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The human oral cavity harbors one of the most diverse microbial communities with
different oral microenvironments allowing the colonization of unique microbial species.
This study aimed to determine which of two commonly used sampling sites (dental
plaque vs. oral swab) would provide a better prediction model for caries-free vs.
severe early childhood caries (S-ECC) using next generation sequencing and machine
learning (ML). In this cross-sectional study, a total of 80 children (40 S-ECC and 40
caries-free) < 72 months of age were recruited. Supragingival plaque and oral swab
samples were used for the amplicon sequencing of the V4-16S rRNA and ITS1 rRNA
genes. The results showed significant differences in alpha and beta diversity between
dental plaque and oral swab bacterial and fungal microbiomes. Differential abundance
analyses showed that, among others, the cariogenic species Streptococcus mutans
was enriched in the dental plaque, compared to oral swabs, of children with S-ECC.
The fungal species Candida dubliniensis and C. tropicalis were more abundant in the
oral swab samples of children with S-ECC compared to caries-free controls. They were
also among the top 20 most important features for the classification of S-ECC vs. caries-
free in oral swabs and for the classification of dental plaque vs. oral swab in the S-ECC
group. ML approaches revealed the possibility of classifying samples according to both
caries status and sampling sites. The tested site of sample collection did not change
the predictability of the disease. However, the species considered to be important for
the classification of disease in each sampling site were slightly different. Being able
to determine the origin of the samples could be very useful during the design of oral
microbiome studies. This study provides important insights into the differences between
the dental plaque and oral swab bacteriome and mycobiome of children with S-ECC
and those caries-free.

Keywords: dental plaque, oral swab, bacteria, fungi, microbiota, machine learning, case-control, artificial
intelligence
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INTRODUCTION

The oral cavity harbors one of the most diverse microbial
communities within the human body (Stearns et al., 2011).
A variety of oral niches (non-shedding tooth surfaces, tongue,
cheek, hard and soft palates, and gingival sulcus) provide different
levels of oxygen, nutrients, salivary flow, and masticatory forces
(Hall et al., 2017). Each of these different microenvironments
allow the colonization of unique and adapted microbial
communities. Therefore, it is expected that the microbial
composition of each oral site differs significantly from each other.

Usually, the oral microbiota exists in a homeostatic balance
with the host and contributes to the development of the immune
system. However, once this balance is disturbed, some microbial
species can overgrow and diseases associated with site-specific
microbes such as periodontitis (subgingival microbiota), dental
caries (supragingival microbiota), and oral candidiasis (oral
mucosal and salivary microbiota) may occur (Lamont et al., 2018;
Vila et al., 2020). Therefore, it is important to select the most
appropriate site of sampling for the study and/or diagnosis of
each oral infectious diseases. Recent studies have shown that
the SARS-CoV-2 virus, which causes the coronavirus disease 19
(COVID-19), can be detected in saliva (Fernandes et al., 2020). It
has been reported that salivary glands can be important reservoir
of the virus (Xu et al., 2020b). Consequently, the presence of
high SARS-CoV-2 viral load in saliva could make it a suitable
diagnostic tool for COVID-19. Therefore, this also validates the
importance of exploring different sampling options for diagnosis
of infectious diseases (Fernandes et al., 2020; Sapkota et al., 2020;
Xu et al., 2020a).

Since the nineteenth century, it is known that the oral
microbes play a crucial role in the development of dental caries
(Russell, 2009). However, the establishment of new technologies,
such as next generation sequencing (NGS) and machine learning
algorithms, has provided a unique opportunity to an enhanced
understanding of the role of oral microbes (bacteria, fungi, and
viruses) on caries development and progression.

As dental caries continues to be one of the most prevalent
chronic diseases among children worldwide, there is a clear need
for a deeper understanding of how oral microbial communities
and their interactions could impact children’s oral health. The
terms early childhood caries (ECC) and severe ECC (S-ECC)
were first introduced in the 1990s (Ismail and Sohn, 1999). ECC
is described as any caries experience in the primary dentition of
children younger than 6 years of age. S-ECC is the severe form of
ECC and has an important effect on children’s development and
well-being (Pierce et al., 2019; Folayan et al., 2020).

We hypothesized that the microbial (bacterial and fungal)
profile of dental plaque significantly differs from that of oral
swabs, and because the dental biofilm is in closer contact with
the tooth surface, it would provide a better prediction model for
caries onset. To test this hypothesis, first we characterized the

Abbreviations: ASVs, Amplicon Sequence Variants; FDR, False Discovery
Rate; HOMD, Human Oral Microbiome database; ITS1, Internal Transcribed
Spacer 1; PCoA, Principal Coordinates Analysis; PERMANOVA, Permutational
Multivariate Analysis of Variance using distance matrices; S-ECC, Severe Early
Childhood Caries.

differences between the dental plaque and oral swab bacterial
and fungal microbiota in children with S-ECC and those caries-
free. Second, we analyzed which of those commonly used
sampling sites (dental plaque and oral swab) would provide
a better model for the classification of S-ECC vs. caries-free,
using machine learning approaches. Third, we further evaluated
whether the observed differences between the microbial profiles
of the samples could be used for the differentiation between the
sampling sites (dental plaque vs. oral swab) to assist researchers
during the design of oral microbiome studies. This is one of
the first studies to explore the oral microbiome profiles to
classify oral sites.

MATERIALS AND METHODS

Study Population
In this cross-sectional study, eighty children < 72 months
of age were recruited between December 2017 and August
2018. Among those, 40 had S-ECC, according to the American
Academy of Pediatric Dentistry definition (AAPD, 2020), and
40 were caries-free. Children with S-ECC were recruited at the
Misericordia Health Centre (MHC), Winnipeg-MB, Canada, on
the day of their full-mouth rehabilitative dental surgery under
general anesthesia. Caries-free children were recruited from the
community. Caries-free children had a dmft (cumulative score
of the number of decayed, missing, or filled primary teeth)
index equal to zero and had no incipient lesions. To confirm
the caries-free status, a dental examination was performed by
R.J.S. at the Children’s Hospital Research Institute of Manitoba
by means of visual/tactile examination using artificial light and
no radiographs. Inclusion criteria: children less than 72 months of
age who were caries-free (dmft = 0) or have been diagnosed with
S-ECC (based on the American Academy of Pediatric Dentistry
definition). Exclusion criteria: children older than 72 months of
age, use of antibiotics, and children who did not satisfy the case
definition of S-ECC.

Based on the power analysis published by La Rosa et al. (2012)
at 5% significance level, with 40 samples per group and the
average number of reads of 50,000 per sample our study would
achieve a power > 97%. This study protocol was approved by the
University of Manitoba’s Health Research Ethics Board (HREB #
HS20961–H2017:250) and by the MHC, Winnipeg, MB, Canada.
Written informed consent was provided by the parents or legal
caregivers (de Jesus et al., 2020). This work follows the STROBE
guidelines checklist for cross-sectional studies (Supplementary
Table).

Sample Collection
Due to the young age of the participants and their inability
to spit saliva, oral swab samples were collected with a sterile
polyester-tipped applicator (Fisher Scientific) by swabbing the
buccal mucosa and anterior floor of the mouth under the
tongue. The oral swabs were stored in RNAprotect Reagent
(Qiagen, Cat. # 74324, Hilden, Germany) at −80◦C until
further analysis. Supragingival plaque samples were collected
from all available tooth surfaces with a sterile interdental
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brush (Agnello et al., 2017; de Jesus et al., 2020). They were
dislodged into the RNAprotect Reagent (Qiagen, Cat. # 76506,
Hilden, Germany) and stored at −80◦C until further analysis.
For simplicity, supragingival plaque samples are referred to
as dental plaque.

DNA Extraction and 16S and ITS1 rRNA
Amplicon Sequencing
Total DNA was extracted from 160 samples (80 oral swabs
and 80 dental plaque samples) using QIAamp DNA mini kit
(Qiagen, Hilden, Germany) following manufacturer‘s protocol.
An additional enzymatic digestion step with lysozyme treatment
(20 µg/ml lysozyme in a buffer containing 20 mM Tris HCl, pH
8; 1.2% Triton X 100; 2 mM EDTA) was performed before DNA
extraction from dental plaque samples.

The total DNA was sent on dry ice to McGill University–
Génome Québec Innovation Center (Montreal, Canada) for
paired-end Illumina MiSeq PE250 sequencing. The primers
515F, (5′-GTGCCAGCMGCCGCG GTAA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′), targeting the V4
hypervariable region of the bacterial 16S rRNA gene and
the primers ITS1-30 (5′-GTCCCTGCCCTTTGTACACA-
3′) and ITS1-217 (5′-TTTCGCTGCGTTCTTCATCG-3′),
targeting the Internal Transcribed Spacer 1 (ITS1) of the fungal
rRNA gene were used for amplification (Usyk et al., 2017;
de Jesus et al., 2020).

Bioinformatics and Statistical Analysis
The sequences were received as demultiplexed, barcode removed,
paired ends fastq files. The quality control analysis was performed
with FastqC v0.11.8 (Andrews, 2010). The sequences were
then imported and analyzed with QIIME2 2018.11 (Bolyen
et al., 2019). The 16S pair-end sequences were quality trimmed,
filtered to remove ambiguous and chimeric sequences, and
merged using DADA2 implemented in QIIME2, resulting in
the amplicon sequence variant (ASV) table (Callahan et al.,
2016). The ITS1 pair-end sequences were trimmed using the Q2-
ITSxpress QIIME2 plugin prior to the DADA2 step, with default
parameters (Rivers et al., 2018). The taxonomic assignment
of ASVs was performed using the Human Oral Microbiome
Database (HOMD, version 15.1) for bacteria and the UNITE
database (version 8.2; QIIME developer release) for fungi at 99%
sequence similarity (Dewhirst et al., 2010; Agnello et al., 2017;
Abarenkov et al., 2020b; de Jesus et al., 2020). Due to the presence
of many fungal ASVs that were assigned only at kingdom level,
further fungal ASV curation was performed with the R package
LULU (Frøslev et al., 2017). The remaining ASVs assigned
as Fungi at kingdom level only, or with unidentified phylum
were manually assessed using the program BLASTN in NCBI
(Zhang et al., 2000). The ASVs with non-fungal BLASTN results
were discarded and the remaining were repeatedly assigned to
new taxonomic assignments using different UNITE databases
threshold levels (Abarenkov et al., 2020a,b,c) and taxonomy
classification methods (q2-feature-classifier classify-sklearn and
classify-consensus-blast) in QIIME2, as described previously
(Martinsen et al., 2021). The data was imported into R using the

R package “qiime2R” (version 0.99.13) and additional filtering
was performed using “phyloseq” (version 1.30.0) to remove
singletons and samples with less than 1,000 reads (McMurdie and
Holmes, 2013; Bisanz, 2018; Depner et al., 2020). The ASV counts
were then normalized using the cumulative-sum scaling (CSS)
approach from the R package “metagenomeSeq” version 1.28.2
(Paulson et al., 2013).

The alpha diversity analyses (within-samples) were performed
using the Chao1 and Shannon indices to estimate richness
and diversity, respectively, using raw ASV count data from
QIIME2 in “phyloseq”. Pairwise comparisons of alpha diversity
were done by the paired Wilcoxon signed rank test. Beta
diversity measures were calculated on CSS normalized ASV data.
This analysis was performed to compare the structure of the
bacterial and fungal microbial communities between samples,
using the permutational analysis of variance (PERMANOVA)
test with 999 permutations in the R package “vegan” (adonis
function; version 2.5.6) (Anderson, 2001). It was visualized
using principle coordinate analysis (PCoA) with Bray-Curtis
dissimilarity index in the R package “ggplot2” (version 3.3.3)
(Beals, 1984; Wickham, 2016).

Differentially abundant species were identified using the
DESeq2 negative binomial Wald test, controlling the false
discovery rate (FDR) for multiple comparison, within “phyloseq”
(Love et al., 2014). For this, the raw ASV counts were collapsed
to the species level. For comparisons between dental plaque vs.
oral swab, a paired DESeq2 analysis was performed. FDR adjusted
P < 0.05 was considered significant.

Machine Learning Analysis
Machine learning methods were used to train multivariable
classification models to identify the caries status, S-ECC and
caries-free. To generate the machine learning models, taxonomic
features were used in the form of ASV tables collapsed to species-
level. For the classification, we used the workflow provided
in “Siamcat,” which provides a machine learning toolbox for
metagenome analysis through state-of-the-art machine learning
methods (Wirbel et al., 2019, 2021). The data were separately
processed for fungi and bacteria and sample-wise relative
abundance for the microbiome quantitative profiles was used as
input data to maintain the uniformity.

To process the data in “Siamcat,” features with a prevalence
of less than five percent across samples were removed and the

TABLE 1 | Characteristics of study participants*.

Caries status

S-ECC Caries-free

(N = 40) (N = 40)

Age (months), mean ± SD 45.6 ± 11.4 46.2 ± 14.2

Sex, n(%)

Female 25 (62.5) 21 (52.5)

Male 15 (37.5) 19 (47.5)

*Other demographics of the study participants have been previously published (de
Jesus et al., 2020).
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remaining features were normalized by centered log-ratio (CLR)
transformation. The data was then prepared for cross-validation
with eightfold and 5 repeats. After this, the models were
trained using Lasso, Ridge, Elastic Net (Enet), and RandomForest
classification methods in Siamcat, which uses the “mlr” package
for machine learning based classification (Bischl et al., 2016). The
models’ performance for cross validation was evaluated using the
area under the receiver operating characteristic (AUROC) value.
To show the importance of the model features, the model feature
weights were converted to relative weights and up to the top 20
features were selected, based on their median values, to generate
a heatmap using the R package “ggplot2” (Wickham, 2016).

For the machine-learning based classification of plaque and
swab samples, a pairwise sample analysis was performed using
a boosting conditional logistic regression from R package

“clogitboost,” which takes the paired nature of the dental plaque
and oral swab samples into account (Shi and Yin, 2015). The
model was fitted using component-wise smoothing spline. The
caries-free and S-ECC samples were divided into training and
test sets using three-quarters of the data for training and the
remaining for test in a way that paired samples for plaque
and swab should be together in either training or test sets.
For the features (species) selection in training dataset, we
obtained the p-values from the differential abundance analysis
described above. The top features selected by the p-values were
used to train the classification models. Since we have only 30
independent samples in the training set, we considered only top
5, 10, 15, 20, and 25 features to build the model, respectively.
The models’ performance was evaluated using AUROC. Each
of the trained models were then tested on the test set. The

FIGURE 1 | Bacterial taxonomic profiles of dental plaque and oral swab. Relative abundance of the top 20 bacterial taxa in dental plaque and oral swab samples
from (A) children with S-ECC and (B) caries-free children. “Other” indicates the taxa not individually shown. S-ECC, severe early childhood caries.
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FIGURE 2 | Bacterial diversity of dental plaque and oral swab samples from children with S-ECC and those caries-free. (A) For alpha diversity (within-sample) the
Shannon and Chao1 diversity and richness measures were calculated according to sample type in both caries-free and S-ECC groups. A significant difference
between oral swab and dental plaque alpha diversity and richness was observed in both caries-free and S-ECC groups (P < 0.05, paired Wilcoxon test). (B) For
beta (between-sample) diversity, Bray-Curtis distances were calculated, followed by principal coordinates analysis (PCoA). The plot shows the separation of samples
according to sample type (pseudo-F = 40.4, R2 = 0.2, P = 0.001, PERMANOVA accounting for the children’s caries-status). The ellipses represent a 95% confidence
level. S-ECC, severe early childhood caries.

training-test strategy/process was repeated for 30 iterations and
the classification performance between caries-free and S-ECC
samples were compared by the average of AUROC values
from the 30 repeats.

RESULTS

Eighty children who fit the study criteria were recruited and 160
samples (80 dental plaque and 80 oral swabs) were collected.
The Table 1 shows some characteristics of the study participants.
Additional information about the participants have been recently
published (de Jesus et al., 2020).

Bacterial Community Analysis
After filtering out low quality and chimeric sequences, a total
of 8,664,777 16S rRNA reads were obtained, with an average
number of 54,154.9 reads per sample (160 samples). A total
of 5,421 ASVs were assigned to 141 genera and 320 species.
Overall, the most abundant phyla were Firmicutes (41.08%)
and Proteobacteria (27.37%). In oral swabs, Streptococcus
(overall: 21.81%; S-ECC: 19.22%; Caries-free: 24.41%) was the
most abundant genus followed by Veillonella (overall: 17.03%;
S-ECC: 21.65%; Caries-free: 12.40%) and Haemophilus (overall:
13.28%; S-ECC: 13.62%; Caries-free: 12.94%). In dental plaque,
Neisseria (overall: 16.06%, S-ECC: 15.93%; Caries-free: 16.13%),
Veillonella (overall: 13.66%; S-ECC: 19.54%; Caries-free: 7.73%),

and Streptococcus (overall: 11.35%; S-ECC: 12.77%; Caries-free:
9.92%) were the most abundant genera. The taxonomic profile
of the dental plaque and oral swab samples are shown in
Figures 1A,B.

Bacterial alpha diversity (within samples) analysis showed
a significant difference between oral swab and dental plaque
alpha diversity (Shannon index, S-ECC: P = 0.0034; Caries-
free: P = 0.015) and richness (Chao1 index, S-ECC: P < 0.001;
Caries-free: P = 0.025) in both caries-free and S-ECC groups
(Figure 2A). Bacterial beta (between-sample) diversity analysis
showed a clear separation of samples according to sampling
site, oral swab and dental plaque (pseudo-F = 42.71, R2 = 0.2,
P = 0.001, PERMANOVA accounting for the children’s S-ECC
status and the paired samples; Figure 2B). A significant
difference in bacterial community was also observed between
the S-ECC and caries-free groups (pseudo-F = 2.85, R2 = 0.014,
P = 0.001).

Figure 3A shows the relative abundance of the top 20
bacterial species across the subgroups. The differential abundance
analysis revealed numerous species that were overabundant in
dental plaque or oral swab samples within the S-ECC and
caries-free groups (Figures 3B,C, adjusted P < 0.05, DESeq2).
Interestingly, many species were significantly more abundant
in dental plaque or oral swab in both S-ECC and caries-free
groups. For instance, Capnocytophaga sp. oral taxon 326 (S-ECC:
−10.83 log2fold change; Caries-free: −4.72 log2fold), Kingella
sp. oral taxon 012 (S-ECC: −9.52 log2fold change; Caries-free:
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FIGURE 3 | Differential abundance of bacterial species. (A) Heatmap showing the relative abundance of the top 20 bacterial species identified in all dental plaque
and oral swab samples. (B,C) Relative fold change in the abundance of bacterial species in (B) samples from children with S-ECC, and (C) samples from caries-free
children, according to sample type. The differential abundance of the bacterial species was tested using the DESeq2 negative binomial Wald test. (B,C) All species
listed have an FDR adjusted P < 0.05. S-ECC, severe early childhood caries.

−8.57 log2fold change), Corynebacterium durum (S-ECC: −4.71
log2fold change; Caries-free: −4.81 log2fold change), Rothia
aeria (S-ECC:−3.93 log2fold change; Caries-free:−3.56 log2fold
change), Corynebacterium matruchotii (S-ECC: −3.54 log2fold
change; Caries-free: −3.90 log2fold), among others, were more
abundant in dental plaque than oral swabs in both caries-
free children and those with S-ECC. On the other hand,
Porphyromonas sp. oral taxon 930 (S-ECC: 5.57 log2fold change;
Caries-free: 5.01 log2fold change), Alloprevotella sp. oral taxon
473 (S-ECC: 4.35 log2fold change; Caries-free: 2.66 log2fold
change), Veillonella sp. oral taxon 780 (S-ECC: 4.12 log2fold
change; Caries-free: 3.79 log2fold change), Sneathia amnii (S-
ECC: 3.86 log2fold change; Caries-free: 3.76 log2fold change)

Granulicatella elegans (S-ECC: 3.26 log2fold change; Caries-free:
3.93 log 2fold change), and Haemophilus parainfluenzae (S-ECC:
1.26 log2fold change; Caries-free: 1.39 log2fold change) were
more abundant in oral swabs in both caries-free and S-ECC
groups. In children with S-ECC, the well-known cariogenic
bacterium Streptococcus mutans was more abundant in dental
plaque samples (−3.45 log2fold change, adjusted P < 0.05).

Within the oral swab samples, three species were more
abundant in S-ECC compared to caries-free: Veillonella dispar
(2.09 log2fold change), Prevotella veroralis (23.33 log2fold
change), and Neisseria bacilliformis (24.58 log2fold change,
adjusted P < 0.05, DESeq2). While Lautropia mirabilis (−1.41
log2fold change) was significantly more abundant in caries-free
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TABLE 2 | Mean relative abundance of the top 20 most abundant fungal taxa.

S-ECC Caries-free

Species Plaque Swab Plaque Swab

Candida dubliniensis* # 47.76 ± 44.28 13.09 ± 25.16 0.01 ± 0.03 0.00 ± 0.002

Class Agaricomycetes* § 2.52 ± 12.30 11.06 ± 25.85 1.98 ± 6.94 7.21 ± 18.82

Candida albicans* 9.51 ± 24.79 3.59 ± 14.27 5.16 ± 18.28 1.58 ± 6.65

Blumeria sp. § 3.1 ± 16.65 0.00 ± 0.00 15.08 ± 30.59 0.00 ± 0.00

Family Thelephoraceae*# 2.165 ± 5.35 0.001 ± 0.01 12.85 ± 26.20 1.14 ± 4.07

Malassezia restricta* § # 0.29 ± 1.03 5.45 ± 18.25 5.55 ± 19.88 0.07 ± 0.38

Candida tropicalis# 3.90 ± 14.90 2.90 ± 9.77 0.00 ± 0.00 0.01 ± 0.04

Trichosporon asahii* § 0.00 ± 0.00 1.34 ± 8.06 2.99 ± 17.14 0.09 ± 0.56

Ramicandelaber taiwanensi* § 0.52 ± 1.64 0.09 ± 0.52 3.58 ± 7.00 0.05 ± 0.21

Fusarium sp.* § 0.58 ± 2.46 0.00 ± 0.00 3.01 ± 17.14 0.00 ± 0.00

Meyerozyma guilliermondii§ 0.10 ± 0.59 0.00 ± 0.00 3.00 ± 17.14 0.00 ± 0.00

Exophiala radices 0.00 ± 0.00 0.00 ± 0.00 2.65 ± 15.46 0.00 ± 0.00

Candida parapsilosis 0.36 ± 2.16 0.02 ± 0.11 2.204 ± 12.75 0.00 ± 0.00

Malassezia globosa* 0.00 ± 0.00 2.23 ± 13.41 0.03 ± 0.15 0.00 ± 0.00

Order Malasseziales§ 0.27 ± 1.63 0.00 ± 0.00 2.06 ± 11.99 0.00 ± 0.00

Stereum rugosum* 2.03 ± 12.17 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Phylum Rozellomycota§ 0.17 ± 0.61 0.10 ± 0.58 1.65 ± 8.99 0.04 ± 0.08

Phylum Chytridiomycota§ 0.26 ± 0.93 0.08 ± 0.34 1.24 ± 5.69 0.37 ± 0.71

Phylum Ascomycota§ 0.01 ± 0.05 0.03 ± 0.13 0.55 ± 2.19 1.17 ± 5.02

Wallemia tropicalis*§ 0.01 ± 0.07 0.00 ± 0.001 0.001 ± 0.01 0.00 ± 0.00

*Adjusted P < 0.05 (DESeq2), dental plaque vs. oral swab in children with S-ECC.
§ Adjusted P < 0.05 (DESeq2), dental plaque vs. oral swab in caries-free children.
#Adjusted P < 0.05 (DESeq2), S-ECC vs. caries-free in oral swab samples.
S-ECC, severe early childhood caries.

children’s oral swabs (adjusted P < 0.05, DESeq2). The differences
between the dental plaque microbial composition between
children with S-ECC and those caries-free have been previously
published (de Jesus et al., 2020). The proportion of bacterial and
fungal ASVs assigned to different taxonomic levels are shown in
Supplementary Figure 1.

Fungal Community Analysis
A total of 8,000,067 filtered ITS1 rRNA reads were obtained,
with an average number of reads per sample of 50,000.42 (160
samples). The 622 ASVs where assigned to 63 genera and 59
species. After filtering, ten samples had low reads (<1,000)
and were removed from the fungal analysis as well as their
respective oral swab or dental plaque pairs, resulting in a total
sample size of 140. Differential abundance analysis showed
that among the top 20 most abundant fungal taxa, within
the S-ECC group, Stereum rugosum (−29.03 log2fold change),
Fusarium sp. (−29.14 log2fold change), Trichoderma sp. (−24.79
log2fold change), Candida albicans (−10.42 log2fold change),
C. dubliniensis (−6.04 log2fold change) and others were enriched
in dental plaque. While Trichosporon asahii (23.97 log2fold
change), Malassezia globosa (20.36 log2fold change), M. restricta
(14.9 log2fold change) and others were more abundant in oral
swabs. Within the caries-free group, the class Agaricomycetes
(13.63 log2 fold change) was more abundant in oral swab, while
Blumeria sp. (−29.94 log2fold change), Fusarium sp. (−23.26
log2fold change), Wallemia tropicalis (−22.68 log2fold change),

Malassezia restricta (−16.44 log2fold change) and others were
more abundant in dental plaque. Within the oral swab samples,
Candida dubliniensis (12.92 log2fold change), Candida tropicalis
(24.99 log2fold change), and Malassezia restricta (24.14 log2fold
change) were more abundant in children with S-ECC compared
to caries-free controls (Table 2, adjusted P < 0.05, DESeq2).
The results of the differential abundance analysis according to
caries status in dental plaque (caries-free vs. S-ECC) have been
published previously (de Jesus et al., 2020).

The fungal alpha diversity analysis showed a significant
difference in Chao 1 diversity (P < 0.001, paired Wilcoxon
test) in the caries-free group (Figure 4A). Fungal community
(β-diversity) analysis also showed a significant difference between
dental plaque and oral swab microbiomes (pseudo-F = 5.58,
R2 = 0.04, P = 0.001, PERMANOVA; Figure 4B). The fungal
communities of samples from caries-free children and those with
S-ECC also showed a significant difference (pseudo-F = 4.17,
R2 = 0.03, P = 0.001).

Machine Learning Analysis
We first evaluated the model performance using Lasso, Ridge,
Elastic Net (Enet), and RandomForest methods to classify
S-ECC vs. caries-free. Overall, the Ridge approach with default
parameters provided the best classification accuracy while the
other three methods provided similar AUROC values (data
not shown). Hence, Ridge was the model of choice for
further classification.
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FIGURE 4 | Fungal diversity of dental plaque and oral swab samples. (A) For alpha diversity (within-sample) the Shannon and Chao1 diversity and richness
measures were calculated according to sample type in both caries-free and S-ECC groups. A significant difference in richness was observed between the sampling
sites in the caries-free group (P < 0.001, Chao1 index, paired Wilcoxon test). (B) For beta (between-sample) diversity, Bray-Curtis distances were calculated,
followed by principal coordinates analysis (PCoA, pseudo-F = 11.58, R2 = 0.04, P = 0.001, PERMANOVA). The ellipses represent a 95% confidence level. S-ECC,
severe early childhood caries.

To evaluate which sampling site, dental plaque or oral swabs,
would provide a better classification model for S-ECC vs. caries-
free, the samples were grouped according to sampling site. The
AUROC values obtained by the Ridge model with bacterial
species were 0.92 and 0.91 for dental plaque and oral swab
samples, respectively (Figure 5A). While, for fungal taxa, the
AUROC values were 0.85 and 0.835, respectively (Figure 5B). The
median relative feature weights used to predict the corresponding
models and their ranks are shown in Figures 5C,D. Among the
most important bacterial features for the S-ECC vs. caries-free
classification model are Gemella morbilorum, Lautropia mirabilis,
Actinomyces oral taxon 525 and Capnocytophaga oral taxon 336.
While for fungi, Mycosphaerella tassiana, Betamyces americae
meridionalis, Wickerhamiella sp. and Cyberlindnera jadinii were
among the most important discriminatory fungal species.

To evaluate if it is possible to differentiate dental plaque
samples from oral swab samples based on their bacterial and
fungal profiles, both in caries-free and S-ECC groups, the samples
were grouped according to caries status. The AUROC values were
compared for the models built based on the top 5, 10, 15, 20, and
25 species selected through differential abundance analysis in the
training set. For bacteria, in caries-free samples, the maximum

AUROC value was 0.80 using 10 species while for S-ECC, the
maximum AUROC value was 0.73 with 25 species. For fungi,
the maximum AUROC was obtained by 10 species in caries-free
samples and 5 in S-ECC samples (Table 3). The performance of
paired analysis for different number of species is summarized in
Table 3. It was notable that in site-based classification, in bacteria
low number of species provide better classification in caries-free
samples. While, for S-ECC samples high number of species are
required for improving prediction. For fungi the classification
was better with low number of species in both caries-free and
S-ECC groups, which might be due to the low alpha diversity in
the fungal samples.

DISCUSSION

In this study, first we confirmed that the bacterial and fungal
community composition of dental plaque differed significantly
from that obtained from oral swabs. Second, we investigated,
using machine learning approaches, which sampling site would
be the most appropriate to differentiate the oral microbial profile
of children with S-ECC and those caries-free. Identifying the
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FIGURE 5 | Classification of S-ECC vs. caries-free. (A,B) Receiver operating characteristic (ROC) curve representing the cross-validation performance as for the
classification of S-ECC and carries-free in (A) bacteria and (B) fungi using “Ridge” model in Siamcat. The area under the receiver operating characteristic curve
(AUROC) represents the sample taken from dental plaques and oral swabs, by red and blue colors, respectively. AUROC values are shown in the bottom-right of the
plot. (C,D) The relative feature weights used to predict the corresponding model. A maximum of 20 weights in each category were selected to plot on the heatmap
and are marked with the ranking of the weights in the heatmap for bacterial (C) bacterial and (D) fungal taxa. The green color represents the features important in
caries-free and brown is for S-ECC.

appropriate type of sample to be used is important to guide future
caries association studies. Third, we evaluated whether it could
be possible to predict the sampling site (dental plaque vs. oral
swab) based on the microbial profile of the samples. Being able to
determine the origin of the samples could be useful for the design

of future microbiome studies. For instance, if researchers want to
collect supragingival plaque, it would be useful to have a way of
detecting if during sample collection the supragingival plaque got
contaminated with subgingival plaque, as each of those should
have unique microbial profiles.
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TABLE 3 | Mean AUROC value for plaque vs. swab classification through
conditional logistic regression.

Bacteria Fungi

Species Caries-free S-ECC Caries-free S-ECC

5 0.77 ± 0.14 0.67 ± 0.12 0.62 ± 0.17 0.73 ± 0.15

10 0.80 ± 0.13 0.69 ± 0.15 0.63 ± 0.18 0.73 ± 0.16

15 0.73 ± 0.16 0.71 ± 0.17 0.62 ± 0.17 0.69 ± 0.16

20 0.71 ± 0.17 0.72 ± 0.17 0.63 ± 0.19 0.65 ± 0.18

25 0.72 ± 0.16 0.73 ± 0.17 0.62 ± 0.17 0.69 ± 0.18

The species column shows the number of species used in the classification and
the mean AUROC values are provided with the standard deviation of 30 iterations
of the training-test based prediction. The highest AUROC value of each group is
bolded.

The oral microbiome is considered highly diverse, compared
to other body sites. Although dental plaque, saliva and the
buccal mucosa are in close contact, they have diverse microbial
communities. The Human Microbiome Project (HMP), for
instance, compared the diversity of microbes among five
major body areas of 242 healthy individuals and showed
that supragingival plaque has higher bacterial alpha diversity
compared to the oral mucosa, which agrees with the results
reported in the present study (The Human Microbiome
Project Consortium, 2012). Hall et al. identified a significant
difference between the microbial communities of supragingival
plaque, saliva, and tongue samples from health subjects,
demonstrating the existence of site-specific oral microbiomes
(Hall et al., 2017).

Interestingly, while dental plaque showed increased bacterial
alpha diversity compared to oral swabs the fungal alpha diversity
showed an opposite pattern, with oral swabs displaying increased
fungal alpha diversity. The higher fungal diversity observed
in the oral swab may be associated with more fungal DNA
of transient colonizers from the environment through mouth
breathing and food intake (Xu and Dongari-Bagtzoglou, 2015;
Diaz and Dongari-Bagtzoglou, 2021). Furthermore, most oral
fungi are present at low biomass and may be difficult to detect
in oral samples (Diaz and Dongari-Bagtzoglou, 2021). The above
factor may explain why the number of observed fungal ASVs was
lower than that of bacteria.

Streptococci was the most abundant bacterial genera in
oral swabs, similar to what has been previously reported
(Caselli et al., 2020). Neisseria, Haemophilus and Veillonella,
found to be the most abundant in dental plaque or oral
swab samples, have also been reported as highly abundant
in different oral sites by previous studies (Huse et al., 2012;
Caselli et al., 2020). Streptococcus, Fusobacterium, Gemella, and
Veillonella have all been considered core OTUs in different
oral sites (Huse et al., 2012; Hall et al., 2017). Here we
showed site-specific differences in the abundance of certain
species from these genera, with some being significantly more
abundant in dental plaque compared to oral swabs or vice-
versa. Among children with S-ECC, the known cariogenic
bacterium S. mutans was significantly enriched in dental plaque
samples compared to oral swabs. It also showed to be among

the top 10 most important feature for the classification of
S-ECC vs. caries-free in both dental plaque and oral swab
samples. Other caries associated bacteria such as Leptotrichia
spp. and Selenomonas spp. (Kalpana et al., 2020) were more
abundant in dental plaque than oral swab samples from children
with S-ECC.

Fungal species from the genera Candida, Malassezia,
Meyerozima, and Trichosporon, were among the most abundant
in dental plaque and oral swab, similarly to what has been
reported in other studies (Shelburne et al., 2015; Baraniya et al.,
2020; Robinson et al., 2020; Diaz and Dongari-Bagtzoglou,
2021). The differential abundance analysis showed a significant
difference between C. dubliniensis and C. tropicalis in the oral
swab of caries-free children and children with S-ECC. Those
fungal species were also among the top 20 most important
features for the classification of S-ECC vs. caries-free in oral
swabs. Candida spp. are among the most abundant fungal species
in the oral cavity and they are associated with different oral
diseases (Peters et al., 2017; Diaz et al., 2019). C. dubliniensis
has only recently been associated with dental caries in children
(Al-Ahmad et al., 2016; de Jesus et al., 2020; O’Connell et al.,
2020). Here we show that this fungus is not only highly abundant
in the dental plaque of children with S-ECC, as previously
reported, but it is also enriched in the oral swabs obtained from
children with S-ECC compared to those caries-free.

In recent years, machine learning has become a commonly
applied approach to early childhood oral health research (Peng
et al., 2021). One of the challenges in microbiome data analysis
is that the differential analysis methods generally lack the
information about predictability. Thus, we used machine learning
methods to identify site-specific taxonomic features in dental
plaque and oral swabs. The results suggested that both dental
plaque and oral swab samples provide a good model for S-ECC
vs. caries-free classification. They also suggest that it is possible
to differentiate dental plaque from oral swab samples using their
microbial profiles. However, site-based classification through
fungal species was not optimum in caries-free samples. This could
be due to the small number of fungal species that significantly
differed in abundance between dental plaque and oral swabs, as
observed in the differential abundance analysis.

From our classification results for caries status, it appears that
the models using the microbial composition of dental plaque
or oral swabs were both able to discriminate between caries-
free and S-ECC samples. However, it is important to notice that
the species considered to be important for the classification of
disease for each sampling site are slightly different. Based on
the results from other machine learning models (Lasso, Enet,
and RandomForest), we also observed that the choice of the
model does not significantly affect the outcome of the analysis
(data not shown).

The limitations of this study include, but are not limited to,
the lack of information about the socio-economic status of the
participants and the convenient sampling used for recruitment,
which means that during recruitment the groups were only
matched by caries status. As many factors may influence the
oral microbial composition, the results of this study may not
be generalizable to other populations with different age groups
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and geographic locations. In this study, an additional enzymatic
lysis step was used during DNA extraction from dental plaque
samples to disrupt the dental plaque biofilm. Rosenbaum et al.
compared the impact of using different DNA extraction methods,
including the use of QIAamp DNA Mini Kit (Qiagen) with and
without additional enzymatic lysis step, in the oral bacterial (16S
rRNA) and fungal (ITS1 rRNA) microbiota. They showed that all
tested DNA extraction methods were able to lyse Gram-positive
bacterial species. They also reported no significant differences in
bacterial and fungal diversity among DNA extraction methods
(Rosenbaum et al., 2019). Other studies also found no significant
effect of DNA extraction methods in the microbial composition
of oral samples (Lim et al., 2017). Therefore, while we do
not expect that the additional enzymatic lysis step significantly
contributed to the differences observed between the dental plaque
and oral swab microbiota, we cannot completely rule out the
possible bias associated with the sample preparation on the
analyses comparing dental plaque and oral swab microbiomes.

Currently, UNITE is the most commonly used database
for taxonomic classification in mycobiome studies of different
environments. However, there is an increased concern regarding
the lack of taxonomic coverage on the available databases, which
creates limitations to studies trying to characterize the human
mycobiome (Nilsson, 2016). Here, a high proportion of fungal
ASVs (37.14%) could not be classified to a meaningful taxonomic
level beyond kingdom. As the reads passed through the quality
control process, the observed high number of unclassified ASVs
could be a limitation of the database used. Therefore, the
construction of a curated ITS database specific for the oral
mycobiome, as exists for the oral bacteriome, is urgently needed.

This is a cross-sectional study. Thus, based on our results it is
not possible to determine when a significant oral microbial shift
from a healthy to a diseased state occurs. Xu et al. performed a
longitudinal study where they did a 1-year follow-up of caries-
free 3-year-old children (Xu et al., 2018). The authors suggested
that prior to any clinical sign of caries, there is a microbial shift
that could potentially be used for the diagnosis and prevention
of dental caries in young children. Therefore, future longitudinal
studies aiming to further characterize the microbial shifts that
precede the first clinical signs of dental caries are needed.

In summary, this study characterized the differences in
microbial profiles of dental plaque and oral swab samples from
children with S-ECC and those caries-free. Importantly, our
machine learning results were able to predict the caries-status
(S-ECC vs. caries-free) and sampling site (dental plaque vs. oral
swab) based on the microbial profile of the samples. In the future,
when data from related studies distinguishing oral sampling sites
using microbiome profiles are available, we will perform the
replication studies to validate our results.
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