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Glioblastoma (GBM) is the most common malignant brain tumor in adults, and
immunotherapies and genetic therapies for GBM have evolved dramatically over the
past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate.
The inflammatory microenvironment is a general signature of tumors that accelerates
epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM
tumor cells and glioma-associated microglia/macrophages are the primary contributors to
the inflammatory condition, meanwhile the modification of epigenetic events including
DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved
in this pathological process of GBM, finally result in exacerbating the proliferation, invasion,
and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA
methyltransferases inhibitors, and RNA interference could reverse the inflammatory
landscapes and inhibit GBM growth and invasion. Here, we systematically review the
inflammatory-associated epigenetic changes and regulations in the microenvironment of
GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of
inflammation in GBM.

Keywords: glioblastoma, inflammation,microenvironment, epigenetic regulation, GBM tumor cells, glioma-associated
microglia/macrophages
INTRODUCTION

Glioblastoma (GBM) is the most aggressive and common malignant brain tumor arising from
neural precursor cells (1). It is defined as grade IV glioma by WHO and divided into two distinct
subgroups, namely IDH wild-type (primary GBM, approximately 90%) and IDH mutant-type
(secondary GBM, 10%) (2). Both types of GBM shows similar clinical symptoms that include
headache, nausea, dizziness, speech difficulties, and cerebral edema (3), and is characterized by poor
survival and remarkably high tumor heterogeneity, which invades surrounding brain tissue and
quickly develops resistance to therapy (4). Primary GBM is more common and manifests as de novo
development with no identifiable precursor lesion, whereas secondary GBM is characterized by
precursor diffusion or progression with anaplastic astrocytoma, anaplastic oligoastrocytoma, and
anaplastic oligodendroglioma (3, 5). Additionally, EGFR mutations are frequently enriched in
org April 2022 | Volume 13 | Article 8693071
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primary GBM while p53 mutations are more common in
secondary GBM (6, 7). Although the differences between the
two subtypes have been found, improvement of therapies for
GBM still needs to continue due to unknown risk factors (8).
Notably, epigenetic variations have displayed vital roles in the
development of tumor progression in recent years (9), such as
DNA methylation, histone modification, and other epigenetic
modifiers that could modulate the oncogene expression of GBM
(10, 11). Thus, epigenetic changes may be a novel perspective for
understanding the physiology and pathogenesis of GBM.

The tumor microenvironment (TME) is a host for supporting
the growth and invasion of tumors, promoting neoplastic
transformation, protecting the tumor from host immunity, and
providing niches for dormant metastases to thrive (12), and is
created by interactions between malignant and non-transformed
cells (13). Besides high tumor heterogeneity, a unique TME is
one of vital reasons for dismal results of GBM treatment (5, 14–
16). GBM tumor cells have the ability to transform the immune
response into chronic inflammation (17), which helps tumor
relapse by nurturing GBM stem cells (GSCs), resulting in
epithelial-mesenchymal transition and multidrug resistance
(18). And then, angiogenesis and inflammatory cytokines
induced by GBM expansion increase the abnormal blood brain
barrier (BBB) or blood tumor barrier (BTB), which further
inhibits the entrance of functional immune cells in the brain
(19). Apart from tumor cells, glioma-associated microglia/
macrophages (GAMs) are the main types of infiltrating
immune cells, and account for approximately 30% of the GBM
cell population (20). Notably, GAMs acquire two specific
phenotypes including the classical pro-inflammatory state M1
and alternative anti-inflammatory state M2. The latter is found
to be the primary phenotype in GBM (21) and can be
reprogrammed by GBM tumor cells (22), generating a complex
and dynamic network of inflammatory cytokines, chemokines,
and matrix remodeling (13). As a result, the autocrine and
reciprocal paracrine of GBM tumor cells and GAMs promote
an inflammatory TME in favor of tumor promotion (23).
Moreover, inflammation cooperates with the Warburg effect in
GBM to exacerbate the inflammation response in the TME
through producing more inflammatory cytokines, lactate, and
immunosuppressive and angiogenetic factors, leading to a more
suitable and beneficial condition for GBM progression (24–32).
Therefore, targeting the inflammatory TME might be a
promising therapeutic strategy for GBM.

Epigenetic modifications are involved in inflammatory
procession in GBM via regulating the inflammatory signaling
pathways and production of inflammatory cytokines (24, 33–35).
Due to the sustained exploration of epigenetic modification in
the last decade, various epigenetic changes such as DNA
methylation, histone modification, mRNA and non-coding
RNA (ncRNA)-mediated targeting regulation, and nucleosome
and chromosome remodeling were determined in cancer
progression (36). Among these, DNA methylation and
nucleosome-mediated inflammatory gene expressions, aberrant
histone methylation or acetylation-mediated glioma-associated
macrophages/microglia (GAMs) polarization, and ncRNA-
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mediated high expression of inflammatory signaling pathways
contribute to the transcription and growth of GBM tumor cells
(37–40). These epigenetic modifications induce inflammatory
cytokine release that accelerates the chronic inflammatory
response in the TME of GBM, and reversing or inhibiting
these changes are beneficial for longer survival in GBM
patients, suggesting that epigenetic regulations of inflammation
are important to GBM (10, 11). Therefore, we systemically
reviewed the associated epigenetic changes and regulation in
the inflammatory TME of GBM procession, aiming to
comprehensively recognize epigenetic modifications of the
inflammatory microenvironment in GBM.
INFLAMMATION ACCELERATES GBM
PROGRESSION

Aberrant activation of inflammatory responses is a significant
trait of GBM (41, 42), which endows GBM tumor cells with an
immune evasion ability, thus causing immune tolerance of GBM
to any therapies (38, 43). GBM tumor cells and GAMs are the
main contributors to the inflammatory microenvironment (44,
45), exaggerating tumor invasion and relapse (46, 47). Moreover,
GBM tumor cells also collaborate with the extracellular matrix,
astrocytes, pericytes, and endothelial cells to secrete multiple
inflammatory cytokines and chemokines that foster GAM
infiltration and polarization (48–50), which forms a vicious
cycle that accelerates the inflammatory response in the
microenvironment and further aggravates GBM.

GBM Tumor Cells Promote Inflammation
GBM tumor cells exhibit a strong inflammatory signature that
persistently produces pro-inflammatory cytokines at chronic low
levels, thus generating a chronic inflammatory state in the TME
(51). Represented by IL-1 and IL-6, primary mediators of GBM
tumor cells in the inflammatory TME can orchestrate
immunological activation and inflammatory signaling cascades
such as hypoxia-inducible factor-1a (HIF-1a), Wnt-1, nuclear
factor-kappa B (NF-kB), and STAT3 in GBM (52–55) (Figure 1).
The members of the IL-1 subfamily including IL-1b and IL-33
drive tumor promotion and immune suppression (56).
Activations of the NLRP3 inflammasome and CD133 in GBM
tumor cells could induce the production of IL-1b and its
downstream chemokines CCL3, CXCL3, and CXCL5 (57),
which facilitate the migration, proliferation, self-renewal, and
invasion of GBM (58–60). IL-1b activates both RAS and Wnt-1
which mediate the elevation of HIF-1a, thus inducing a HIF-1a/
IL-1b autocrine loop in GBM tumor cells (61). Meanwhile, IL-1b
also activates the p38 mitogen-activated protein kinase (MAPK)-
activated protein kinase 2 (MK2)- human antigen R (HuR), toll-
like receptor 4 (TLR-4), and other inflammation-associated
signaling pathways that significantly increase the levels of IL-6
and IL-8 in GBM tumor cells, eventually developing an
inflammatory TME in favor of GBM invasion and growth
(61–63). Additionally, IL-33 induced by GBM tumor cells is
another important inflammatory mediator that accelerates GBM
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proliferation, migration, and invasion (47, 64, 65). Interestingly,
IL-33 could transform non-stem cells to GBM stem cells (66),
activate disintegrin and metalloproteinase with thrombospondin
motifs 5 (ADAMTS5) and EGFR by promoting the accumulation
of tenascin-C (TNC), which in turn exacerbates GBM tumor cell
proliferation (47, 64, 65, 67). Both subfamilies of IL-1 accelerate
GBM relapse, however, blocking IL-1b and IL-33 can reduce
tumor progression-associated compensation mechanisms
including the Warburg effect (47, 68). Furthermore, emerging
data suggest that GBM tumor cell-induced IL-6 displays a pro-
tumorigenic role, and correlates with poor prognosis and GAM
infiltration in GBM (67, 69, 70). IL-6 stimulates the invasion and
growth of GBM tumor cells (71) by binding to heterogeneous
membrane receptor complexes (formed by IL-6r and
glycoprotein 130) and initiating typical IL-6 signal transduction
(53), such as STAT3. Therefore, pro-inflammatory cytokines
such as IL-1 members and IL-6 secreted from GBM tumor cells
aggravate tumor-promoting inflammation and GBM growth.
Frontiers in Immunology | www.frontiersin.org 3
Glioma-Associated Microglia/
Macrophages
GAMs are the domain members of immune cells in GBM when
GSCs have a strong evasion ability (38). It is noteworthy that pro-
inflammatory and angiogenic pathways including TNF, interferon
(IFN), NF-kB, and hypoxia pathways in GAMs accelerate RAS-
driven-GBM tumor cell proliferation via upregulation of IL-1b,
VEGFA, CCL8, Arg1, CD274, and PD-L1 (72). High levels of
inflammatory genes including IL-6, IL-8, IL-1b, IL13RA1,
IL13RA2, IL10RB, CXCR4, OSMR, CCR1, MDK, LIF, FAS,
CCL2, CCL20, CXCL10, CXCL11, and CXCL14 as well as GAM
makers such as CD14, CD163, TLRs, and CHI3L1 co-occur and
are positively associated with poor survival in mesenchymal GBM
(73). This suggests that GAM-associated inflammation is
corrected with GBM progression. GAMs consist of two types of
cells, GBM-associated macrophages and microglia. The former
are preferentially recruited to the perivascular areas in early GBM,
and GBM-associated microglia are localized to peritumoral
FIGURE 1 | Inflammation-related changes in GBM tumor cells. GBM tumor cells produce abundant IL-1 and IL-6 through activating various pathways including
STAT3, RAS, NFkB, NLRP3, and HIF-1a pathways, thus creating a chronic inflammatory environment, which benefits GBM growth.
April 2022 | Volume 13 | Article 869307
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regions (74, 75). Both types have polarized phenotypes with
different functions: anti-tumorigenic and pro-tumorigenic
phenotypes, which are defined as M1 or M2-like GAMs,
respectively (50). Initially, stimulators like lipopolysaccharide
(LPS), interferon (IFN)-g, TNF, CD80, CD86, and IL-12A/B
induce M1-like polarization by activating the TLR4-NF-kB and
STAT1 signaling pathways (73, 76), whereas activations of IL-4,
IL-6, IL10, CD163, MSR1, MRC1, CD209, CLEC10A, CLEC7A,
and CXCR4 induce M2-like polarization through the NF-kB/
STAT3 pathway (73). In general, most GAMs display the M2
phenotype due to activation of STAT3 and NF-kB, secretions of
immunosuppressive cytokines (e.g., IL-6, IL-10, IL-8, TGF-b1,
MCP-1 and PGE-2), and colony stimulating factor (CSF)
secretions of the TME in GBM (77–81). M2 GAMs further
produce more Arg-1, TGF-b, IL-10, IL-6, and other abundant
immunosuppressive cytokines, thus foster immunosuppression
and pro-angiogenesis which contribute to growth and invasion of
GBM after GBM tumor cells adapt to the pro-inflammatory TME
Frontiers in Immunology | www.frontiersin.org 4
(46). Additionally, other pathways including mTOR also increase
activities of STAT3 or NF-kB in M2 GAMs that decrease immune
reactivity and functional immune cell infiltration (80). Ultimately,
these effects mediate GBM tumor immune evasion and growth
(Figure 2), hence, reshaped GAMs have potential as a therapy
mode in GBM.

Cellular Communication in GBM
Cellular communication in GBM also participates in chronic
inflammatory procession (Figure 3). At the primary state, the
crosstalk between stromal cells and tumor cells that induces
inflammatory cytokines like IL-2 can recruit neutrophils, mast
cells, T cells, and B cells to the TME of GBM (44). In contrast,
GBM tumor cells protect themselves by inducing IFN-g, IL-10, IL-
8, CCL2, IL-6, and TGFb, which impair the anti-tumor ability of
immune cells and reprogram immune cells to inflammatory
phenotypes that produce inflammatory mediators, anagenetic
factors, and PD-1/PD-L1, resulting in GBM tumor cell evasion
FIGURE 2 | Chronic inflammation induced M2 GAMs. Under chronic inflammation, most GAMs are polarized to the M2 type by STAT3 and NFkB activation, which
produces high levels of VEGF and immunosuppressive factors including IL-6, IL-8, IL-10, Arg1, TGF-b, and PD-L1, eventually inducing more M2 polarizations and
accelerating GBM growth and evasion in turn.
April 2022 | Volume 13 | Article 869307
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and invasion (44, 82, 83). And then, GBM tumor cell-induced IL-6
activates STAT3 in astrocytes, which subsequently drives IL-6 to
stimulate GBM tumor cells and further promotes STAT3 signals
and enhances downstream events (84). Certainly, STAT3-
dependent signal-mediated GBM tumor cells produce more IL-6
thus increasing the level of PD-L1 in immunosuppressive
peripheral myeloid cells and facilitating tumor growth (85),
which indicates that reciprocal activation of IL-6 and STAT3
continuously fosters chronic inflammation to exacerbate GBM
growth and evasion (84). Interestingly, pro-inflammatory
cytokines induce tumor granule neuron precursors differentiating
into astrocytes (74), and then astrocyte-mediated IL-4 stimulates
GAMs to produce insulin-like growth factor 1, thereby further
promoting tumor progression (86). GBM tumor cells also foster
pericytes and endothelial cells to produce more IL-10 and TGFb by
activating the IL-6/STAT3 signaling pathway, thus inciting tumor
growth (87–89). Surrounding anti-inflammatory cytokines,
Frontiers in Immunology | www.frontiersin.org 5
including IL-8 and IL-10, shift M1 GAMs toward M2 GAMs
(78), which would express Arg-1 (46) and contribute to abnormal
angiogenic activity in GBM (46).

Furthermore, crosstalk between GBM tumor cells and GAMs
is indispensable to the growth of GBM. Firstly, GBM tumor cell-
induced IL-1b drives the HIF-1a-IL-1b autocrine loop to
maintain a persistently elevated IL-1b level (61) that activates
RelB/p50 complexes, thus attracting or polarizing GAMs (90).
GBM tumor cells promote M2 GAM polarization by activation
of STAT3, NF-kB, Wnt-3a, and mechanistic target of rapamycin
(mTOR) (91), resulting in upregulation of IL-10 levels (91). And
then, M2 GAMs also release IL-1b that activates protein kinase c
(PKC)-delta and mediates phosphorylation of the glycolytic
enzyme glycerol-3-phosphate dehydrogenase (3-PGDH), which
subsequently activates phosphatidylinositol-3-kinase (PI3K) and
promotes a feed-forward inflammatory loop in GBM tumor cells
(68, 90). Moreover, GBM tumor cells together with GAMs
FIGURE 3 | Cellular communication in GBM. Under chronic inflammation, cytokines released by cells including somatic cells and other immune cells can recruit
GAM infiltration after the survey and chemotherapy and immunotherapy treatments in GBM. Additionally, GBM tumor cells induce GAM polarization resulting in
disrupting the balance of M1 and M2 GAMs. Meanwhile, GBM tumor cells communication with astrocytes and other somatic cells could impair T cell function and
release plenty of cytokines including IL-6, IL-4, IL-10, IL-8, IL-1, TGF-b, Arg-1, and VEGF. All these changes aggravate GBM tumor growth.
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generate a mass of succinate and lactate through the PI3K/HIF-
1a pathway, thus aggravating local inflammation and GBM
metastasis (27–31). Specially, lactate accelerates glycolysis,
angiogenesis, and chronic inflammation by promoting IL-1b,
IL-8, VEGF, and NF-kB signals, which ensures sufficient oxygen
and nutrient supply for tumor cell proliferation (32).
Collectively, GBM tumor cell communication with GAMs,
immune cells, astrocytes, pericytes, and endothelial cells
accelerates the development of a chronic inflammatory TME
in GBM.
EPIGENETIC REGULATIONS OF THE
INFLAMMATORY MICROENVIRONMENT
IN GBM

Epigenetic changes occur simultaneously with oncogenic events
in cancer progression. In GBM, epigenetic modification including
DNA methylation, histone modification, and non-coding RNA
regulation could modulate the inflammatory genes-oncogenes
loop and associated immunosuppression (92–95), providing
a therapeutic strategy and comprehensively recognized
pathogenesis of GBM by targeting the inflammatory
TME (Table 1).
Frontiers in Immunology | www.frontiersin.org 6
DNA Methylation
DNA methylation is an epigenetic modification of DNA that
is important for the normal regulation of transcription,
embryonic development, genomic imprinting, genome stability,
and chromatin structure, and is controlled by DNA
methyltransferases, methyl-CpG binding proteins, and other
chromatin-remodeling factors, thereby controlling gene
expression (36). DNA methylation loss of oncogenes can
activate inflammatory oncogene expression and extensively
promote GBM growth (106, 107). GBM patients with an
unmethylated O6-methylguanine-DNA methyltransferase
(MGMT) promoter significantly show an elevated expression
of inflammatory genes such as IL-6, CCL2, CCXCL2, HLA-A,
and Serum amyloid A1 (108, 109), similar to methylation of
MGMT, positively associated with IL-6-mediated primary GBM
procession (110). This implies that inflammation is associated
with high expression ofMGMT. Additionally,N6-methyladenine
(N6-mA) is highly enriched in histone 3 lysine 9 trimethyl
(H3K9me3) in GBM tumor cells, which is induced by ALKBH
and exacerbates GSCs’ self-renewal and proliferation (111, 112).
Specially, the demethylase activity of ALKBH5 has been
demonstrated as an indispensable role in regulating the
conditions of hypoxia and inflammatory TME in GBM and is
required for NLRP3 inflammasome-related CXCL8 and NEAT1
gene activation (24, 113, 114). Silencing MGMT or ALKBH5 of
TABLE 1 | Epigenetic control inflammatory response of GBM.

Target Intervene method Subjects Results Reference

EZH2 MC4040 and MC4041 Primary GBM tumor cells and U87 cells Reduces H3K27me3 levels, impairs the pro-inflammatory phenotype
of GBM by decreasing expressions of TGF-b, TNF-a, and IL-6, and
restrains cell growth

(96)

ALKBH5 Knockdown Raw264.7 cells, U87 and GL261 cells Reverses m6A demethylation, decreases TAM recruitment, and
inhibits CXCL8 expression, reducing IL-8 secretion and restraining
cell growth

(24)

IL-8 Knockdown U251 human glioma cell lines, patient-
derived xenograft glioma specimens,
athymic nude mice

Reduction of IL-8 abolishes methylation of the H3K27 and H3K9
residues, restraining cell growth

(97)

IL-8
promoter

Prostaglandin E2, 5-aza-
2’-deoxycytidine and
HDAC inhibitors

Human 1321N1 (derived from grade II
astrocytoma) and A-172 cell lines (derived
from grade IV glioblastoma)

Reverses methylation status of IL-8 prompter, restrains cell growth (98)

IL-6; Knockdown of DNMT1;
IL-6 neutralization; miRNA
142-3p mimics

NBE-cultured cell lines, CSC-like GBM
tumor cells

Inhibits tumorigenicity and blocks IL-6, HMGA2, and SOX2
expression in GBM

(34)

p38a
MAPK

RNAi p38a
MAPK knockdown

U251 human GBM tumor cells Reduces IL-6 secretion and suppresses U251 GBM cell migration
and invasion in the presence of inflammatory cytokines

(99)

lncRNA
SNHG15

Palbociclib GBM tumor cells, human microglial cell line
(HMC3)

Regulates the lncRNA SNHG15/CDK6/miRNA-627 circuit and
reduces polarization of M2 GAMs, decreasing GBM tumorigenesis
and increasing temozolomide sensitivity

(100)

HDAC Valproic acid and sodium
butyrate

Microglia Leads to a decrease of the inflammation response of microglia (101)

HADC 5/
9

Trichostatin A or valproic
acid

Glioma-polarized microglia HDAC inhibitors block acquisition of transcriptional memory in
glioma-polarized microglia

(37)

HDAC1/
2

Panobinostat, vorinostat,
and romidepsin

GBM-microglia Reduces glycolysis in a c-Myc-dependent manner and lowers ATP
levels

(102)

miR-21 Konckdown/pacritinib GBM-GAMs Reduces the polarization of M2 GAMs and levels of VEGF, TGF-b1,
and IL-6 by decreasing expression of Sox2, PDCD4, and STAT3,
which inhibits GBM tumorigenesis

(103, 104)

miR-124 miR-124-loaded
extracellular vesicles

GBM-microglia Inhibits M2 GAM polarization and suppresses tumors by modulating
STAT3 activity and recruiting natural killer cells to the TME

(105)
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GBM tumor cells could inhibit GAM infiltration and repress
NEAT1 and CXCL8 expression, eventually suppressing GBM
tumor cell growth and lengthening the survival of GBM patients
(24, 113, 115). This suggests that regulation of the DNA
methylation state of inflammation-associated genes is beneficial
for GBM treatment.

Histone Modification
Histone modification is covalent post-translational modification
to histone proteins including methylation, phosphorylation,
acetylation, ubiquitylation, and sumoylation, and regulates
gene expression by altering chromatin structure or recruiting
histone modifiers (116). Histone methylation and acetylation are
found frequently in GBM. On one hand, enhancer of zeste
homologue 2 (EZH2) and lysine 27 on histone H3 (H3K27)
methyltransferase (H3K27me) highly mutate in GBM tumor
cells, and lead to a poor outcome of GBM (96). EZH2
increases H3K27me3 in the promoter of PTEN thus silencing
PTEN and activating the threonine protein kinase B (AKT)/
mTOR pathway, promoting GBM tumor cell proliferation and
metastasis (117). Interestingly, EZH2 inhibitors (MC4040 and
MC4041) not only reverse the pro-inflammatory phenotype of
GBM U-87 and GL-1 cells by downregulating the levels of
H3K27me3, but also inhibit epithelial-mesenchymal transition
and migration of primary GBM tumor cells by reducing the level
of VEGF and VEGFR1, resulting in inhibiting GBM cell
proliferation and invasion of GBM (96). On the other hand,
histone deacetylases (HDACs) are also positively associated with
poor clinical features of GBM (118, 119). HDAC activity is
greatly increased in GBM by activating STAT6, IFR-3, IFR-4,
NFkB, TLR, and IFN (120), and is regarded as the main effector
of epigenetic alterations in M2 GAMs (121, 122). During
the GBM process, hyperactivity of HDAC3, 5, and 9 is
expressed in IL-4-induced M2 GAMs (101, 123) that increase
the levels of TGFb and IL-10, resulting in exacerbating the
immunosuppressive capacity of GBM tumor cells (124). It is
worth noting that HDAC inhibitors can thwart M2-type
polarization of GAM and retard GBM tumor growth (37, 125)
by restricting activation of histone marks or targeting the STAT6
signaling pathway in a HDAC3-dependent manner (123, 124,
126). Unfortunately, EZH or HDAC suppression also induces
M1 GAMs secreting IL-1b and IL-6, and activates STAT3 signals
in GBM tumor cells, leading to an aggravated inflammatory
response in the TME of GBM (124, 127). Thus, other histone
modifications and more effective histone-regulating methods of
inflammation in GBM need further exploration.

Non-Coding RNA Modification
Non-coding RNAs (ncRNAs) related to epigenetic regulation
consist of two main groups: long ncRNAs (lncRNAs) and short
ncRNAs including miRNA, siRNA, intronic RNA, repetitive
RNA, piRNAs, snoRNAs, and lincRNAs, which generally act as
cis-acting silencers, but also as trans-acting regulators of site-
specific modification and imprinted gene-silencing (128, 129).
Among these, miRNA has been frequently explored in GBM
progression and invasion (130). A variety of miRNAs, including
Frontiers in Immunology | www.frontiersin.org 7
miR-21, miR-26, miR-221/222, miR-210, miR-155, and miR-10b,
promote GBM cell proliferation, apoptosis, and growth by
targeting PTEN expression and active Akt and HIF3a.
Recently, a growing number of studies revealed the
relationship between miRNAs and inflammation (100, 105,
131–133). The MiR142-3p promoter is methylated which
decreases miR142-3p gene expression and increases the level of
IL-6, thus promoting GBM invasion and migration in a DNA
methyltransferase (DNMT) 1-dependent manner (34). In
addition, inhibition of miR-93 in GBM tumor cells fosters an
inflammatory microenvironment via increasing the levels of IL-
6, IL-8, IL-1b, granulocyte-colony stimulating factor, leukemia
inhibitory factor, COX2, and CXCL5 (131).MiR-155 induced by
inflammatory cytokines, such as IL-1b and TNFa, mediates
mesenchymal transition of GBM tumor cells and GBM growth
(134, 135). Nevertheless, inhibition of miR-155 restrains the
proliferation, migration, and invasion of GBM tumor cell
growth by activation of STAT3 (132, 133). Interestingly, miR-
124-loaded extracellular vesicles suppress GBM tumors by
activating STAT3 activity and recruiting natural killer cells to
the TME (100, 105). Downregulation of miRNA-125b or
inhibition of mitogen-activated protein kinase (MAPK) mRNA
could restrain the p38/MAPK pathway and reduce IL-6
secretion, which suppresses GBM tumor cell migration and
invasion (99, 130, 136). MiR142-3p mimics could block IL-6,
HMGA2, and SOX2 expression in GBM tumor cells that inhibit
tumorigenicity (34). Besides, upregulation of miR-93 can
significantly suppress proli feration, migration, and
angiogenesis of GBM tumor cells by alleviating the
inflammatory environment (131). MiR-21 in exosomes or
extracellular vesicles induced by GBM tumor cells can be
incepted by GAMs and upregulate IL-6, TGF-b, and Arg-1 in
M2 GAMs (103, 104), resulting in downregulating the immune
response and accelerating growth and invasion of GBM tumor
cells (103). However, inhibition of miR-21 significantly reduces
the polarization of M2 GAMs and decreases levels of VEGF,
TGF-b1, and IL-6 by decreasing activities of Sox2, PDCD4, and
STAT3, ultimately inhibiting GBM tumor cell growth (104).
Collectively, RNA interference is important to GBM treatment
through multiple regulations of inflammation-related signals.
CONCLUSIONS AND PERSPECTIVES

The inflammatory TME as the primary contributor to the
pathogenesis of GBM, which consists of various functional
cells including GBM tumor cells, GAMs, and other non-
tumor cells, and the autocrine and reciprocal paracrine of these
above cells form a chronic low-grade inflammation state that
benefits proliferation, invasion, migration, and evasion of GBM.
While, epigenetic modification is a new perspective for
understanding the pathogenesis of GBM. Here, we find that
epigenetic regulators including DNMT, EHZ, HDAC, and
miRNAs are involved in the inflammation of GBM, reminding
us that epigenetic control of the inflammatory TME may be a
rewarding therapy for GBM treatment. However, some problems
April 2022 | Volume 13 | Article 869307

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Epigenetic Modification of Glioblastoma Microenvironment
still need to be further explored in the future. Firstly, the different
epigenetic changes between primary and secondary GBM need
to be explained, which is meaningful to identify and diagnose the
two subtypes. Secondly, DNA methylation and histone
modification including phosphorylation, ubiquitylation, and
sumoylation of the inflammatory TME in GBM need
elaborating. And then, the relationships of the inflammatory
TME between other epigenetic modifications, such as
chromosome structure, nucleosome transcription, long
ncRNAs, and other short ncRNAs need comprehensively
uncovering. Finally, the interactive influences of different
epigenetic modifications in GBM need to be explained. Overall,
we provide insight into the epigenetic regulation of inflammation
in GBM and reveal the relationship between inflammation and
GBM progression, suggesting some future directions of GBM
underlying epigenetic modification.
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