carbon framework; metal/alloy particles of nanometer size are interspersed in the
carbon framework. A detailed observation of the section of the image marked by a white
gridline (Figure 3f) reveals that the carbon layer may wrap around the particle. Owing to
the thermal decomposition of NaHCO3 as a pore-forming agent, the carbon framework
becomes loose and porous, which enhances the specific surface area and accelerates electron
transfer. Compared to Ni–FeNi@C, the Ni5P4/Ni2P–FeNi@C sample contains more dense
particles but retains the porous carbon skeleton (Figure 3g,h).
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In order to further reveal the role of Na2CO3, three groups of controlled trials were
carried out. Briefly, sole NaCl, sole NaHCO3 and a mixture of NaCl and NaHCO3 were
ground with hydrated metal nitrate (including Fe(NO3)3·6H2O and Ni(NO3)2·6H2O) and
chitosan. These alternative sources of hydrated metal nitrate, as opposed to hydrated metal
chloride, avoid the possible formation of NaCl. The process followed was consistent with
the previous preparation conditions (See the Experimental Section). The final pyrolysis
products were labeled as S-NaCl, S-NaHCO3 and M-NaCl/NaHCO3, respectively. As
shown in Figure S2, the sole NaCl-assisted pyrolysis product is composed of a particle-
assembled sheet, and the size of the particles is less than 100 nm (Figure S2a). In contrast,
the SEM image of S-NaHCO3 in Figure S2b displays a loose and porous morphology, and
metal particles of a large size (about 500 nm) are embedded in the porous framework.
Therefore, it can be deduced that NaCl, as a template, leads to the formation of dispersive
metal particles with a smaller size [26], whereas NaHCO3 plays the role of pore-former.
More interestingly, M-NaCl/NaHCO3, as shown in Figure S2c, shows a similar morphology
to that of Ni–FeNi@C, indicating that Na2CO3 plays a synergetic role with effects on NaCl
and NaHCO3. The XRD test result in Figure S3 shows that the products of both the
sole NaCl-assisted pyrolysis and the pyrolysis performed with the mixture of NaCl and
NaHCO3 contain Ni metal, the FeNi alloy and graphitic carbon. In contrast, the sole
NaHCO3-assisted pyrolysis product contains only the FeNi3 alloy and graphitic carbon.
Therefore, it can be deduced that NaCl, as a template, impels the formation of the FeNi
alloy phase. Based the above results, it can also be confirmed that Na2CO3 has synergetic
effects as a template and pore-former. The in situ generated NaCl, when used as a template,
conducts the formation of the FeNi alloy phase and inhibits the coarsening of the alloy
particles, while NaHCO3, as a pore-former, imparts a loose and porous morphology that
enhances the specific surface area.

TEM images show that the size of the particles in Ni–FeNi@C (Figure S4a) is far smaller
than that of the particles in FeNi3@AC (Figure S4b), which is in accordance with the SEM
results. It is reasonable to deduce that NaCl generated from the addition of Na2CO3 may
act as a template to affect the formation of the alloy phase and inhibit the coarsening of the
alloy particles [27]. Moreover, NaCl also affects the carbonization pyrolysis of chitosan, so
the carbon substrate in FeNi3@AC is amorphous, and FeNi3 alloy particles are overlaid on
the amorphous carbon substrate (Figure S5). However, the carbon layer in Ni–FeNi@C is
graphitic and carbonaceous (Figure 4a); this is also verified by the XRD results (Figure 2a).
High-resolution TEM (HRTEM) images of the Ni–FeNi@C sample, shown in Figure 4b,c,
reveal that inter-planer spacings of 0.179 and 0.203 nm are assigned to the (200) plane of the
FeNi alloy and the (111) plane of metal Ni, respectively, suggesting that both the Ni particles
and the FeNi alloy particles are embedded in carbon layers [28]. After phosphorization,
the architecture of Ni5P4/Ni2P–FeNi@C still maintains its initial microstructure, with the
carbon coating wrapped around particles (Figure 4d,e). The HRTEM image in Figure 4f
demonstrates that an inter-planar spacing of 0.207 nm is assigned to the (111) plane of
the FeNi alloy. Furthermore, the coherent lattice fringe indicates that the crystal structure
of the FeNi alloy is well preserved, without any surficial phosphatized reaction during
the phosphorization procedure. In contrast, the metal Ni particles in Ni–FeNi@C sample
undergo a conversion to Ni5P4/Ni2P heterojunction particles, which is evident in Figure 4g.
Spacings of 0.248 and 0.221 nm can be assigned to the Ni5P4 (104) and Ni2P (111) planes,
respectively. As seen in the phase boundary marked by the dashed line, Ni5P4 and Ni2P
constitute well-defined hetero-interfaces, exposing more active sites for enhanced catalytic
activity. The selective region electron diffraction (SAED) pattern in Figure 4h presents
the (103) plane of Ni5P4, the (302) plane of Ni2P and the (111) plane of the FeNi alloy.
The scanning TEM (STEM) image and the energy dispersive X-ray spectroscopy (EDS)
elemental mapping images (Figure 4i) also show the elements Ni, Fe, P and C uniformly
distributed throughout the selected region. In addition, the corresponding EDS spectra
(Figure S6) and elemental contents (Table S1) also verify the elemental species and amounts
in the Ni5P4/Ni2P–FeNi@C sample.
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The specific surface area and pore structure were also investigated by the nitrogen
adsorption/desorption isotherm method. In Figure 5a, all samples conform to the type-
IV adsorption isotherm. When P/P0 ranges from 0.5 to 1.0, the four samples display a
hysteresis curve along with a hysteresis loop, suggesting that all four samples have a
certain mesoporous structure [29]. In addition, the BET surface areas of FeNi3@AC and
Ni–FeNi@C are estimated to be 143.32 and 182.12 m2 g−1, respectively. The higher surface
area of the Ni–FeNi@C sample is mainly caused by the pyrolysis of NaHCO3; furthermore,
NaHCO3 affects the carbonization process of chitosan to increase the affinity for alloy
particles. Thus, the pyrolytic carbon layer encapsulates the alloy to assist in the condensa-
tion process, followed by more dispersive particles and pore architecture, which are also
verified by SEM. Meanwhile, the more porous structure facilitates the penetration of PH3
gas during the phosphating process to generate more phosphide-based active sites. For the
corresponding phosphatized product, the BET surface areas of Ni5P4/Ni2P–Fe–FeNi3@AC
and Ni5P4/Ni2P–FeNi@C are 12.12 and 82.13 m2 g−1, respectively. Compared with the
carbonized samples, the surface area of the phosphatized product decreases. This occurs
because PH3 gas from the NaH2PO4 precursor can penetrate into porous structures and
react with FeNi3@AC and Ni–FeNi@C, which converts Ni to Ni5P4/Ni2P. The phosphating
process can not only cause the expansion of suspended particles to consume the pore vol-
ume (Figure 3c,d) but also lead to the collapse and agglomeration of the pore architecture
(Figure 3g,h), which, in turn, leads to a reduced surface area. The corresponding average
pore sizes of Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P–FeNi@C are 20.48 and 8.23 nm,
respectively, in the Barrett–Joyner–Halenda (BJH) pore size distribution curves (Figure S7
and Table S2), but Ni5P4/Ni2P–FeNi@C displays a more uniformly porous nature. Al-
though the phosphating process reduces the surface area, which may be ascribed to the
fact that the expansion consumes the pore structure, Ni5P4/Ni2P–FeNi@C still presents a
decent surface area and pore structure.
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The Raman spectrum was used to illustrate the carbon structure of the Ni5P4/Ni2P–FeNi@C
and Ni5P4/Ni2P–Fe–FeNi3@AC samples. As shown in Figure 5b, the D band (~1350 cm−1)
and G band (~1576 cm−1) originate from disorder-induced carbon and graphitized sp2

hybrid carbon, respectively. The intensity ratio of the D to G bands (ID/IG) usually reveals
the graphitic degree of carbon materials [13]. A larger ID/IG value indicates a lower degree
of graphitization [29]. Ni5P4/Ni2P–FeNi@C exhibits a lower ID/IG value of 1.14 compared
to Ni5P4/Ni2P–Fe–FeNi3@AC with a value of 1.36. This difference is due to the formation
of NaCl, which improves the carbonization pyrolysis degree of carbonaceous materials [23];
this aligns well with the XRD results. As a result, Ni5P4/Ni2P–FeNi@C possesses a superior
electrical transfer capacity and a graphitic carbon protective layer, contributing to superior
catalytic activity and long-term durability.

3.3. Electrochemical Measurements

The OER performances of Ni5P4/Ni2P-FeNi@C electrocatalyst were evaluated by a
glassy carbon electrode configuration in O2-saturated 1.0 M KOH electrolyte. To evaluate
the effect of different precursor amounts and reaction conditions on the catalytic properties,
the 85% iR-corrected linear sweep voltammetry curves (LSV) of Ni5P4/Ni2P-FeNi@C
catalyst with different synthesis parameters. including the elemental ratio of nickel and
iron precursors, the total amount of metals, the amount of Na2CO3 and the temperature
of carbonization pyrolysis, were firstly investigated in 1.0 M KOH solution. As display
in Figure S8, Ni5P4/Ni2P-FeNi@C catalyst prepared based on the ratio of Ni:Fe in the
proportion 3:1, the pyrolysis temperature of 700 ◦C, the total amount of metals with 15% and
0.5 g Na2CO3, displays the excellent OER catalytic activity, thus the Ni5P4/Ni2P-FeNi@C
catalyst with the above optimum synthesis conditions is used for the following studies.

We compared the OER performance of the sample Ni5P4/Ni2P–FeNi@C with FeNi3@AC,
Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC and commercial RuO2 catalysts. As shown in
Figure 6a, Ni5P4/Ni2P–FeNi@C loaded on the glass carbon electrode (GCE) exhibited
excellent OER catalytic activity, requiring the lowest observed overpotential of 242 mV to
achieve 10 mA cm−2 in 1 M KOH (with 85% iR-correction), which significantly surpasses
the performance of Ni5P4/Ni2P–Fe–FeNi3@AC (294 mV), Ni–FeNi@C (316 mV), FeNi3
@AC (345 mV) and RuO2 (272 mV). All overpotential results were obtained with 85%
iR-correction unless otherwise specified. Figure 6b shows the detailed comparative over-
potential values required to achieve 10 mA cm−2. Interestingly, the Ni5P4/Ni2P–FeNi@C
catalyst obtained by the ball-milling method displayed a similar level of activity to the
one created with the grinding method; as shown in Figure S9, the overpotential for the
ball-milling sample was only 248 mV vs. 242 mV at 10 mA cm−2, which makes large-scale
production possible.



Nanomaterials 2022, 12, 1848 10 of 17

Nanomaterials 2022, 12, 1848 10 of 18 
 

 

As display in Figure S8, Ni5P4/Ni2P-FeNi@C catalyst prepared based on the ratio of Ni:Fe 
in the proportion 3:1, the pyrolysis temperature of 700˚C, the total amount of metals with 
15% and 0.5 g Na2CO3, displays the excellent OER catalytic activity, thus the Ni5P4/Ni2P-
FeNi@C catalyst with the above optimum synthesis conditions is used for the following 
studies. 

We compared the OER performance of the sample Ni5P4/Ni2P–FeNi@C with 
FeNi3@AC, Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC and commercial RuO2 catalysts. As 
shown in Figure 6a, Ni5P4/Ni2P–FeNi@C loaded on the glass carbon electrode (GCE) ex-
hibited excellent OER catalytic activity, requiring the lowest observed overpotential of 242 
mV to achieve 10 mA cm−2 in 1 M KOH (with 85% iR-correction), which significantly sur-
passes the performance of Ni5P4/Ni2P–Fe–FeNi3@AC (294 mV), Ni–FeNi@C (316 mV), 
FeNi3 @AC (345 mV) and RuO2 (272 mV). All overpotential results were obtained with 
85% iR-correction unless otherwise specified. Figure 6b shows the detailed comparative 
overpotential values required to achieve 10 mA cm−2. Interestingly, the Ni5P4/Ni2P–
FeNi@C catalyst obtained by the ball-milling method displayed a similar level of activity 
to the one created with the grinding method; as shown in Figure S9, the overpotential for 
the ball-milling sample was only 248 mV vs. 242 mV at 10 mA cm−2, which makes large-
scale production possible. 

 
Figure 6. (a) OER LSV curves of FeNi3@AC, Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC, Ni5P4/Ni2P–
FeNi@C and the commercial RuO2 samples with 85% iR-correction in 1 M KOH. (b) The comparative 
overpotentials of catalysts at 10 mA cm−2. (c) Tafel plots derived from the polarization curves in (a). 
(d) Nyquist plots of the FeNi3@AC, Ni–NiFe@C, Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P–FeNi@C 
catalysts at 1.480 V vs. RHE. (e) Double-layer capacitance (Cdl) plots. (f) Comparison of the overpo-
tentials of Ni5P4/Ni2P–FeNi@C (this work) and the relevant OER electrocatalysts at 10 mA cm−2. (g) 

Figure 6. (a) OER LSV curves of FeNi3@AC, Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC, Ni5P4/Ni2P–FeNi@C
and the commercial RuO2 samples with 85% iR-correction in 1 M KOH. (b) The comparative overpotentials
of catalysts at 10 mA cm−2. (c) Tafel plots derived from the polarization curves in (a). (d) Nyquist plots
of the FeNi3@AC, Ni–NiFe@C, Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P–FeNi@C catalysts at
1.480 V vs. RHE. (e) Double-layer capacitance (Cdl) plots. (f) Comparison of the overpotentials of
Ni5P4/Ni2P–FeNi@C (this work) and the relevant OER electrocatalysts at 10 mA cm−2. (g) Chronopo-
tentiometry curves of the Ni5P4/Ni2P–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P@C
catalysts at 20 mA cm−2.

To further evaluate the catalytic properties, the OER dynamics were evaluated by
Tafel slope. Ni5P4/Ni2P–FeNi@C exhibited the lowest Tafel slope of 46 mV dec−1, as
shown in Figure 6c, indicating that Ni5P4/Ni2P–FeNi@C has the most rapid kinetics for
the OER process [30]. These results may be caused by the in situ formation of NaCl and
NaHCO3. Specifically, NaCl as a template establishes the composition and size of the
alloy/metal particles as well as the carbon matrix; meanwhile, NaHCO3 increases the
porous architecture during the carbonization pyrolysis process. Thus, the phosphatized
catalyst integrates the merits of having a sufficient number of active sites, thanks to the
Ni5P4/Ni2P heterojunction, with an efficient electron/mass transfer capacity thanks to the
hierarchically interlaced porous carbon scaffold and the alloy particles [24,31].

The electrochemical impedance spectroscopy (EIS) measurements demonstrate that
Ni5P4/Ni2P–FeNi@C displays a smaller charge transfer resistance than the other as-
prepared samples at 1.480 V vs. RHE. As seen in the fitting equivalent circuit model
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in Figure 6d, Ni5P4/Ni2P–FeNi@C has an extremely small Rct of 19.46 Ω, which is much
lower than the values for Ni5P4/Ni2P–Fe–FeNi3@AC (66.42 Ω), Ni–FeNi@C (149.6 Ω) and
FeNi3@AC (209.7 Ω). The results suggest that Ni5P4/Ni2P–FeNi@C contributes to a rapid
charge transfer, accelerating OER dynamics. The electrochemically active surface area
(ECSA) is normalized to obtain the electric double-layer capacitance (Cdl), which can reflect
an important parameter of the electrochemical reaction kinetics and show the intrinsic
activity of the catalyst. The charging current obtained at different scan rates is IC, and
its relationship with the scan rate V and the double-layer capacitance Cdl is IC = V ×
Cdl. The electrochemically active area of the catalyst is calculated according to the follow-
ing equation: ECSA = Cdl/CS (where CS is the specific capacitance of the corresponding
smooth surface sample under the same conditions). Therefore, the double-layer capacitance
(Cdl), determined by cyclic voltammograms versus scan rates (Figure S10), is calculated
to evaluate the ECSA. As shown in Figure 6e, Ni5P4/Ni2P–FeNi@C presents a larger Cdl
value (8.01 mF cm−2) than Ni5P4/Ni2P–Fe–FeNi3 @AC (4.54 mF cm−2), demonstrating an
enhanced ECSA with more active sites, which may benefit from the hierarchical porous
architecture caused by NaHCO3. Impressively, the OER catalytic activity of Ni5P4/Ni2P–
FeNi@C in this work is comparable to and may even outperform recently reported alloy-
and phosphide-composited catalysts (Figure 6f and Table 1) [14,19,22,29,30,32–35].

Table 1. Comparison of OER activity of different electrocatalysts at 10 mA cm−2.

Catalyst Substrate Electrolyte η (mV)
10 mA/cm2

Tafel Slope
(mV/Decade) Reference

G@Ni9Fe GCE 1 1.0 M KOH 246 46 [30]
P–Ni0.5Fe@C GCE 1 1.0 M KOH 256 65 [29]
F–NiFe alloys Ni plate 1.0 M KOH 260 53 [19]
NiFeC-800-5 GCE 1 1.0 M KOH 269 72 [32]

Ni/Ni2P@N–CNF GCE 1 1.0 M KOH 285 45.2 [14]
Ni2P NF 2 1.0 M KOH 290 47 [34]

NiFe@NCNFs GCE 1 1.0 M KOH 294 52 [22]
NiFe alloys GCE 1 1.0 M KOH 298 51.9 [33]

NiFe/NiFe2O4@NC GCE 1 1.0 M KOH 316 60 [35]
Ni5P4/Ni2P–FeNi@C GCE 1 1.0 M KOH 242 46 This work

Commercial RuO2 GCE 1 1.0 M KOH 272 65 This work
1 GCE stands for glassy carbon electrode; 2 NF stands for nickel foam.

Additionally, Ni5P4/Ni2P–FeNi@C as an OER catalyst demonstrates superior cat-
alytic stability in a 1 M KOH electrolyte. As shown in Figure 6g, the observed potential
of the Ni5P4/Ni2P–FeNi@C catalyst can maintain an approximate constant at 20 mA
cm−2, and the potential only increased 32 mV after 140 h of OER catalysis. For compari-
son, the observed potential increased 57 mV for Ni5P4/Ni2P–Fe–FeNi3@AC, without the
graphitic carbon coating layer, after only a 40 h catalysis test; it increased 51 mV for the
Ni5P4/Ni2P@C catalyst without alloy particles after a 100 h test. Both an SEM image (Figure
S11) and a low-magnification TEM image (Figure S12a) show that the Ni5P4/Ni2P–FeNi@C
catalyst, even after a long-term test, still maintained its initial microstructure, indicating
good structural stability. Meanwhile, HRTEM images in Figure S12b,c suggest that the FeNi
alloys are stable and can maintain their initial microstructures well due to the protection
of carbon coating. We deduce that the outstanding stability of the Ni5P4/Ni2P–FeNi@C
catalyst may be ascribed to the stable FeNi alloy phase and the graphitic carbon coating
layer. The in situ sodium chloride serves as a template and manipulates the formation of
the alloy phase, enhancing the crystallinity of the carbon materials during the pyrolysis
process [36]. Consequently, the alloy particles, wrapped tightly by the graphitic carbon
coating layer, are interspersed throughout the hierarchical porous carbon skeleton, which
buffers against the harsh electrolysis environment and restrains the structural collapse,
contributing to long-term stability.
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3.4. XPS Survey Spectrum of Ni5P4/Ni2P–FeNi@C before and after OER Reaction

To obtain further insights into the highly active Ni5P4/Ni2P–FeNi@C catalyst, XRD
and X-ray photoelectron spectroscopy (XPS) measurements were used to probe the differ-
ences in composition and surface valance state before and after the OER catalyst underwent
a 140 h stability test at 20 mA cm−2. As the XRD pattern of the post-OER catalyst shows in
Figure S13, the peaks at 43.5◦ and 50.7◦ are assigned to the (111) and (200) planes, respec-
tively, of the FeNi alloys (JCPDS No.97-063-2933), and the diffraction peaks at 40.7◦, 46.4◦

and 48.0◦ are well indexed for NiOOH (JCPDS No.97-016-5961). Due to the low amount
of catalyst on the carbon cloth basement, the intensity of the diffraction peaks is weak,
and several signals are even undetected. However, the above XRD result confirms the
existence of NiOOH and the FeNi alloy after OER stability. The XPS survey spectra of the
Ni5P4/Ni2P–FeNi@C catalyst before and after OER verifies the coexistence of the elements
Ni, Fe, O, C and P (Figure S14), which corresponds well with the EDX data. The strong F
signal detected on the post-OER catalyst is from the Nafion binder, which is used to adhere
catalyst power to the carbon cloth basement.

In the high-resolution P 2p spectra (Figure 7a), the initial spectrum can be deconvolved
into three peaks; the fitted peaks at 130.6 and 129.8 eV are assignable to P 2p1/2 and P 2p3/2,
respectively, which are ascribed to Pδ− in Ni5P4 and Ni2P [12]. The peak at 134.5 eV is
attributable to the P–O bond [13]. After the long-term OER test, the peaks of the M–P bond
disappear, and the single peak at 133.8 eV corresponds to P–O. This phenomenon may be
caused by massive P leaching and the rearrangement and oxidation of metal phosphide
(Ni5P4-Ni2P) after the OER reaction [37]. For the spectrum of O 1s in Figure 7b, the initial
peaks at 531.8 and 533.5 eV are assigned to O–H and C–O/C = O, respectively [38]. After
the OER test, the emerging peaks at 532.7 and 535.4 eV are attributable to Ni–OOH and
residual water molecules, respectively [15].
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For Ni 2p (Figure 7c), the initial peaks at 855.6 and 872.9 eV correspond to
Ni2+ 2p3/2 and Ni2+ 2p1/2, respectively [39], and the peaks located at 856.9 and 874.2 eV
are ascribed to Ni3+ 2p3/2 and Ni3+ 2p1/2, respectively, which originate from oxidized and
phosphatized nickel, respectively. The two satellite peaks (marked by Sat.) are at 861.7 and
879.2 eV; meanwhile, the two fitted peaks at 852.5 (2p1/2) and 869.8 eV (2p3/2) are ascribed
to Ni0 that originate from the FeNi alloy [33]. After the OER reaction, the fitted peaks of
Ni2+ 2p3/2 (854.6 eV), Ni3+ 2p3/2 (856.5 eV) and Ni0 2p3/2 (852.2 eV) are still detected,
whereas the intensity ratio of Ni3+ rapidly increases, indicating the formation of NiOOH
species [14]. In addition, the broad peaks at around 860.6 and 878.9 eV can be attributed to
an Auger peak of F [38].

The XPS spectrum of Fe 2p (Figure 7d) can be deconvolved into a pair consisting of
Fe 2p3/2 and Fe 2p1/2. Before OER, the peaks at 706.7 and 720.3 eV are attributed to the
metallic state of iron (Fe0). The two fitted peaks at 710.2 and 723.8 eV correspond to Fe
2p1/2 and Fe 2p3/2 of Fe2+, respectively. In addition, the two peaks at 712.8 and 726.4 eV are
assigned to Fe3+ from the oxidated iron. The peaks at 716.1 and 730.7 eV can be classified as
satellite peaks. After the OER test, the fitted characteristic peaks in Figure 7d confirm that
the Fe0, Fe2+ and Fe3+ species still exist, further confirming the existence of the zero-valent
FeNi alloy.

All the above results clearly show that the Ni5P4/Ni2P in Ni5P4/Ni2P–FeNi@C under-
goes a surface reconstruction to generate a NiOOH active layer accompanied by P leaching
during the OER reaction, while the FeNi alloy is well preserved during the OER process.
Therefore, the NiOOH and FeNi alloys synergistically serve as the real catalytic active
sites. Furthermore, the FeNi alloy contributes ultra-high stability. The remarkable catalytic
performance of the FeNi alloy can be attributed to it being wrapped in the graphitic carbon
coating layer as well as its distribution throughout the carbon skeleton, thus restraining
the corrosion of the alloy particles in the electrolyte and increasing the electron/mass
transport capacity.

3.5. Electrolyzed Seawater Applications

Considering its excellent OER activity and long-term stability in a 1 M KOH electrolyte,
we further investigated the catalytic activity of the Ni5P4/Ni2P–FeNi@C catalyst in alkaline
simulated seawater and alkaline natural seawater electrolytes. As shown in Figure 8a,b, the
Ni5P4/Ni2P–FeNi@C catalyst displayed outstanding OER catalytic activity in the above two
electrolytes. In a 1 M KOH + 0.5 M NaCl medium, the Ni5P4/Ni2P–FeNi@C catalyst loaded
on carbon cloth required overpotentials of 319 and 376 mV to afford 100 and 500 mA cm−2,
respectively (with 85% iR-correction), which is close to its performance in 1 M KOH. In
alkaline natural seawater from the Yellow Sea, the deleterious effects of the cation/anion
ions, bacteria, micro-organisms and even particulate matter in natural seawater resulted in
a certain decline in OER activity. Nevertheless, the Ni5P4/Ni2P–FeNi@C catalyst in 1 M
KOH + seawater electrolyte still yielded 100 and 500 mA cm−2 current densities, requiring
382 and 445 mV, respectively (with 85% iR-correction); these results are below the 480 mV
threshold for the chloride oxidation reaction, and thus the Ni5P4/Ni2P–FeNi@C catalyst
showed a thermodynamic OER advantage over the undesired chloride oxidation reaction
at a current density of less than 500 mA cm−2. Furthermore, the Ni5P4/Ni2P–FeNi@C
catalyst displayed remarkable stability in the alkaline natural seawater electrolyte. As the
chronopotentiometry curve shows in Figure 8c, the long-term OER process was able to
operate for 160 h with a negligible potential increase of 2 mV at a 20 mA cm−2 current
density in the alkaline natural seawater electrolyte, surpassing the overwhelming majority
of reported seawater catalysts.
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Finally, the ultra-high OER activity and durability of Ni5P4/Ni2P–FeNi@C can be
attributed to the following causes: (1) the in situ formation of NaCl and NaHCO3 syner-
gistically regulate the pyrolysis process of alkali metal salts and chitosan carbonaceous
material [40]. As a result, the phosphatized product of Ni5P4/Ni2P–FeNi@C encapsu-
lates the Ni5P4/Ni2P heterojunction and FeNi alloy hybrid into a 3D hierarchical porous
graphitic carbon framework [41], which not only provides more active sites and facilitates
electron/mass transfer [42], but also supplies a graphitic carbon protective layer to reduce
the corrosion of alloy particles [43]. (2) Both the NiOOH active layer reconstructed on the
surface of Ni5P4/Ni2P and the original FeNi alloy synergistically contribute to the real
catalytic active sites. Additionally, the well-preserved and dispersive FeNi alloy particles
supply ultra-high durability and electron transfer capacity [44].

4. Conclusions

In summary, we developed a facile and scalable strategy for the in situ generation of
a template and pore-former using a room-temperature solid-state grinding and sodium-
carbonate-assisted pyrolysis method. NaCl, as a template, manipulates the stable FeNi
alloy phase and inhibits the excessive coalescence of alloy particles, while NaHCO3, as a
pore-former, establishes a hierarchically porous carbon framework. After phosphorization
treatment, the Ni5P4/Ni2P–FeNi@C catalyst integrates the merits of the Ni5P4/Ni2P het-
erojunction, the stable FeNi alloy phase and the hierarchical porous nanocrystal-assembled
carbon skeleton, which combine to impart abundant active sites, an efficient electron/mass
transfer ability, and durable corrosion resistance. Consequently, the Ni5P4/Ni2P–FeNi@C
catalyst exhibits an ultra-low overpotential of 242 mV and a low Tafel slope of 46 mV dec−1

in 1 M KOH, which outperforms the commercial RuO2 (272 mV and 65 mV dec−1). Both
the NiOOH reconstructed on the surface of Ni5P4/Ni2P and the original FeNi alloy syner-
gistically act as the real catalytic active sites. The FeNi alloy is wrapped by the graphitic
carbon layer and distributed throughout the carbon skeleton, which contributes ultra-high
stability. The Ni5P4/Ni2P–FeNi@C catalyst also displays excellent OER activity in alkaline
natural seawater, requiring a low overpotential of 382 mV to deliver 100 mA cm−2. More
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remarkably, the Ni5P4/Ni2P–FeNi@C catalyst exhibits extraordinary long-term stability
and can operate for 160 h with a negligible potential increase of 2 mV in an alkaline natural
seawater electrolyte. This work may provide a new avenue for high-performance, low-cost
and large-scale OER catalysts by integrating a transition metal phosphide heterojunction
and metal alloys.

Supplementary Materials: The following supporting information can be downloaded at: https://
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of the pyrolysis product, (a) S-NaCl, (b) S-NaHCO3 and (c) M-NaCl/NaHCO3. Figure S3: XRD
patterns of the pyrolysis product, (a) S-NaCl, (b) S-NaHCO3 and (c) M-NaCl/NaHCO3. Figure S4:
Low-magnification TEM images of (a) Ni–FeNi@C and (b) FeNi3@AC samples. Figure S5: HRTEM
image of a FeNi3@AC sample. Figure S6: EDS spectrum of Ni5P4/Ni2P–FeNi@C. Figure S7: Pore size
distribution curves of FeNi3@AC, Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P–FeNi@C
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synthesis conditions, (a) The ratio of nickel to iron, (b) The pyrolysis temperature, (c) The total amount
of metal, (d) The amount of Na2CO3 added. Figure S9: (a) 85% iR-corrected OER LSV curves of
FeNi3@AC, Ni–FeNi@C, Ni5P4/Ni2P–Fe–FeNi3@AC and Ni5P4/Ni2P–FeNi@C samples prepared
by ball-milling methods in a 1 M KOH electrolyte, (b) The comparative overpotentials of different
catalysts at a current density of 10 mA cm−2. Figure S10: CV curves versus scan rates for different
electrode catalysts at scan rates ranging from 20 mV s−1 to 100 mV s−1 with an interval point of 20 mV
s−1, (a) Ni5P4/Ni2P–FeNi@C, (b) Ni–FeNi@C, (c) Ni5P4/Ni2P–Fe–FeNi3@AC and (d) FeNi3@AC.
Figure S11: SEM image of Ni5P4/Ni2P–FeNi@C after a 140 h stability test at 20 mA cm−2. Figure S12:
(a) TEM and (b), (c) HRTEM images of a Ni5P4/Ni2P–FeNi@C sample after a 140 h stability test at
20 mA cm−2. Figure S13: XRD patterns of the initial and post-OER Ni5P4/Ni2P–FeNi@C sample.
Figure S14: XPS survey spectra of the Ni5P4/Ni2P–FeNi@C sample before and after the OER process.
Table S1: Elemental contents of the Ni5P4/Ni2P–FeNi@C sample. Table S2. Comparison of surface
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