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The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection is a global crisis; however, our current
understanding of the host immune response to SARS-CoV-2 infection remains limited.
Herein, we performed RNA sequencing using peripheral blood from acute and
convalescent patients and interrogated the dynamic changes of adaptive immune
response to SARS-CoV-2 infection over time. Our results revealed numerous
alterations in these cohorts in terms of gene expression profiles and the features of
immune repertoire. Moreover, a machine learning method was developed and resulted in
the identification of five independent biomarkers and a collection of biomarkers that could
accurately differentiate and predict the development of COVID-19. Interestingly, the
increased expression of one of these biomarkers, UCHL1, a molecule related to
nervous system damage, was associated with the clustering of severe symptoms.
Importantly, analyses on immune repertoire metrics revealed the distinct kinetics of T-
cell and B-cell responses to SARS-CoV-2 infection, with B-cell response plateaued in the
acute phase and declined thereafter, whereas T-cell response can be maintained for up to
6 months post-infection onset and T-cell clonality was positively correlated with the serum
level of anti-SARS-CoV-2 IgG. Together, the significantly altered genes or biomarkers, as
well as the abnormally high levels of B-cell response in acute infection, may contribute to
the pathogenesis of COVID-19 through mediating inflammation and immune responses,
whereas prolonged T-cell response in the convalescents might help these patients in
preventing reinfection. Thus, our findings could provide insight into the underlying
molecular mechanism of host immune response to COVID-19 and facilitate the
development of novel therapeutic strategies and effective vaccines.
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INTRODUCTION

The outbreak of coronavirus disease 2019 (COVID-19), first
reported in the city of Wuhan, China, in December 2019, has
posed formidable threat to global public health (1–3). Owing to
the rapid development of molecular virology, a new type of
highly infectious coronavirus, officially named as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), was quickly
identified to be the pathogen of COVID-19 by deep sequencing
and etiological analysis (4). SARS-CoV-2 replicates throughout
the respiratory tract and results in both upper and lower
respiratory tract infection including pneumonia (2, 5, 6). The
virus preferentially invades the lung epithelial cells via
angiotensin-converting enzyme 2 (ACE2) receptor (7–10) and
might also enter other epithelial cells, immune cells, or other cell
types through CD147 (BSG), CD26 (DPP4), or unidentified
pathways (7, 11, 12). The clinical manifestations after SARS-
CoV-2 infection are heterogeneous between individuals, ranging
from asymptomatic, development of multiple symptoms such as
coughing and fever, to failure of the respiratory system, and even
death (13–15). Generally, this infection results in mild illness in
most of the cases; however, approximately 15% of the patients
need hospitalization, while nearly 5% of the patients develop
acute respiratory syndrome and have high mortality, especially in
the elderly and patients with underlying diseases (16). Therefore,
there is an urgent need to develop novel therapeutic agents and
effective vaccines for controlling the current pandemic, which
requires the elucidation of the pathogenesis of COVID-19.

Recent investigations suggested that in addition to the virus
itself, dysregulated host immune response to SARS-CoV-2 may
also contribute to the pathogenesis of COVID-19 (17–20). The
latter notion was supported by the facts that lymphophenia as
well as increased number of neutrophils and monocyte were
frequently observed in COVID-19 patients with severe illness
(21–23). Along this line, several biomarkers were identified to be
related to the disease courses of COVID-19, including excessive
production of cytokines/chemokine (i.e., cytokine storm),
delayed or aberrant type I interferon (IFN-I) responses, and
other markers indicative of dysregulated immune response
(24, 25).

Recently, researchers have used RNA-seq or single-cell RNA-
seq (scRNA-seq) techniques to obtain transcriptomic data from
COVID-19 patients in different disease courses, by which
multiple biomarkers indicative of cell functions and immune
response could be simultaneously determined at the
transcriptional level. By these means, elevated expression of
several proinflammatory cytokines including IL-6, IL-1b,
MCP-1, IP-10, TNF, granulocyte colony-stimulating factor (G-
CSF), and a weakened type I interferon (IFN-I) responses were
reported in the peripheral blood of severe COVID-19 patients
(21–23, 26). In addition, increased expression of biomarkers
related to cell apoptosis and migration were also noted, especially
in patients with severe illness. However, the dynamic changes of
these biomarkers during the clinical course of COVID-19, which
could provide insight into the contribution of immune response
to COVID-19, are poorly characterized. Herein, we analyzed the
Frontiers in Immunology | www.frontiersin.org 2
host immune response to SARS-CoV-2 infection by profiling the
quantitative transcriptomes using peripheral blood samples
collected from 62 recovered COVID-19 patients, and published
transcriptomic data of 16 acute patients and 17 healthy subjects
downloaded from published papers/repository. Our analyses
revealed that several biomarkers indicative of host immunity to
SARS-CoV-2 infection, particularly the repertoire constitution of
B cells and T cells, were substantially altered at the
transcriptional level across different disease courses. To further
identify the potential biomarkers that can accurately distinguish
between different disease courses, a machine learning-based
method was developed, by which five independent biomarkers
and a sort of biomarker combination were successfully identified
and validated. Moreover, the association between aforementioned
biomarkers and the serum levels of SARS-CoV-2-specific
antibodies across different disease courses was uncovered by
correlative analyses. In addition, we also found that the level of
UCHL1, a marker for brain damage, was significantly upregulated
in acute patients compared with that in healthy donors and
convalescent patients.
MATERIALS AND METHODS

Ethics Approval
The work was performed in line with the Declaration of Helsinki
principles for ethical study. The study was approved by the
Medical Ethics Committee of the Tongji Medical College,
Huazhong University of Science and Technology, Wuhan,
China [Clinical Ethical Approval No. (2020) IEC-A251].

RNA-Seq Data Analysis
The RNA-seq data of acute and healthy control were retrieved
from the NCBI-GEO dataset, with ID PRJNA639275 (27). RNA-
seq raw data were cleaned using Fastp (v0.20.1) and then mapped
to human genome (GRCh38) using HISAT2 (v2.2.0).
FeatureCounts tool of Subread package (v2.0.0) was used for
counting the number of reads aligned to genes, with the help of
GENECODE gene annotation (v34). Then analysis of
differentially expressed genes was performed with DESeq2
R package (v1.30.0). Genes were categorized as differentially
expressed with the criteria: adjusted p-value (pAdj) <0.05 and
|log2FoldChange| >1 for upregulated genes and the adjusted p-
value <0.05 and |log2FoldChange| <−1. Gene counts were
normalized by DESeq2 and converted to log2 (normalized
counts + 1) format. Then batch effect was removed by limma R
package (v3.46.0) and the result was taken as the normalized
gene expression level.

GO and KEGG Enrichment Analysis
GO and KEGG enrichment analyses of differentially expressed
genes (DEGs) were performed using clusterProfiler R package
(3.18.0). The Benjamini and Hochberg method was used to
adjusted p-value. Significantly enriched GO term and KEGG
pathway were selected under the criteria: adjusted p-value <0.05.
August 2021 | Volume 12 | Article 677025
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Calculation of B-Cell Receptor and T-Cell
Receptor Repertoire Metrics
We applied MiXCR (v.3.0.12) to RNA-seq data from peripheral
blood mononuclear cells (PBMCs) for reconstructing B-cell
receptor (BCR) and T-cell receptor (TCR) reads. To minimize
batch effects and address the unevenness of sequencing depth,
sequencing data volume (the number of reads multiplied by the
length of reads) was kept at the same level. The targeted
sequencing of the TCR beta chain CDR3 to distinguish T-cell
clones, frequency, and antigenicity is feasible in TCR repertoire
identification (28, 29).

BCR and TCR clonotypes were extracted using MiXCR
(v.3.0.12). “Analyze shotgun” command was used with
parameters “–impute-germline-on-export” and “–only-
productive”. The post-analysis of BCR/TCR repertoire was
conducted using VDJtools (v1.2.1).

The number of unique clonotypes per sample was used to
indicate richness. Unique clonotype was strictly defined by exact
match for receptor nucleotide sequence (CDR3 sequence, V/J
segments, and hypermutations). Shannon entropy was used to
represent diversity. Shannon entropy is expressed as:

H = −o
N

i=1
pxi : ln pxið Þ

Where N represents the total number of clonotypes in sample X
and pxi refers to the frequency of clonotype i. Generally speaking,
more unique clonotypes and a more even distribution of
clonotypes will increase the diversity of a given repertoire.

1-Pielou’ evenness was used to represent clonality which
ranges from 0 to 1, and zero clonality means that each
clonotype has the same frequency. Higher clonality often
means that there is a group of highly expanded clonotypes
with dominant frequencies.

Pielou’ evenness is expressed as:

E =
H

Hmax

Where H represents Shannon entropy and Hmax is calculated as
ln(N). (N represents the total number of clonotypes in a sample).

The clonality is expressed as:

Clonality = 1 − E

In CDR3 length analysis, the samples in each group were
analyzed all together. Length distribution was described by
cumulative distribution function (CDF).

Prediction of COVID-19 Outcomes Based
on Machine Learning
We used a logistic regression model as the classifier. The logistic
regression function is expressed as follows:

logit = b0 + b1f1 + b2f2 +…+bnfn

Where f1 to fn represent different features. b0 indicates bias and b1
to bn denote the weight of these features. A sigmoid function was
Frontiers in Immunology | www.frontiersin.org 3
applied to transform logit into a score ranging between 0 and 1.
The sigmoid function is expressed as follows:

score =
1

1 + e−logit

As a Python module integrating classical machine learning
algorithms, Sklearn (v0.23.1) was used to implement our model.
To evaluate the performance achieved by each combination of
features, a three-fold cross-validation was performed. The samples
were randomly split into three sets and each set was called a fold.
For each fold, it was taken as a test set and the remaining two folds
were treated as a training set. Then, this progress was repeated
until all folds had served as the test set. The performance of a
model was characterized by the mean accuracy and mean AUC of
results tested on each fold. For each combination, a ROC curve
was outputted according to the result of the prediction. The
average AUC of the curves was compared and the final output
combination was determined with the highest AUC.

Enzyme-Linked Immunosorbent Assay
SARS-CoV2 S1 protein (Sino Biological Inc., BJ) was coated on a
high-binding 96-well plate (Thermo Scientific) at 4°C overnight.
Plates were blocked with 5% non-fat milk in phosphate-buffered
saline (PBS) for 1 h at room temperature, followed by incubation
with 1:100 diluted plasmas in dilution buffer (PBS, 2% non-fat
milk, and 0.05% Tween-20). A 1:4,000 dilution of horseradish
peroxidase (HRP)-conjugated mouse anti-human IgG, IgM, and
IgA antibodies (BaiaoTong Experiment Center, LY) was added
and incubated for 1 h at room temperature. Wells were washed six
times between each step with 0.05% Tween-20 in PBS (PBST).
Finally, wells were developed using tetramethylbenzidine substrate
(Beyotime Inc., WH) and were stopped by the addition of stop
solution, followed by reading at 450 and 570 nm. The sample OD
was calculated as OD450 subtracted by OD570.

Statistical Analysis
Statistical analyses were performed with GraphPad Prism
software (Version 6.0, GraphPad Software Inc.). Throughout
the study, n refers to the number of subjects where every subject
is one data point. Unpaired two-group comparisons were done
with the Mann–Whitney U test. In figures, ****P < 0.0001, ***P <
0.001, **P < 0.01, and *P < 0.05.
RESULTS

Study Subjects and Study Design
A total of 62 COVID-19 convalescents, 16 acute patients, and 17
healthy donors were involved in this study. The information of
subjects including age, sex, disease severity, and time from
symptom onset or a negative RT-PCR test to sample collection
is summarized in Table 1. Of note, the samples of healthy
controls were collected prior to the outbreak of COVID-19.
Acute patients with COVID-19 were all hospitalized, while 60 of
the 62 convalescents were hospitalized. The percentages of
hospitalized patients in the acute infection group and
August 2021 | Volume 12 | Article 677025
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convalescent group were 100% and 96.7%, respectively. The
median time from symptom onset to sample collection for
acute patients was 14 days, with an interquartile range of 9–16
days. In the convalescent group, the median time from a negative
RT-PCR test to sample collection was 151.0 days, with an
interquartile range of 135–162 days. The majority of these
convalescents (51 in 62; 82.2%) were moderate cases, and only
2 were mild cases, and 9 were severe cases (Table 1).

Ficoll density gradient centrifugation was performed to
isolate the PBMCs, followed by the construction of RNA
library and high-throughput sequencing (Figure 1A). Quality
control was applied for the RNA-seq data, and batch effect was
minimized by including a pooled mixture of all samples as
standard control.

Transcriptomic Profiling of PBMCs From
Acute COVID-19 Patients, Convalescents,
and Healthy Donors
In order to investigate the peripheral alteration during and after
SARS-CoV-2 infection, we compared the transcriptomic
differences in PBMC samples from acute COVID-19 patients,
convalescents, and healthy donors through DEG analysis. The
combined DEG list is shown in the Supplementary Data.

The heat map of the DEG profiles was built (Figure 1B),
through which the profile of acute COVID-19 patients was found
to be clearly different from that of convalescents and health
donors (HDs). Of note, the DEG profile of convalescents was
comparable to that of HD, suggesting that the overall gene
expression pattern of acute patients was significantly altered
compared with that of HDs, and almost returned to the
normal level of healthy individuals in the convalescent phase.
Frontiers in Immunology | www.frontiersin.org 4
To further study the transcriptomic changes induced by
SARS-CoV-2 infection regarding the specific cellular biological
processes, we performed a volcano plot (Figure 1C) followed by
gene functional enrichment analysis (Figure S1) to identify
differentially expressed genes and enriched pathways.

In the comparison between acute COVID-19 patients and HDs,
668 genes were upregulated and 230 genes were downregulated in
acute COVID-19 patients. Whereas in the comparison between
convalescents and acute patients, 475 DEGs were downregulated in
convalescents, compared with 91 genes that were upregulated.
When the DEGs of convalescents and HDs were compared,
sparse DEGs were noted and the fold change of gene expression
was not evident, indicating the resemblance between these two
cohorts from the transcriptomic perspective.

Interestingly, the upregulated genes in acute patients compared
with those in HDs were enriched in multiple biological processes,
which were also found to be downregulated in convalescents
compared with those in acute patients, as revealed by GO term and
KEGG pathway enrichment analysis (Figure S1). Of note, the viral
infection-induced alterations in PBMCs of convalescents were
enriched in gene modules including “complement activation,”
“humoral immune responses,” “phagocytosis,” and “adaptive
immunity based on somatic recombination.” In addition, the
upregulation of a series of B-cell-related gene modules was also
observed, including “immunoglobulin receptor binding” and “antigen
binding.” These findings suggested that the expression of genes
related to humoral immunity may be upregulated in the acute
phase of SARS-CoV-2 infection, thereafter declining and finally
returning to the ground level in convalescents. To conclude, our
data provided a quantitative and global insight into the dynamic
changes of immune-related genes, such as those implicated in B-cell
TABLE 1 | List of information of the patients.

Convalescent group (n = 62) Acute group (n = 16) Healthy group (n = 17)

Age, years 55.0 (49.3–63.0) 52.5 (39.3–68.0) 43.0 (36.0–55.0)
Gender
Female 47 (75.8%) 9 (56%) 9 (53%)
Male 15 (24.2%) 7 (44%) 8 (47%)

Time from symptom onset to sampling, days NA 14 (9–16) NA
Time from the last negative test to sampling, days 151.0 (135. 0–162.0) NA NA

Disease severity status
ICU 0 4 (25%) No
Severe 9 (14.5%) 8 (50%) No
Moderate 51 (82.2%) 4 (25%) No
Mild 2 (3.3%) 0 No

Underlying diseases
None 35 (56.5%) NA NA
Hypertension 18 (29.0%) NA NA
Diabetes 11 (17.7%) NA NA
Coronary heart disease 2 (3.2%) NA NA
Hyperlipidemia 2 (3.2%) NA NA
Rheumatoid arthritis 2 (3.2%) NA NA
Hepatitis B 2 (3.2%) NA NA
Tuberculosis 1 (1.6%) NA NA
Nephritis 1 (1.6%) NA NA
Urticaria 1 (1.6%) NA NA
Breast cancer 1 (1.6%) NA NA
August 2021 | Vol
Data are median (IQR), n (%), or n/N (%). P-values were calculated by the Mann–Whitney U test, c² test, or Fisher’s exact test, as appropriate.
NA, not available.
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response during SARS-CoV-2 infection, especially in the
convalescent phase.

Immune Repertoire Analysis Reveals the
Increase of B-Cell Diversity and Richness
in Acute Patients
To study the alteration of the B-cell and T-cell repertoire during
and after SARS-CoV-2 infect ion, we retr ieved the
Frontiers in Immunology | www.frontiersin.org 5
complementarity determining region 3 (CDR3) variable region
of the beta chain of the TCR and heavy chain of the BCR from
the RNA-seq library. B-cell diversity, as estimated by unique
CDR3 usage, was significantly higher in acute COVID-19
patients compared with that in convalescents (P < 0.0001) and
HDs (P < 0.0001) (Figure 2A). Next, richness, a measurement
used to quantify the number of unique V(D)J rearrangements,
was evaluated and also found to be significantly higher in acute
A

B

C

FIGURE 1 | Transcriptomic analysis shows the alteration of host immunity in acute and convalescent SARS-CoV-2 infection. (A) Design of the experiment. PBMC
was prepared from patients, while total RNA was extracted and analyzed to identify differentially expressed genes (DEGs). (B) DEGs across acute COVID-19 patients
(n = 16), healthy donors (n = 17), and convalescents (n = 62). (C) Volcano plot on DEGs in the comparison of different groups. Each red dot represents an individual
gene with Benjamini–Hochberg adjusted P-value (two-sided unpaired Wald test) ≤ 0.01 and average log2 fold change ≥ 0.5 in the comparison.
August 2021 | Volume 12 | Article 677025
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COVID-19 patients than in convalescents and HDs. Finally,
clonality, an indicator used to characterize clonal amplification
and represents the evenness of the repertoire, was higher in acute
patients than in healthy controls and recovered people. To better
explain the meaning for quantification of B-cell diversity,
richness, and clonality, a toy model was used and displayed in
Figure S2. In sum, the highest clonality, diversity, and richness of
B-cell repertoire were observed in acute COVID-19 patients,
highlighting a biased and uneven B-cell repertoire developed in
peripheral blood during the acute phase of SARS-CoV-2
infection, which may reveal the dynamic nature of B-cell
response during SARS-CoV-2 infection.
Frontiers in Immunology | www.frontiersin.org 6
The overall T-cell metrics for these subjects were also
calculated according to the CDR3 sequence of the beta chain
of the TCRs (TRB). Notably, the highest level of TRB diversity
was observed in HDs (Figure 2B), whereas the TRB diversity of
acute COVID-19 patients and convalescents was significantly
lower than that of HDs (P < 0.0001, t-test). However, the acute
patients and convalescents had significant higher T-cell clonality
than HDs, indicating the clonal expansion of antigen-specific T
cells and the shift of T-cell repertoire. The richness of TRB
sequence, which represents the distribution of unique
clonotypes, showed a similar trend as the diversity. Together,
lower diversity and evenness as well as higher clonality of T cells
A

B

C

D

FIGURE 2 | Peripheral B-cell and T-cell diversity, richness, and clonality analyzed by RNA-seq. (A) The B-cell repertoire was characterized by diversity, richness,
and clonality, as calculated on the basis of BCR sequence similarity including CDR3 sequence, as well as IGHV and IGHJ usage. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. (B) Characterization of peripheral T cells. (C) Heat maps showing T-cell V(D)J rearrangement in PBMC across three cohorts. The colors suggested
the frequency of a particular V-J gene pair. (D) CDR3 length comparison of IGH. The acute patients seemed to have the maximum IGH CDR3 length, indicating
frequent BCR recombination.
August 2021 | Volume 12 | Article 677025
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in acute and convalescent patients may indicate the durability of
T-cell response to SARS-CoV-2 infection.

We next sought to compare the profiles of TCR gene usage
between the three groups. In this regard, significantly distinct
profiles were observed in TRB genes (Figure 2C), but were less
pronounced in TRA (alpha chain of the TCRs) genes (Figure S3).
An overrepresentation of TRBJ2-7 was identified in convalescents,
whereas an overrepresentation of TRBJ1-1 and TRBJ2-1 was
observed in acute patients. Interestingly, we also discovered
TRBV28/TRBJ2-7 as the top V-J pair in convalescents. The
distinct usage of V(D)J genes between acute patients and
convalescents could be explained by a repertoire shift reflecting
the transition from acute T-cell response to memory T-
cell response.

Previous studies had shown that TCR structural difference,
such as CDR3 length, might contribute to the differentiation of T
cells (30). To test this issue, we analyzed the CDR3 length of BCR
and TCR in the three cohorts and found that B cells from acute
patients tended to have a longer IGH (heavy chain of
immunoglobulin) CDR3, whereas no differences were observed
in T cells (Figure 2D and Figure S4), suggesting that
heterogeneous BCR recombination might be induced mainly in
IGH upon SARS-CoV-2 infection.

Taken together, these results highlighted the complex and
imbalanced nature of host immune responses to SARS-CoV-2
infection, in which B-cell response may be substantially induced
in the acute phase and return to the ground level in the convalescent
phase, whereas T-cell response could persist for a long time even
without the presence of specific antigen in the convalescent phase.

Machine Learning Models to Classify
COVID-19 Cases and Predict
Clinical Outcomes
Next, a computational pipeline was developed based on the
transcriptomic data of our cohort to identify the potential
biomarker or biomarker combination that could accurately
distinguish between different disease courses of COVID-19.
More importantly, we aimed to distinguish the convalescents
from the unexposed HDs, since some convalescents who were
asymptomatic could not be successfully identified by nucleic acid
testing (NAT) or antibody testing.

Firstly, all transcriptomic data were normalized on indexes
including repertoire metrics and DEGs before machine learning
algorithm was applied. Twenty-nine biomarkers consisting of 20
repertoire metrics and 9 highly ranked DEGs chosen from 1,241
DEGs were taken as candidate biomarkers to generate about
146,595 groups of candidate biomarker combinations. Samples
were randomly divided into two groups, with 70% and 30% of the
samples allocated to the training set and the testing set,
respectively. Cross-validation was preformed using these datasets
to determine the preferred biomarker combination with the
highest area under the curve (AUC) value (31–33). For the
model training in this step, multivariate logistic regression (LR),
a widely accepted machine learning algorithm, was performed
(Figure 3A). This approach resulted in the identification of five
independent biomarkers which could be used to predict disease
Frontiers in Immunology | www.frontiersin.org 7
outcome and distinguish between acute patients, convalescents,
and HDs (Figure S3). These biomarkers include the differentially
expressed gene C1D nuclear receptor corepressor (C1D), Alpha-2-
adrenergic receptors (ADRA2A), spindlin family member 3
(SPIN3), ubiquitin C-terminal hydrolase L1 (UCHL1), and
Glutathione S-Transferase Mu 3 (GSTM3). To determine the
reliability of these biomarkers, confusion matrices (Figure 3C)
were built and showed that various diseases courses of these
samples could be distinguished with ideal accuracy with these
biomarkers. Moreover, a best biomarker combination was also
determined, including B-cell diversity, T-cell diversity, and
clonality, as well as the expression levels of UCHL1 and C1D.
This combination included both DEGs and repertoire features and
thus resulted in optimal accuracy of the model. The AUC of acute,
convalescent, and HD reached 0.99 in this model (Figure 3B).
Moreover, the principal component analysis (PCA) (Figure 3D)
demonstrated that the different clusters of samples were clearly
segregated by this combination, further suggesting the reliability of
this prediction model.

Thus, our findings demonstrated that the clinical outcome of
a patient can be predicted by a combination of repertoire
signatures and DEGs through machine learning approaches,
thereby providing insight into the classification and prediction
of COVID-19 development and invoking timely and precise
clinical advice for the treatment of COVID-19.

Potential Use of UCHL1 as Peripheral
Blood Biomarker for Neurological
Complications in COVID-19 Patients
Among the aforementioned biomarkers, UCHL1 is particularly
interesting given the following reasons: i) it is a biomarker
frequently used for indicating brain damage induced by viral
infections; ii) the encoded protein can be tested in the blood
sample, making it clinically applicable; iii) it is one of the five
“predictors” identified by our machine learning approach.
Therefore, we next focused on this molecule. Firstly, we
confirmed the normalized gene expression profiles of UCHL1
measured by RNA-seq in each cohort with or without COVID-19
(Figure 3E). After normalization, the expression level of UCHL1
was still found to be significantly higher in acute patients than in
convalescents and HDs.

Therefore, we next sought to explore the association of clinical
outcomes with UCHL1 levels at the time of sampling (Figure 3F).
For patients with severe symptoms or admitted to the ICU,
the UCHL1 level was negatively associated with the time from
symptom onset to sample collection (Corr = −0.554, P = 0.0049).
A tendency of negative correlation was also noted when all acute
patients were included for analysis; however, this correlation failed
to reach statistical significance (Corr = −0.173, P = 0.344).

Together, we found that UCHL1 expression used as a
biomarker in the peripheral blood can predict the disease
development of COVID-19, although the potential mechanism
by which this molecule participates in the pathogenesis of
COVID-19 requires further investigations.

To further elaborate the role of UCHL1 in COVID-19, we
reviewed human studies investigating the use of serum UCHL1 as
August 2021 | Volume 12 | Article 677025
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biomarker for brain injury. In a multicenter cohort study including
206 patients and 175 healthy controls, UCHL1 level was effective in
discriminating between TBI (traumatic brain injuries) patients with
and without intracranial lesions on a CT scan and was correlated
with functional 3-month outcomes (34). In another study with 273
mild and moderate TBI patients, similar results were observed and
the combination of GFAP and UCHL1 was sensitive for identifying
a positive CT scan (35). Another observation cohort study on HIE
(hypoxic–ischemic encephalopathy) patients (neonate patients = 16,
controls = 11) also found that UCHL1 was elevated in HIE neonates
and associated with cortical injury (36). As a protein biomarkers for
central nervous system damage, UCHL1 has been detected in
Frontiers in Immunology | www.frontiersin.org 8
diverse brain injuries including ischemic/hemorrhagic stroke (37,
38), TBI (39, 40), Parkinson’s disease (41), cardiac arrest (42), and
seizures (43).

The role of human coronaviruses in nervous system damage
has been underestimated. Nevertheless, recent evidence suggests
that the development of SARS-CoV-2 infection could induce
neurological disorders involving both the central and peripheral
nervous systems in COVID-19 patients worldwide (44–48);
however, the pathogenesis and the sequelae of the damage are
still poorly understood. Our transcriptional analysis suggests that
the elevated serum UCHL1 protein levels could be a hallmark of
severe illness in acute COVID-19 patients; theoretically, this
A

B C

E F

D

FIGURE 3 | Identification of biomarkers for classifying and predicting clinical outcomes of SARS-CoV-2 infection by machine learning strategy. (A) The experiment
design of the prediction pipeline; cross-validation was involved for model training. DEG, differentially expressed genes. The best biomarker combination determined
by the pipeline: (B) the ROC curves, (C) the confusion matrix, and (D) PCA analysis for the best biomarker combination, which was more accurate and sensitive than
independent biomarkers. (E) Normalized UCHL1 expression in acute, convalescent, and healthy groups. (F) Correlation between normalized values of UCHL1
expression and time from symptom onset to sample collection. The pink line represents the linear regression line. Unpaired two-group comparisons were done with
the Mann–Whitney U test. ****P < 0.0001, ***P < 0.001.
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protein might be involved in opportunistic direct attack on the
brain or systemic secondary insult including thrombosis,
hypoxemia, or autoimmune response. Therefore, future clinical
investigations are warranted to build the connection of this
molecule with severe illness of COVID-19 at the protein level
given the accessibility of blood sample and the potential
clinical relevance.

Clonality of Peripheral T Cells in
Convalescents Is Positively Correlated
With the Serum Levels of Spike
Protein-Specific IgG
The appearance of T-cell diversity in the final biomarker
combination which can accurately predict disease outcomes
Frontiers in Immunology | www.frontiersin.org 9
suggests that the structure of T-cell repertoire might contribute to
anti-virus response during SARS-CoV-2 infection. To validate this
speculation, the S protein-specific IgG levels of blood samples of
convalescent individuals (n = 62) were measured by enzyme-linked
immunosorbent assay (ELISA) (Figure 4A and Table S1), and
correlative analyses were performed to determine their relationship
with the immune repertoire metrics extracted from transcriptional
analysis. These analyses revealed that the S protein-specific IgG
levels were found to be positively correlated with T-cell clonality and
diversity (r = 0.27; P = 0.0089 and r = −0.18; P = 0.0912, Spearman
rank correlation) (Figure 4B). It is noteworthy to mention that even
from patients who had been discharged for more than 200 days, the
S protein-specific IgG was still detectable with a relatively high titer,
accompanied by the persistence of memory T-cell response.
A

B

C

FIGURE 4 | SARS-CoV-2-specific IgG is correlated with T-cell clonality in serum samples of convalescent patients (n = 62). (A) The results of ELISA assays.
(B) Correlation between anti-S IgG level and T-cell clonality and T-cell diversity, respectively. (C) T-cell diversity of blood samples of convalescents is negatively
correlated with days after recovery, and T-cell clonality exhibits an increasing trend against days after recovery.
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Surprisingly, the S protein-specific IgG levels were not associated
with those B-cell repertoire metrics. Nonetheless, the lack of
association between antibody levels and B-cell response has been
reported by other groups, which requires further investigation
(discussed later).

We next sought to determine the kinetics of the T-cell
proliferation. For this purpose, time of sample collection was
incorporated into our analysis. The T-cell diversity was
negatively correlated with days after recovery (r = −0.334; P =
0.029, Pearson correlation) (Figure 4C). However, the clonality
of T cells exhibited a growing trend over time (r = 0.371; P =
0.014, Pearson correlation). The opposite trends of diversity and
clonality could be explained by the clonal expansion of specific
types of T cells, suggesting the prolonged maturation of T-cell
responses against SARS-CoV-2 infection.

To conclude, the correlation between T-cell expansion and
the SARS-CoV-2-specific antibody responses highlighted the
contribution of T cells to the humoral immune responses.
Besides, the persistent presence of T-cell response and virus-
specific IgG antibody supports the notion that immune memory
was maintained in convalescent COVID-19 patients for up to
6 months.
DISCUSSION

Viral infection often causes dramatic alteration on the host
transcriptome, which may contribute to the aberrant immune
responses and facilitate the invasion of the virus (49–52). Using
the PBMC specimens of 62 convalescents, 16 acute patients, and
17 health donors, we reported here the genome-wide
transcriptomic analyses that characterize the host immune
responses during SARS-CoV-2 infection at the transcriptional
level. The major findings of this study can be summarized as
follows: i) several biomarkers including UCHL1 and a
combination of biomarkers were identified using machine
learning-based method with great accuracy in predicting the
clinical outcome of COVID-19; ii) the B-cell response declines to
the normal level in convalescents, as shown by similar repertoire
profiles between HDs and convalescents and the lower
expression of genes involved in humoral immunity in HDs and
convalescents compared with that in acute patients; and iii)
SARS-CoV-2-specific antibody response and T-cell response
can be detected in the convalescents who recovered for up to 6
months, suggesting the existence of prolonged immune
protection against reinfection in these patients.

The differential expressed gene analysis found 898 DEGs
from acute patients compared with healthy controls. These
DEGs have been compared with those from other published
analyses using RNA-seq or single-cell RNA-seq data (53–55). As
shown in Figure S6, SPARC, S100A12, ITGB3, LCN2, IL1B, and
TNFAIP3 are found to be the shared response genes among these
studies and ours. SPARC encodes a cysteine-rich acidic matrix-
associated protein, which is also involved in extracellular matrix
synthesis and promotion of changes to cell shape. S100A12
Frontiers in Immunology | www.frontiersin.org 10
relates to innate immune system and TLR4 signaling. LCN2
also relates to innate immunity and IL-17 signaling pathway.
ITGB3 and IL1B both relate to ERK signaling. The expression of
TNFAIP3 is induced by TNF and is involved in the signaling
pathway by GPCR. In conclusion, the most common genes
shared by our and other DEG analyses are highly related to
immune response and immune regulation.

These findings provided valuable perspectives for the
pathogenesis of SARS-CoV-2 infection. B-cell diversity was
significantly increased in acute patients compared with that in
healthy subjects; thereafter, it gradually decreased over time in
convalescents and finally declined to the levels comparable with
that in healthy subjects (Figure 2 and Figure S7). However, for
T-cell diversity, a unanimous decreasing tendency was noted
from acute phase to convalescent phase (Figure S7). The distinct
kinetics of T- and B-cell repertoire across SARS-CoV-2 infection
suggests that although B-cell response might subside over time
after the initial activation in the acute phase, the response of T
cell to SARS-CoV-2 could persist for a long time even without
the presence of specific antigens.

The presence of SARS-CoV-2 spike protein-specific IgG
antibodies was observed in long-term recovered individuals
from COVID-19, which is supported by the recent findings
that most convalescent patients still harbor high titers of
neutralizing antibodies against SARS-CoV-2 in the study
cohorts from the United States, Iceland, and China (56–60).
Presumably, the first wave of antibody production might occur
during acute SARS-CoV-2 infection and is likely mediated by
short-lived plasmablasts which are capable of escaping the
germinal center reaction and resulting in the production of
immature antibodies with limited somatic hypermutation. This
wave of antibodies may decline in 1 month due to the short half-
lives of antibodies and plasmablasts. However, the second wave
of antibody production by plasma cells is dominant afterwards.
With experience in the germinal center (61–63), plasma cells are
capable of producing mature antibodies with a higher frequency
of somatic hypermutation and quickly moving to bone marrow
where they can find survival niches and persistently secrete
antibodies of high quality. The correlation of SARS-CoV-2
spike protein-specific IgG antibodies with T-cell repertoire
metrics but not B-cell repertoire metrics is rather interesting. A
similar finding was reported recently by Mathew et al. using a
flow cytometry approach (21). Perhaps, prolonged T-cell
response will provide additional help for either the antibody-
producing cells or B cells outside the periphery, or only a subset
of B cells in the periphery that was not identified in this study.

To identify biomarkers that can monitor or predict the
progress of the disease is of high priority in fighting against the
pandemic. We combined both repertoire metrics and 1,241
DEGs to profile the immune alteration in response to SARS-
CoV-2 infection and identified 5 biomarkers through machine
learning. Interestingly, these biomarkers could be individually
used to distinguish COVID-19 outcomes, suggesting that the
differential expression of these genes is implicated in the
development of the disease. Moreover, a combination of
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biomarkers was identified with outstanding accuracy for
predicting disease outcome. Strikingly, not only could this
model be used to distinguish between the different phases of
COVID-19 patients, it is also effective in distinguishing
unexposed HDs from convalescents who have a negative
antibody test result. This approach will improve the accuracy
of identifying and monitoring SARS-CoV-2-infected individuals
with undetectable antibody and virus RNA, which is beneficial
for the screening and control of the pandemic.

However, the high level of signals generated by inflammation
related to infection may sequester other signals that are also
involved in the pathogenesis of COVID-19. One of these signals
may be the pathways related to nervous system injury, both for
the central nervous system and peripheral nervous system,
partially due to their preferential distribution in the nervous
system but not in peripheral blood. However, with emerging
reports suggesting the presence of brain injury in some subset of
COVID-19 patients, which is consistent with the previously
reported effects of the coronavirus on human nervous system,
there is an urgent need to identify peripheral biomarkers with the
capacity to early identify neurological complications after SARS-
CoV-2 infection. We reported here the association between the
peripheral biomarker UCHL1 and severe disease of COVID-19.
Serum UCHL1 has been a biomarker for brain damage in various
studies including those complicated with virus infection. Thus,
the role of this molecule in the nervous system should be further
explored, especially in the context of COVID-19. Once the
connection between UCHL1 and the neurological complication
of COVID-19 is firmly established, the presence of this molecule
could be used for the early diagnosis of neurological disorder
caused by SARS-CoV-2 attack and favor the therapeutic
intervention of COVID-19 patients.

In conclusion, our transcriptomic analyses involving
peripheral samples from 62 convalescents, 16 acute patients,
and 17 healthy controls uncovered the distinct kinetics of T-cell
and B-cell response to SARS-CoV-2 infection, with B-cell
response plateaued in the acute phase and declined thereafter,
whereas T-cell response can be maintained for up to 6 months
post-infection onset and may provide help to assist in the
maintenance of anti-SARS-CoV-2 antibodies. Using a machine
learning approach, five independent biomarkers, and a collection
of multiple biomarkers including both DEGs and immune
repertoire metrics, were identified to be capable of predicting
disease outcome with great accuracy. One of these biomarkers,
UCHL1, is of particular importance given its potential role in
mediating nervous system complications after SARS-CoV-2
infection. Thus, our findings will lay the ground for the future
exploration of the pathogenesis of COVID-19 and may facilitate
the use of the aforementioned biomarkers in clinical diagnosis
and intervention.
Frontiers in Immunology | www.frontiersin.org 11
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Medical Ethics Committee of the Tongji Medical
College, Huazhong University of Science and Technology,
Wuhan, China. The patients/participants provided their
written informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

LeY, YH, YuZ, and YC conceived and designed the study. YW,
YL, and YouZ did the bioinformatic analyses. BL recruited the
patients. BL and FZ provided the clinical information. HZ, DS,
YunZ, HY, and LoY performed the experiments. YL wrote the
initial draft of the manuscript. YH and LeY provided comments
and helped edit the manuscript. All authors contributed to the
article and approved the submitted version.
FUNDING

This work was supported by the National Natural Science
Foundation of China (31870728 and 31470738), the Science
Foundation of Wuhan University (2042020kfxg02 and
2042016kf0169), Translational Medicine and Interdisciplinary
Research Joint Fund of Zhongnan Hospital of Wuhan University
(Grant No. ZNJC202006) to LeY, and the Innovative Foundation
of Huazhong University of Science and Technology
(3004510131) to YH.
ACKNOWLEDGMENTS

We thank the patients who had been recruited in this study and
the clinical staffs who provided care for these patients.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.677025/
full#supplementary-material
REFERENCES
1. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic Origins of

Human Coronaviruses. Int J Biol Sci (2020) 16:1686–97. doi: 10.7150/
ijbs.45472
2. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The Proximal
Origin of SARS-CoV-2. Nat Med (2020) 26:450–2. doi: 10.1038/s41591-020-
0820-9

3. Van Dorp L, Acman M, Richard D, LP S, CE F, Ormond L, et al.
Emergence of Genomic Diversity and Recurrent Mutations in SARS-
August 2021 | Volume 12 | Article 677025

https://www.frontiersin.org/articles/10.3389/fimmu.2021.677025/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.677025/full#supplementary-material
https://doi.org/10.7150/ijbs.45472
https://doi.org/10.7150/ijbs.45472
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41591-020-0820-9
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Transcriptomic Signatures of COVID-19
CoV-2 Lucy. Infect Genet Evol (2020) 83:104351. doi: 10.1016/
j.meegid.2020.104351

4. Zhou P, Lou YX, XG W, Hu B, Zhang L, Zhang W, et al. A Pneumonia
Outbreak Associated With a New Coronavirus of Probable Bat Origin. Nature
(2020) 579:270–3. doi: 10.1038/s41586-020-2012-7

5. Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB,
et al. Comparative Pathogenesis of COVID-19, MERS, and SARS in a
Nonhuman Primate Model. Science (2020) 1015:eabb7314. doi: 10.1126/
science.abb7314

6. Sia SF, Yan L, Chin AWH, Fung K, Choy K, Wong AYL, et al. Pathogenesis
and Transmission of SARS-CoV-2 in Golden Hamsters. Nature (2020) 583
(7818):834–8. doi: 10.1038/s41586-020-2342-5

7. Fan C, Li K, Ding Y, Lu WL, Wang J. ACE2 Expression in Kidney and Testis
May Cause Kidney and Testis Damage After 2019-Ncov Infection. Front Med
(Lausanne) (2021) 7:563893. doi: 10.3389/fmed.2020.563893

8. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-Cell RNA-Seq Data
Analysis on the Receptor ACE2 Expression Reveals the Potential Risk of
Different Human Organs Vulnerable to 2019-Ncov Infection. Front Med
(2020) 14:185–92. doi: 10.1007/s11684-020-0754-0

9. Li Y, Li H, Zhou L. EZH2-Mediated H3K27me3 Inhibits ACE2 Expression.
Biochem Biophys Res Commun (2020) 526:947–52. doi: 10.1016/
j.bbrc.2020.04.010

10. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, ZuoW. Single-Cell RNA Expression
Profiling of ACE2, the Putative Receptor of Wuhan 2019-Ncov. bioRxiv
(2020) 2:2020.01.26.919985. doi: 10.1101/2020.01.26.919985

11. Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, et al.
Distribution of ACE2, CD147, CD26, and Other SARS-CoV-2 Associated
Molecules in Tissues and Immune Cells in Health and in Asthma, COPD,
Obesity, Hypertension, and COVID-19 Risk Factors. Allergy Eur J Allergy Clin
Immunol (2020) 75(11):2829–45. doi: 10.1111/all.14429

12. Venkatakrishnan AJ, Puranik A, Anand A, Zemmour D, Yao X, Wu X, et al.
Knowledge Synthesis of 100 Million Biomedical Documents Augments the
Deep Expression Profiling of Coronavirus Receptors. Elife (2020) 9:1–25.
doi: 10.7554/eLife.58040

13. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC,
Rattigan SM, et al. A Systematic Review of Antibody Mediated Immunity to
Coronaviruses: Kinetics, Correlates of Protection, and Association With
Severity. Nat Commun (2020) 11:4704. doi: 10.1038/s41467-020-18450-4

14. Iwasaki A, Yang Y. The Potential Danger of Suboptimal Antibody Responses in
COVID-19. Nat Rev Immunol (2020) 20:339–41. doi: 10.1038/s41577-020-0321-6

15. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers Associated
With COVID-19 Disease Progression. Crit Rev Clin Lab Sci (2020) 57:1–11.
doi: 10.1080/10408363.2020.1770685

16. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the
Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a
Report of 72 314 Cases From the Chinese Center for Disease Control and
Prevention. JAMA (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

17. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune
Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China.
Clin Infect Dis (2020) 71:762–8. doi: 10.1093/cid/ciaa248

18. Kuri-Cervantes L, Pampena MB, Meng W, Rosenfeld AM, Ittner CAG,
Weisman AR, et al. Immunologic Perturbations in Severe COVID-19/
SARS-CoV-2 Infection. bioRxiv Prepr Serv Biol (2020) 2020.05.18.101717.
doi: 10.1101/2020.05.18.101717

19. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R,
et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of
COVID-19. Cell (2020) 181:1036–45.e9. doi: 10.1016/j.cell.2020.04.026

20. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ.
COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression.
Lancet (London England) (2020) 395:1033–4. doi: 10.1016/S0140-6736(20)
30628-0

21. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, et al.
Deep Immune Profiling of COVID-19 Patients Reveals Distinct Immunotypes
With Therapeutic Implications. Science (2020) 369:6508. doi: 10.1126/
science.abc8511

22. Zhou Z, Ren L, Zhang L, Zhong J, Xiao Y, Jia Z, et al. Heightened Innate
Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host
Microbe (2020) 27:883–890.e2. doi: 10.1016/j.chom.2020.04.017
Frontiers in Immunology | www.frontiersin.org 12
23. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K,
Antoniadou A, Antonakos N, et al. Complex Immune Dysregulation in
COVID-19 Patients With Severe Respiratory Failure. Cell Host Microbe
(2020) 27:992–1000.e3. doi: 10.1016/j.chom.2020.04.009

24. Ong EZ, Chan YFZ, LeongWY, Lee NMY, Kalimuddin S, Haja Mohideen SM,
et al. A Dynamic Immune Response Shapes COVID-19 Progression. Cell Host
Microbe (2020) 27:879–82.e2. doi: 10.1016/j.chom.2020.03.021

25. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al.
Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-
19. Nature (2020) 584:463–9. doi: 10.1038/s41586-020-2588-y

26. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and
Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in
Wuhan, China: A Descriptive Study. Lancet (London England) (2020)
395:507–13. doi: 10.1016/S0140-6736(20)30211-7

27. Arunachalam PS, Wimmers F, Mok CKP, Perera RAPM, Scott M, Hagan T,
et al. Systems Biological Assessment of Immunity to Mild Versus Severe
COVID-19 Infection in Humans. Science (2020) 369:1210–20. doi: 10.1126/
SCIENCE.ABC6261

28. Reuben A. Comprehensive T Cell Repertoire Characterization of non-Small
Cell Lung Cancer. Nat Commun (2020) 11:603. doi: 10.1038/s41467-019-
14273-0

29. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ, Kahsai O,
et al. Comprehensive Assessment of T-Cell Receptor b-Chain Diversity in
ab T Cells. Blood (2009) 114:4099–107. doi: 10.1182/blood-2009-04-
217604

30. Afik S, Yates KB, Bi K, Darko S, Godec J, Gerdemann U, et al. Targeted
Reconstruction of T Cell Receptor Sequence From Single Cell RNA-Seq Links
CDR3 Length to T Cell Differentiation State.Nucleic Acids Res (2017) 45:1–13.
doi: 10.1093/nar/gkx615

31. Hoo ZH, Candlish J, Teare D. What is an ROC Curve? Emerg Med J (2017)
34:357–9. doi: 10.1136/emermed-2017-206735

32. Reddy A, Fihn SD, Liao JM. The VA MISSION Act — Creating a Center for
Innovation Within the VA. N Engl J Med (2019) 380:1592–4. doi: 10.1056/
nejmp1815209

33. Kamarudin AN, Cox T, Kolamunnage-Dona R. Time-Dependent ROC Curve
Analysis in Medical Research: Current Methods and Applications. BMC Med
Res Methodol (2017) 17:1–19. doi: 10.1186/s12874-017-0332-6

34. Diaz-Arrastia R, Wang KKW, Papa L, Sorani MD, Yue JK, Puccio AM, et al.
Acute Biomarkers of Traumatic Brain Injury: Relationship Between Plasma
Levels of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic
Protein. J Neurotrauma (2014) 31:19–25. doi: 10.1089/neu.2013.3040

35. Welch RD, Ayaz SI, Lewis LM, Unden J, Chen JY, Mika VH, et al. Ability of
Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1,
and S100B To Differentiate Normal and Abnormal Head Computed
Tomography Findings in Patients With Suspected Mild or Moderate
Traumatic Brain Injury. J Neurotrauma (2016) 33:203–14. doi: 10.1089/
neu.2015.4149

36. Douglas-Escobar MV, Heaton SC, Bennett J, Young LJ, Glushakova O, Xu X,
et al. UCH-L1 and GFAP Serum Levels in Neonates With Hypoxic-Ischemic
Encephalopathy: A Single Center Pilot Study. Front Neurol (2014) 5:273.
doi: 10.3389/fneur.2014.00273

37. Glushakova OY, Glushakov AV, Miller ER, Valadka AB, Hayes RL.
Biomarkers for Acute Diagnosis and Management of Stroke in
Neurointensive Care Units. Brain Circ (2016) 2:28–47. doi: 10.4103/2394-
8108.178546

38. Ren C, Zoltewicz S, Guingab-Cagmat J, Anagli J, Gao M, Hafeez A, et al.
Different Expression of Ubiquitin C-Terminal Hydrolase-L1 and aii-Spectrin
in Ischemic and Hemorrhagic Stroke: Potential Biomarkers in Diagnosis.
Brain Res (2013) 1540:84–91. doi: 10.1016/j.brainres.2013.09.051

39. Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, et al.
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