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Abstract

Herein, we aimed to identify the immunomodulatory role of tumor Syndecan-1 (CD138) in

the polarization of CD4+ T helper (Th) subsets isolated from the tumor microenvironment of

inflammatory breast cancer (IBC) and non-IBC patients. Lymphocytes and mononuclear

cells isolated from the axillary tributaries of non-IBC and IBC patients during modified radical

mastectomy were either stimulated with the secretome as indirect co-culture or directly co-

cultured with control and Syndecan-1-silenced SUM-149 IBC cells. In addition, peripheral

blood mononuclear cells (PBMCs) of normal subjects were used for the direct co-culture.

Employing flow cytometry, we analyzed the expression of the intracellular IFN-γ, IL-4, IL-17,

and Foxp3 markers as readout for basal and co-cultured Th1, Th2, Th17, and Treg CD4+ sub-

sets, respectively. Our data revealed that IBC displayed a lower basal frequency of Th1 and

Th2 subsets than non-IBC. Syndecan-1-silenced SUM-149 cells significantly upregulated

only Treg subset polarization of normal subjects relative to controls. However, Syndecan-1

silencing significantly enhanced the polarization of Th17 and Treg subsets of non-IBC under

both direct and indirect conditions and induced only Th1 subset polarization under indirect

conditions compared to control. Interestingly, qPCR revealed that there was a negative cor-

relation between Syndecan-1 and each of IL-4, IL-17, and Foxp3 mRNA expression in carci-

noma tissues of IBC and that the correlation was reversed in non-IBC. Mechanistically,

Syndecan-1 knockdown in SUM-149 cells promoted Th17 cell expansion via upregulation of

IL-23 and the Notch ligand DLL4. Overall, this study indicates a low frequency of the circulat-

ing antitumor Th1 subset in IBC and suggests that tumor Syndecan-1 silencing enhances ex

vivo polarization of CD4+ Th17 and Treg cells of non-IBC, whereby Th17 polarization is possi-

bly mediated via upregulation of IL-23 and DLL4. These findings suggest the immunoregula-

tory role of tumor Syndecan-1 expression in Th cell polarization that may have therapeutic

implications for breast cancer.
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Introduction

Female breast cancer is the most broadly diagnosed cancer heading the list of life-threatening

cancers in women all over the world and in Egypt [1, 2]. Inflammatory breast cancer (IBC) is a

deadly aggressive form of breast cancer that is featured by enrichment of cancer stemness,

rapid invasion into the dermal lymphatic vasculature, increasing metastasis, and low survival

rate in comparison to non-IBC [3, 4]. One of the mechanistic clues for the clinical and patho-

logical features of IBC are the components of the tumor microenvironment that can crosstalk

with IBC cells either directly through cell-cell physical interactions [5] or indirectly via soluble

paracrine mediators [6] to maintain tumor growth and escape immunosurveillance [7, 8].

In a previous study, we have detected a chronic inflammatory breast cancer microenviron-

ment enriched with a high frequency of T helper cells (CD4+ T cells) that are considered to be

important immune players within the tumor microenvironment [9]. CD4+ T cells can be

polarized into paradoxical subsets; Th1, Th2, Th17, and Treg in response to various signaling

mediators [10]. The Th1 subset typically produces IFN-γ to enhance the cytotoxic activity of

tumor-specific CD8+ T cells [11]. The Th2 subset produces the classical anti-inflammatory

cytokines IL-4, IL-13, and IL-5, to activate the M2 macrophage protumor phenotype and

increase metastasis potential of breast carcinoma [12]. The Th17 subset primarily produces IL-

17A to promote proliferation, metastasis, and drug resistance of breast carcinoma [13, 14].

Finally, the Foxp3+ regulatory T cells (Treg) that create an immunosuppressive tumor microen-

vironment, allowing escape from immunosurveillance, and consequently, enhancing breast

carcinoma progression [15, 16]. CD4+ T cells are highly plastic cells that can be inter-con-

verted between different subsets according to cytokines and chemokines milieu of the environ-

ment [17].

One of the key molecules that are implicated in the modulation of inflammatory cytokines

and chemokines, as well as the progression of breast carcinoma, is the heparan sulfate (HS)

proteoglycan Syndecan-1 (Sdc-1; CD138) [3, 18]. In breast carcinoma, the differential expres-

sion and molecular functions have been assigned to Sdc-1 in the context of its stromal/cancer

cell expression and/or its membrane-bound/shedding forms [19–21]. Recently, we have dem-

onstrated that relative to non-IBC, carcinoma tissue of IBC confers a higher expression of Sdc-

1 mRNA and protein that is associated with the expression of Notch as well as the unique can-

cer stemness phenotype of IBC [3]. On the other side, various studies provide evidence that

ligand engagement with Notch receptor on the surface of Th cells can orchestrate the differen-

tiation of Th subsets through regulation of their genetic signature [22]. Furthermore, Sdc-1

can inhibit T cell driven inflammation through sequestration of T cell-specific CC chemokines

in a HS-dependent mechanism [23–25]. Accordingly, Sdc-1 depletion has been shown to mod-

ulate the expression of IL-17 and IFN-γ in natural killer T (NKT) cells during thymic develop-

ment [26]. All these studies pinpoint an important role for Sdc-1 in reprogramming the

soluble mediators that consequently shape the cellular composition of the inflammatory envi-

ronment. Therefore, this prompted us to investigate the frequency of different T helper subsets

drained from the tumor microenvironment of non-IBC and IBC through axillary tributaries.

Moreover, we sought to unravel the potential unexplored immunomodulatory role played by

Sdc-1 in modulating the polarization of CD4+ T cells isolated from non-IBC and IBC patients.

Materials and methods

Cell culture

The human inflammatory breast cancer (IBC) cell line SUM-149 (a kind gift from Dr. Bonnie

Sloane, Wayne State University, Detroit, MI, USA) was maintained in HAM’s-F12 medium
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containing 5% fetal calf serum (FCS), 1% glutamine and 1% penicillin/streptomycin in a

humidified atmosphere of 5% CO2 at 37 ˚C. All cell culture supplies were purchased from

Lonza (MD, USA), unless otherwise stated.

siRNA-mediated silencing of Sdc-1 expression

A total of 3.5 x 105 SUM-149 cells were subjected to Sdc-1 silencing as we previously described

[3]. Successful knockdown was confirmed by quantitative PCR (qPCR) and flow cytometry

[27, 28].

Preparation of media conditioned by the secretome of control and Sdc-

1-silenced SUM-149 cells

For preparation of conditioned media (CM), 48 h post transfection control and Sdc-1-silenced

SUM-149 cells were cultivated in serum free HAM’s-F12 media in a humidified atmosphere of

5% CO2 at 37˚C for 24 hours. CM was collected, centrifuged at 1500 rpm for 5 min to remove

cell debris and stored at −80˚C for stimulation experiments.

Patient samples

This study was approved by the research ethics committee of Ain Shams University, Cairo,

Egypt (IRB#00006379), and has been conducted in accordance with the ethical standards of

the 1964 Helsinki declaration. A written informed consent to participate in this study and to

publish data was obtained from 55 female patients who were diagnosed with breast cancer and

received primary surgery at breast clinic of Ain Shams University. Patients were divided into 2

groups: non-IBC (n = 34) and IBC (n = 21). During modified radical mastectomy, carcinoma

tissues and 10 mL blood drained from tumor microenvironment to the venous circulation of

the breast through axillary tributaries was collected in EDTA tubes as we described previously

[9]. Normal breast tissues were collected during reduction mammoplatsty from healthy

volunteers.

Immunophenotyping of axillary CD4+ T cell subsets of non-IBC and IBC

patients

Blood mononuclear cells were separated from axillary tributaries by Ficoll-hypaque density

gradient according to manufacturer‘s instructions. Briefly, whole blood was diluted with equal

volume phosphate buffered saline (PBS) before Ficoll density gradient centrifugation. The

buffy coat containing the mononuclear cells was harvested and red blood cells (RBCs) were

lysed by incubation in ammonium chloride potassium (ACK) lysing buffer. Afterwards, the

mononuclear cells were washed twice with cold PBS and monocytes were depleted by adher-

ence to a plastic surface at 37˚C for 2 hours [29], whereas the non-adherent lymphocytes were

isolated and resuspended as 1 x 106 cells/ml RPMI 1640 supplemented with 10% FCS, 1% glu-

tamine, and 1% penicillin/ streptomycin for immunophenotyping by flow cytometry.

Stimulation of T-lymphocytes by the secretome of control and Sdc-

1-silenced SUM-149 cells

To elucidate the effect of tumor Sdc-1 expression on the polarization of CD4+ T cells, we acti-

vated the isolated lymphocytes with plate bound anti-CD3 (10 μg/ml; clone: MEM-57), and

soluble anti-CD28 (0.5 μg/ml; clone: 15E8) (Immunotools, Friesoythe, Germany), in complete

RPMI 1640 medium containing 30% CM of control and Sdc-1-silenced SUM-149 cells for 96

h. The optimal concentration of CM was selected based on our pilot experiments.

Syndecan-1 (CD138) and T helper cell polarization in breast cancer patients
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Direct co-culture of mononuclear cells with control and Sdc-1-silenced

SUM-149 cells

To investigate the immunoregulatory role of tumor Sdc-1 on polarization of CD4+ T cells

under physical contact with cancer cells, we established a direct co-culture model of control

and Sdc-1-silenced SUM-149 cells and mononuclear cells isolated from non-IBC patients or

normal volunteers. 48 hours post transfection, the culture medium was carefully aspirated and

fresh mononuclear cells were directly added into SUM-149 cells in a ratio of 5:1, respectively.

The cells were cultured in 1:1 complete growth media of both RPMI 1640 and HAM’s-F12,

and incubated in a humidified atmosphere of 5% CO2 at 37˚C for 48 h.

Flow cytometry

For assessment of intracellular cytokine expression in CD4+ T cells, the lymphocytes were

incubated with 10 μg/mL brefeldin A (Sigma-Aldrich, St. Louis, MO, USA). After 6 hours,

cells were harvested and stained with anti-CD4-FITC (eBioscience, Inc., San Diego, CA, USA)

for 30 min at room temperature, followed by fixation and permeabilization using the Cytofix/

Cytoperm Kit (BD Biosciences, San Diego, CA, USA) according to the manufacturer’s instruc-

tions. The intracellular cytokine staining was performed using the following monoclonal anti-

bodies: IFN-γ-PE, IL-4-PEcy7, IL-17-PE, and Foxp3-PEcy7 (eBioscience, Inc., San Diego, CA,

USA). Stained cells were analyzed by a cube-8 flow cytometer (Sysmex/Partec, Münster, Ger-

many). Gates were applied to define the populations of interest, and the analysis was carried

out using FCS Express 4 (De Novo Software, CA, USA). Isotype controls were used as negative

controls.

Quantitative real-time PCR

Total RNA from the breast carcinoma tissue (non-IBC and IBC), control and Sdc-1 siRNA

transfected SUM-149 cells was extracted using the RNA Purification Kit GeneJET (Thermo

scientific, ON, Canada) and reverse transcribed into complementary DNA (cDNA) using

High-Capacity cDNA Reverse Transcription Kit (Thermo scientific, ON, Canada). qPCR was

performed using Brilliant SYBR Green qPCR master mix (Applied Biosystems, San Francisco,

CA, USA) in a Step One Plus Real-Time PCR System (Applied Biosystems, San Francisco, CA,

USA). The relative gene transcript expression was assessed using the 2-ΔΔCt method after nor-

malization to expression of GAPDH or 18S rRNA (Qiagen, Valencia, CA, USA). Primer

sequences used according to the published literature as follows: IL-23 5’-TCTCCTTCTCCGC
TTCAAAATC-3’ (forward) and 5`-GGCGGCTACAGCCACAAA-3`(reverse); for IL-17A

5'- TCCCACGAAATCCAGGATGC -3`(forward) and 5`- GGATGTTCAGGTTGACCATC
AC-3' (reverse); for Sdc-1 5`-TACTAATTTGCCCCCTGAAGAT-3`(forward) and 5`-
CAAGGTGATATCTTGCAAAGCA-3`(reverse). For DLL4 detection, we employed ABI Mas-

ter-Mix and the predesigned TaqMan gene expression systems Hs00184092 m1 (DLL4) and

Hs99999901_s1 (18S rRNA) (Applied Biosystems, San Francisco, CA, USA).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and immunoblotting

Briefly, total cell lysates of control and Sdc-1 siRNA transfected SUM-149 cells were prepared

as described before [3]. Protein concentration was determined using Bradford assay and 50 ug

protein per lane were electrophoresed on 10% SDS-PAGE and electrotransferred into nitrocel-

lulose membrane (Millipore, Germany). After blocking with 5% BSA in tris- buffered saline

with 0.1% tween (TBST) for 1 hour the membrane was probed with 2 ug/mL primary antibody
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against DLL4 (Santa Cruz Biotech, CA, USA) overnight at 4 ˚C. On the next day, the

membrane was incubated with 1 ug/mL anti-mouse secondary antibody conjugated with

horseradish peroxidase (Santa Cruz Biotech, CA, USA) for 1 hour at room temperature. The

immunoreactivity was visualized by Enhanced Chemiluminescence (ECL) reaction and BioS-

pectrum 815 Imaging System (Analytik Jena, USA). β-actin (Santa Cruz Biotech) was used as a

loading control.

Statistical analysis

Statistical analysis was performed using IBM SPSS version 18 (Chicago, IL, USA). Fisher’s

exact test was used to evaluate differences between variables. Two groups’ comparisons were

evaluated for normally distributed data using Student’s t test, and for non-normally distributed

data using Mann-Whitney U-test. Correlations were conducted using Spearman’s Rank corre-

lation test. Two-tailed P values were considered significant at P< 0.05. The data were repre-

sented as mean ± SEM.

Results

Clinical and pathological patient characteristics

We recruited 34 non-IBC and 21 IBC patients and their clinic-pathological criteria are

depicted in Table 1. Carcinoma tissue of IBC patients showed a significant increased incidence

of�4 positive metastatic lymph nodes (P = 0.005) as well as a higher lymphovascular invasion

(P = 0.001) as compared to non-IBC patients.

Low frequency of circulating Th1 and Th2 CD4+ T cell subsets in blood

drained from the tumor microenvironment of IBC compared to non-IBC

patients

We have previously detected a significant elevation in the proportion of CD4+ T cells drained

from the tumor microenvironment of breast cancer patients through axillary tributaries in

comparison with peripheral blood [9]. In this study we further characterized CD4+ T cell sub-

sets isolated from axillary tributaries of non-IBC and IBC patients, namely Th1 (IFN-γ+CD4+),

Th2 (IL-4+CD4+), Th17 (IL-17+CD4+), and Treg (Foxp3+CD4+) using multicolor flow cytome-

try. Our data indicate that the frequency of the Th1 subset was significantly higher in non-IBC

patients by 61.6% than in IBC patients (with an average 29.6 ± 3.9% in non-IBC, and

11.38 ± 0.7% in IBC patients, P = 0.01) (Fig 1, Table 2).

Similarly, a significantly increased Th2 subset in non-IBC patients by 56.6% compared

with IBC was observed (with an average 28.29 ± 3.87% in non-IBC, and 12.28 ± 1.43% in

IBC patients, P = 0.03) (Fig 1, Table 2). Strikingly, the Th17 subset represented the predomi-

nant subset among different CD4+ T cell subsets, constituting more than 30% of the isolated

CD4+ T cells in non-IBC (30.37%, with an average 33.86 ± 5.27%, n = 10) and IBC patients

(37.82%, with an average 26.18 ± 4.64%, n = 4) (Table 2), although there was no significant

difference between non-IBC and IBC patients (Fig 1). Also, the Foxp3+ (Treg) cell subset

ranked as the second highest proportion of CD4+ T cells in IBC patients representing 23.1%

(with an average 16.71 ± 4.06%, n = 4), whereas it ranked as the lowest proportion of CD4+ T

cells in non-IBC patients representing 14.56% (with an average 16.15 ± 2.84%, n = 10),

although there was no significant difference between non-IBC and IBC patients (Fig 1,

Table 2).

Syndecan-1 (CD138) and T helper cell polarization in breast cancer patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0217550 May 30, 2019 5 / 22

https://doi.org/10.1371/journal.pone.0217550


Tumor Sdc-1 silencing significantly favors polarization of Th1, Th17 and

Treg subsets in non-IBC patients

We first confirmed the successful downregulation of Sdc-1 expression by more than 90% at

mRNA level and by approximately 65% at the protein level in SUM-149 cells 48h post transfec-

tion by qPCR and flow cytometry, respectively (S1 Fig). These cells were used to explore the

impact of tumor Sdc-1 silencing on polarization of CD4+ T cells isolated from non-IBC (under

direct and indirect co-culture conditions) and IBC patients (under indirect co-culture condi-

tions) towards Th1, Th2, Th17 and Treg subsets. Our flow cytometric results revealed that non-

IBC CD4+ T cells stimulated with the secretome of Sdc-1-silenced SUM-149 cells significantly

favored Treg (Foxp3+CD4+), Th17 (IL-17+CD4+), and Th1 (IFN-γ+CD4+) skewing. The Treg

Table 1. Clinical and pathological characteristics of patients.

Group Characteristics Non-IBC

n = 34

IBC

n = 21

P value

Age (Years) 0.7a

Range 37–78 39–71

Mean± SEM 56.1±1.9 55.1±1.8

Tumor size (cm) 0.05b

� 4 16 (47%) 15 (71.4%)

< 4 18 (53%) 5 (23.8%)

NA 0 1

Tumor grade 0.1b

I 7 (20.5%) 0 (0%)

II 20 (59%) 15 (71.4%)

III 7 (20.5%) 5 (23.8%)

NA 0 1

Lymphovascular invasion 0.001b

Positive 5 (14.7%) 12 (57%)

Negative 29 (85.3%) 8 (38%)

NA 0 1

No. of metastatic lymph nodes 0.005b

< 4 24 (70.6%) 6 (28.6%)

� 4 10 (29.4%) 14 (66.6%)

NA 0 1

Estrogen receptor (ER) status 0.5b

Positive 24 (70.6%) 13 (62%)

Negative 9 (26.5%) 8 (38%)

NA 1 0

Progesterone receptor (PR) status 1.00b

Positive 20 (59%) 12 (57%)

Negative 13 (38.2%) 9 (43%)

NA 1 0

HER2/neu status 0.4b

Positive 10 (29.4%) 9 (43%)

Negative 23 (67.6%) 12 (57%)

NA 1 0

n = number of patients, NA = not available data

Significant P values calculated using a. Student’s t test or b. Fisher’s exact test

https://doi.org/10.1371/journal.pone.0217550.t001
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population was altered by 26.7% (with an average 25.3 ± 3.5% in control cells, and 30.8 ± 4.2%

upon Sdc-1 silencing, P = 0.001, n = 15), the Th17 population by 17.2% (with an average

27.4 ± 4.2% in control cells, and 31.9 ± 5.2% upon Sdc-1 silencing, P = 0.02, n = 15), and Th1

cells by 11.6% (with an average of 37.05 ± 5.07% in control cells and 40.63 ± 5.46% upon Sdc-1

silencing, P = 0.001, n = 15) (Fig 2a–2c, Table 3) as compared to control.

Fig 1. Basal frequencies of T helper subsets isolated from axillary tributaries of non-IBC and IBC patients. Higher proportions of Th1 (IFN-γ+CD4+) and Th2 (IL-

4+CD4+) subsets are present in non-IBC than IBC patients. (a) Representative flow cytometry dot plots indicating the percentage of cells in each quadrant, and (b)

Mean percentage ± SEM for non-IBC patients (n = 15), and IBC patients (n = 5). Data shown is representative for a single experiment. � P� 0.05, �� P� 0.01 as

determined by Student’s t test.

https://doi.org/10.1371/journal.pone.0217550.g001

Table 2. Immunophenotyping of circulating CD4+ T helper cells drained from the tumor microenvironment of non-IBC and IBC patients.

T helper phenotype % of cells in non-IBC

(n = 10)

% of cells in IBC

(n = 4)

P value

Th1 (CD4+IFN-γ+) 29.6 ± 3.9 11.38 ± 0.7 0.01��

Th2 (CD4+IL-4+) 28.29 ± 3.87 12.28 ± 1.43 0.03�

Th17 (CD4+IL-17+) 33.86 ± 5.27 26.18 ± 4.64 0.43

Treg (CD4+Foxp3+) 16.15 ± 2.84 16.71 ± 4.06 0.92

Values represent mean percentage ± SEM. n = number of patients.

Statistically significance as determined by Student t test expressed as � P � 0.05, �� P � 0.01

https://doi.org/10.1371/journal.pone.0217550.t002
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Fig 2. Effect of tumor Sdc-1 silencing on the polarization of T helper subsets of non-IBC patients. Lymphocytes

isolated from axillary blood of non-IBC patients were either stimulated by the secretome of control and Sdc-1-silenced

SUM-149 cells for 96 h or directly co-cultured with control and Sdc-1-silenced SUM-149 cells for 48 h. Lymphocytes were

then stained with labeled antibodies against CD4-FITC, IFN-γ-PE, IL-4-PEcy7, IL-17-PE, and Foxp3-PEcy7. Relative to

control cells, both Sdc-1-silenced SUM-149 cells and their secretome enhance (a) Treg (Foxp3+CD4+) and (b) Th17 (IL-

Syndecan-1 (CD138) and T helper cell polarization in breast cancer patients
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Additionally, in a co-culture of mononuclear cells isolated from non-IBC patients with

control and Sdc-1-silenced SUM-149 cells, we observed significantly increased percentages in

the Treg (Foxp3+CD4+) subset by 24.3% (with an average 25.2 ± 4.5% in control cells, and

30.6 ± 4.3% upon Sdc-1 silencing, P = 0.02, n = 5) (Fig 2a, Table 4) and in the Th17 (IL-

17+CD4+) subset by 67.8% (with an average 26.3 ± 4.2% in control cells, and 41.1 ± 5.4% upon

Sdc-1 silencing, P = 0.03, n = 5) (Fig 2b, Table 4) in comparison with control. However, we did

not observe any significant effect on skewing towards the Th2 (IL-4+CD4+) subset under both

conditions and on the Th1 (IFN-γ+CD4+) subset under direct co-culture conditions (Fig 2c

and 2d, Table 4).

Further, in a direct co-culture of normal PBMCs with control and Sdc-1-silenced SUM-149

cells, we detected only a significantly increased percentage in the Treg (Foxp3+CD4+) subset by

35.66% (with an average 22.61 ± 3.21% in control cells, and 28.98 ± 2.56% upon Sdc-1 silenc-

ing, P = 0.04, n = 5) (Fig 3d, Table 4), whereas there were no significant alterations in the per-

centage of other subsets as compared to the negative control (Fig 3a–3c, Table 4).

17+CD4+) subsets, whereas only the secretome of Sdc-1-silenced SUM-149 cells augments (c) the Th1 (IFN-γ+CD4+)

subset. No effect of Sdc-1 silencing in SUM-149 cells on (d) the Th2 (IL-4+CD4+) subset was detected upon stimulation

with their secretome or in co-culture. Left panels of (a-d) are representative flow cytometric analyses of CD4+ T cell

subsets. Data shown is representative for a single experiment. Right panels of (a-d) show the quantification of CD4+ T cell

subsets as analyzed by flow cytometry. Data represent mean ± SEM, n = 15 for samples stimulated by the secretome of

SUM-149 cells, and n = 5 for samples co-cultured with control and Sdc-1-silenced SUM-149 cells. � P� 0.05, �� P� 0.01 as

determined by Student’s t test.

https://doi.org/10.1371/journal.pone.0217550.g002

Table 3. Summary of CD4+ T helper subsets of non-IBC and IBC patients upon stimulation with the secretome of control and Sdc-1-silenced SUM-149 cell.

Phenotype Non-IBC (n = 15) P value IBC (n = 5) P value

Control (%) Sdc-1si (%) Control (%) Sdc-1si (%)

Th1 37.05 ± 5.07 40.63 ± 5.45 0.001�� 29.04 ± 6.7 30.12 ± 5.8 0.28

Th2 25 ± 4.4 29.7 ± 4.9 0.15 35.89 ± 6.8 36.54 ± 5.9 0.29

Th17 27.4 ± 4.2 31.9 ± 5.2 0.02� 37.20 ± 7.7 35.47 ± 7.4 0.33

Treg 25.3± 3.5 30.8 ± 4.2 0.001�� 24.03 ± 4.9 26.56 ± 8 0.95

Th1/Treg 1.59 ± 0.17 1.65 ± 0.16 0.5 1.57 ± 0.4 2.18 ± 0.8 0.57

Values represent mean percentage ± SEM. n = number of patients.

Statistically significance as determined by Student t test expressed as � P � 0.05, �� P � 0.01

https://doi.org/10.1371/journal.pone.0217550.t003

Table 4. Summary of CD4+ T helper subsets of normal subjects and non-IBC patients upon direct co-culture with control and Sdc-1-silenced SUM-149 cells.

Phenotype Normal (n = 5) P value Non-IBC (n = 5) P value

Control (%) Sdc-1si (%) Control (%) Sdc-1si (%)

Th1 23.8 ± 3.1 22.31 ± 1.6 1.00 21 ± 3.5 20.4 ± 2.4 0.72

Th2 15.54 ± 0.9 12.44 ± 0.7 0.11 14.6 ± 1.5 15.1 ± 3.6 0.98

Th17 25.4 ± 3.9 28.32 ± 2.2 0.24 26.3 ± 4.2 41.1 ± 5.4 0.03�

Treg 22.61 ± 3.21 28.98 ± 2.56 0.04� 25.2 ± 4.5 30.6 ± 4.3 0.02�

Th1/Treg 1.1 ± 0.15 0.78 ± 0.04 0.09 0.87 ± 0.1 0.71 ± 0.08 0.23

Values represent mean percentage ± SEM. n = number of patients.

Statistically significance as determined by Student t test expressed as � P � 0.05

https://doi.org/10.1371/journal.pone.0217550.t004
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Fig 3. Flow cytometric analysis of normal T helper subsets upon direct co-culture with Sdc-1-silenced SUM-149 cells. PBMCs isolated

from normal subjects were co-cultured with Sdc-1-silenced SUM-149 cells for 48 hours. Lymphocytes were then stained with labeled

antibodies against CD4-FITC, IFN-γ-PE, IL-4-PEcy7, IL-17-PE, and Foxp3-PEcy7. Relative to control cells, tumor Sdc-1 silencing

significantly increased the percentage of (d) Treg (Foxp3+CD4+) subsets while did not change the percentage of the other CD4+ T cell

subsets (a-c). Left panels of (a-d) are representative flow cytometric analyses of CD4+ T cell subsets. Data shown is representative for a

single experiment. Right panels of (a-d) show the quantification of CD4+ T cell subsets as analyzed by flow cytometry. Data represent

mean ± SEM, n = 5, � P� 0.05 as determined by Student’s t test.

https://doi.org/10.1371/journal.pone.0217550.g003
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On the contrary, no significant change in the percentages of Th2, Th17 and Treg subsets of

IBC patients was observed when stimulated with the secretome of Sdc-1-silenced SUM-149

cells in comparison to that of control (S2 Fig, Table 3). Only the percentage of the Th1 (IFN-

γ+CD4+) subset increased by 9.22% but it did not reach the significance level (P = 0.2, n = 5)

(S2 Fig, Table 3). Interestingly, the Th1/Foxp3+ Treg ratio was increased from 1.5 to 2.18 upon

stimulation with the secretome of control and Sdc-1-silenced SUM-149 cells (Table 3), sug-

gesting a skewing of CD4+ T cell polarization towards the Th1 subset as functional effector

cells.

Carcinoma tissues of IBC display an inverse correlation between expression

of Sdc-1 and each of IL-4, IL-17, and Foxp3 mRNA levels

We next investigated the clinical relevance of our in vitro data. Therefore, we examined

expression of IL-17, Foxp3, IL-4 and Sdc-1 transcript levels in carcinoma tissue of non-IBC

and IBC patients and tested whether there is any correlation among them. Interestingly, our

qPCR data demonstrate a significantly negative correlation between expression of Sdc-1 and

IL-4 (r = - 0.564, P = 0.028), IL-17 (r = - 0.571, P = 0.026), and Foxp3 (r = - 0.607, P = 0.016) in

breast carcinoma tissues of IBC patients (Fig 4). In contrast, a significantly positive correlation

between expression of Sdc-1 and IL-4 (r = 0.554, P = 0.032), IL-17 (r = 0.7, P = 0.004), and

Foxp3 (r = 0.539, P = 0.038) was evident in breast carcinoma tissues of non-IBC (Fig 4).

Although no statistical difference for expression of IL-4, IL-17 and Foxp3 mRNA levels in car-

cinoma tissues of non-IBC and IBC patients was observed, there was a trend for upregulation

of IL-4 and downregulation of Foxp3 mRNA levels in carcinoma tissues of IBC in comparison

to non-IBC (S3 Fig). This conforms to our in vitro findings and suggests a potential role of

Sdc-1 in regulating expression of IL-4, IL-17, and Foxp3 in non-IBC and IBC.

Sdc-1 knockdown drives Th17 skewing possibly via upregulation of IL-23

and DLL4 in SUM-149 cells

We next sought to delineate the potential molecular mechanism(s) exerted by Sdc-1 in regulat-

ing Th17 subset. One of the key cytokines that enhance the expansion of Th17 cells in inflam-

matory microenvironment is IL-23 [30]. Thus, we investigated the effect of Sdc-1 silencing on

the transcript level of IL-23 in SUM-149 cells. Our qPCR data revealed that Sdc-1 silencing sig-

nificantly upregulated IL-23 mRNA expression (P = 0.01) in comparison to control cells (Fig

5a). Since the Notch ligand delta-like 3 and 4 (DLL3 and 4), provides additional skewing sig-

nals to drive the polarization of IL-17 producing Th17 cells [22, 31], we therefore examined

whether Sdc-1 silencing might affect the expression of DLL3 and 4 in SUM-149 cells using

qPCR and Western blot. Relative to controls, DLL4 was significantly upregulated at the

mRNA level in Sdc-1-silenced SUM-149 cells (P = 0.0036) (Fig 5b), as well as at the protein

level (Fig 5c). However, DLL3 mRNA expression was not altered (data not shown). We further

examined expression of TGF-β mRNA (for Th17 and Foxp3 polarization [32]) by qPCR, as

well as TLR4 mRNA and protein expression (for Foxp3+ Treg polarization [33]) by qPCR and

Western blotting, respectively in SUM-149 cells after Sdc-1 silencing. Our data did not reveal

any significant difference for their expression upon Sdc-1 suppression (Data not shown).

Discussion

Due to the unique aggressive nature of IBC, it is speculated to be integrated with a characteris-

tic tumor microenvironment that enhances its aggressive behavior. Mounting evidence

pointed to the unfavorable effect of the reciprocal interactions between breast cancer cells and
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Fig 4. Spearman’s correlation between expression of Sdc-1 and each of IL-4, IL-17, and Foxp3 mRNA levels in carcinoma tissue of non-IBC

and IBC patients. Total RNA was extracted from non-IBC and IBC carcinoma tissues collected during surgical operation, reverse transcribed into

cDNA, and relative mRNA expression of Sdc-1, IL-4, IL-17, and Foxp3 was determined by qPCR. Spearman‘s rank correlation between Sdc-1 and

a) IL-4, b) IL-17, and c) Foxp3 mRNA expression in carcinoma tissue of non-IBC (n = 15, positive correlation, left panel) vs. IBC patients (n = 15,

negative correlation, right panel). RQ values of mRNA expression are log2-transformed and normalized to values of normal tissues collected during

reduction mammoplasty.

https://doi.org/10.1371/journal.pone.0217550.g004
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stromal cells nested in the tumor microenvironment, which allow the advance of breast carci-

noma phenotype from being in situ to be invasive and spread to lymph nodes and distant tis-

sues [4].

In this study, we extended our previous findings demonstrating increased CD4+ T cells

drained from tumor microenvironment of breast cancer patients [9] by evaluating the different

CD4+ T cell subsets isolated from non-IBC and IBC patients. Our data revealed that the Th17

(IL-17+CD4+) subset is the predominant subset among CD4+ T cells in both groups; non-IBC

and IBC patients. This is consistent with the previous study reported that a high proportion of

Th17 subset is a common feature between several cancer entities, including breast carcinoma

[34]. Furthermore, our results showed that IBC patients are characterized by a high frequency

of the Treg (Foxp3+CD4+) subset representing 23% of total CD4+ T cells drained from the

Fig 5. Sdc-1 silencing upregulates IL-23 and DLL4 expression in SUM-149 cells. 48 hours post transfection of SUM-149 with negative control and Sdc-1 siRNA,

total RNA was extracted, reverse transcribed into cDNA and relative mRNA expression was quantified by qPCR. mRNA expression of a) IL-23, and b) DLL4 in control

and Sdc-1-silenced SUM-149 cells. c) Western blot shows upregulation of DLL4 protein expression in Sdc-1-silenced SUM-149 cells relative to control. Data represent

mean ± SEM, n� 3, �� P< 0.01 as determined by Student’s t test.

https://doi.org/10.1371/journal.pone.0217550.g005
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tumor microenvironment. On the other hand, in non-IBC patients, we detected a significantly

elevated frequency of Th1 (IFN-γ+CD4+) and Th2 (IL-4+CD4+) subsets in comparison with

IBC patients. Taken together, we suggest that the suppressed frequency of the Th1 (IFN-

γ+CD4+) subset and the elevated Treg (Foxp3+CD4+) subset in IBC patients may represent a

factor that contributes to the aggressive behavior of IBC, based on the fact that Th1 subset are

typically the effector cells that mediate the main anti-cancer response [11, 35], whereas the ele-

vated proportion of the Treg (Foxp3+CD4+) subset suppresses the anti-cancer immune

response developing immune tolerance of cancer cells, and thus promote progression and

aggressiveness of the cancer [36].

Surprisingly, we have detected a significant high frequency of Th2 cells in axillary blood of

non-IBC patients in comparison with IBC patients. Although there was a high expression of

IL-4 mRNA in carcinoma tissues of IBC vs non-IBC, it did not reach the significance level. It

has been reported that Th2 type tumor microenvironment can promote tumor metastasis [12],

and resistance to chemotherapy and radiotherapy [37]. On the contrary, other studies have

reported that loss of GATA-3 expression, a master transcriptional regulator of Th2 specific

cytokines [38], has been associated with aggressive tumor phenotype and worse prognosis in

breast cancer patients [39, 40]. Therefore, these conflicting data needs further validation in a

large cohort of patients with a determination of IL-4 expression localization in infiltrated Th

cells vs. tumor cells.

As Sdc-1 displays the capacity to bind different ligands involving cell surface, matrix pro-

teins, growth factors, cytokines, and chemokines, it emerges as a candidate modulator of

inflammatory processes [41]. Sdc-1 expression is upregulated in human breast carcinoma tis-

sue, and its overexpression is correlated with cancer aggressiveness and poor prognosis [42].

Moreover, we have previously demonstrated that relative to non-IBC, carcinoma tissue of IBC

confers a higher expression of Sdc-1 mRNA and protein that are associated with the unique

cancer stemness phenotype of IBC [3]. Despite the growing evidence connecting chronic

inflammation to breast cancer progression [43, 44], to our knowledge this is the first study

investigating the impact of tumor Sdc-1 silencing on polarization of T helper cells towards

Th1, Th2, Th17, and Treg subsets isolated from non-IBC and IBC breast cancer patients. Our

results revealed that tumor Sdc-1 silencing promotes the proportion of Th1 (IFN-γ+CD4+)

subset of non-IBC patients when stimulated with the secretome of Sdc-1-silenced SUM-149

cells but not in direct co-culture, as compared to negative control. Moreover, we noted an

increased Th1/Treg ratio in CD4+ T cells isolated from IBC patients upon stimulation with the

secretome of Sdc-1-silenced SUM-149 cells in comparison to control, indicating a skewing of

the polarization towards the Th1 subset. These findings can be explained based on the previous

notion that the HS chains of Sdc-1 competitively inhibit IFN-γ binding to its receptor [45, 46],

and consequently, inhibit its biologic activity [45, 47]. Further, we previously demonstrated

reduced levels of IL-6 in conditioned media of SUM-149 cells upon Sdc-1silencing [3]. IL-6 is

a pleiotropic cytokine that is able to interfere with IFN-γR signaling and to inhibit the gene

expression of IFN-γ and Th1 polarization [48]. Taken together, it seems possible that silencing

the expression of Sdc-1 in breast cancer cells could facilitate the binding of IFN-γ to its recep-

tor on T cells, and abrogate the inhibitory effect of IL-6 on IFN-γ/IFN-γR signaling that would

lead to an autoregulation of IFN-γ gene expression in T cells and induce Th1 polarization. On

the contrary, Sdc-1 silencing did not upregulate the percentage of Th1 cells under direct co-

culture conditions. This could be reasoned to a difference in the subset used, whereby the total

axillary mononuclear cells isolated from non-IBC patients, including B cells, T cells, and

monocytes, were employed in a direct contact with cancer cells. Under these conditions,

monocytes and B cells, the antigen presenting cells (APCs) known to activate T cells, are can-

cer educated and suppress the effector Th1 cells [49]. On the other hand, under indirect
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stimulation of the isolated axillary T cells with the secretome of control and Sdc-1-silenced

SUM-149 cells, the T cells were pre-activated with CD3/CD28 stimulation, which induce Th1

phenotype [50]. These results suggest that Sdc-1 can regulate the polarization of Th1 subset

according to activation status and the cellular components of the tumor milieu.

Apart from Th1 polarization, our data revealed that tumor Sdc-1 silencing significantly up-

regulated the proportions of the Treg (Foxp3+CD4+) subset among CD4+ T cells of non-IBC

patients when stimulated with the secretome of Sdc-1-silenced SUM-149 cells and in co-cul-

ture, as well as enhanced the proportion of the Treg (Foxp3+CD4+) subset among CD4+ T cells

of normal subjects when co-cultured with Sdc-1-silenced SUM-149 cells, as compared to nega-

tive control. Verifying the corresponding in vivo relationship between Sdc-1 and Foxp3

mRNA expression, we found a negative correlation in carcinoma tissue of IBC patients. How-

ever, a positive correlation in the carcinoma tissue of non-IBC patients was observed. One of

the essential polarizing cytokines of Foxp3 in CD4+ T cells is TGF-β [51]. Recent and previous

studies demonstrated that Sdc-1 can bind and inhibit TGF-β responsiveness [52–55]. More-

over, it binds and downregulates its activator protein, Thrombospondin-1 (TSP-1) [53, 56].

Additional data demonstrate that Sdc-1 knockdown increases surface expression of αvβ6 integ-

rin, activating latent TGF-β complex, and constitutively elevating TGF-β signaling [57]. While

TGF-β is critical for polarization of the Treg (Foxp3+CD4+) subset, IL-6 negatively regulates

the generation of Treg cells induced by TGF-β [58]. We have shown that in breast cancer cells

specifically IBC, silencing of Sdc-1 drives downregulation of IL-6 and its signaling pathway

components [27, 59]. Although TGF-β mRNA expression was not altered after Sdc-1 knock-

down, we can speculate that Sdc-1 silencing in SUM-149 cells increases the activation of TGF-

β signaling in CD4+ T cells via downregulation of IL-6 expression. Consequently, it promotes

the expression of Foxp3 within CD4+ T cells and upregulates the proportion of the Treg

(Foxp3+CD4+) subset.

Another important finding is that tumor Sdc-1 silencing significantly induced elevated pro-

portion of the Th17 (IL-17+CD4+) subset among CD4+ T cells of non-IBC patients when stim-

ulated by the secretome of Sdc-1-silenced SUM-149 cells and under direct co-culture,

conditions as compared to negative controls. Interestingly, we have found that Sdc-1 mRNA

expression in carcinoma tissue of IBC patients negatively correlated with expression of IL-17,

whereas positively correlated in the carcinoma tissue of non-IBC patients. These findings are

in line with a previous study that has shown elevated numbers of Th17 cells in Sdc-1 knockout

CNS during experimental autoimmune encephalomyelitis [60]. Similarly, Sdc-1 knockout

mice showed an increase in the frequency of NKT17 cells during thymic development [26]. On

the contrary, the expression of Sdc-1 is positively correlated with that of IL-17 in nasal epithe-

lial cells, glandular epithelial cells, and inflammatory cells of nasal polyps [61]. Therefore, the

conflicting reports in different experimental systems suggest that Sdc-1 may modulate polari-

zation of Th17 subset in the context of the pathophysiological state. IL-23 is a key cytokine that

plays important roles in the pathogenesis of inflammatory diseases through the activation and

expansion of Th17 cells [30]. Indeed, our data demonstrated an upregulation of IL-23 mRNA

expression in Sdc-1-silenced SUM-149 cells as compared to control. As an additional clue for

driving Th17 skewing, we detected an upregulation of DLL4 expression at the transcript and

protein levels in Sdc-1-silenced SUM-149 cells relative to control cells. DLL4 is a key Notch

ligand that engages Notch receptor on T cell surface activating Notch signaling [22, 62]. The

gene promotors of Rorc, IL-17, and IL-23-receptor are direct Notch targets [31, 63] and,

accordingly, DLL4 provides additional Th17 skewing signals through upregulation of RORγt

[31]. Taken together, this provides a possible mechanistic explanation for the enhancement of

Th17 cell expansion via upregulation of IL-23 and DLL4 after suppression of Sdc-1 expression

on IBC cells. Given the pro- or anti-tumor functions of Th17 cells [64], the exact function of
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Fig 6. Schematic diagram shows the basal immunophenotyping of axillary Th cells of non-IBC vs. IBC patients, and the immunoregulatory role

of tumor Sdc-1 for CD4+ Th cell polarization of non-IBC patients. (A) IBC patients are characterized by lower frequencies of circulating Th1 and

Th2 subsets drained from axillary tributaries as compared to non-IBC patients. Relative to other Th subsets, Treg (CD4+Foxp3+) subset represents the

lowest frequency among Th cells of non-IBC patients. (B) Upregulation of IL-23 and DLL4 expression mediated by Sdc-1 silencing in IBC cells may

drive Th17 polarization under indirect and direct co-culture conditions. In addition, Sdc-1 silencing enhances Treg cell polarization under both indirect

and direct co-culture conditions, whereas induces only Th1 polarization under indirect co-culture conditions.

https://doi.org/10.1371/journal.pone.0217550.g006
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Th17 cells upon culturing with Sdc-1-silenced IBC cells should be studied in detail in the

future.

Our in vitro data also showed that tumor Sdc-1 silencing did not significantly alter the pro-

portion of the Th2 (IL4+CD4+) subset among CD4+ T cells of non-IBC patients under indirect

and direct co-culture conditions. This finding may be reasoned to the downregulation of IL-6

produced by Sdc-1-silenced SUM-149 cells, and upregulation of IFN-γ produced by the

enhanced Th1 subset under indirect co-culture, as the signaling induced by IL-6 can promote

the gene expression of IL-4 within CD4+ T cells and subsequently upregulate Th2 population

[65]. Moreover, high levels of IFN-γ can interfere with the expression of the master transcrip-

tion factor of the Th2 population; GATA-3, and inhibit gene expression of Th2 cytokines [66].

Analogously, under direct co-culture conditions, Th2 polarization was not altered because of

upregulation of DLL4 expression upon Sdc-1 suppression in SUM-149 cells, since DLL4

expression limits Th2 cytokine production [31].

In conclusion, our study demonstrates lower frequencies of circulating Th1, and Th2 subsets

in axillary tributaries of IBC than that of non-IBC patients (Fig 6). Moreover, we demonstrate

that tumor Sdc-1 silencing enhances the polarization of Th cells under indirect conditions

towards Th1 and under both co-culture conditions towards Th17, and Treg subsets, but not

towards Th2 subset in non-IBC. However, tumor Sdc-1 silencing does not alter the polariza-

tion of Th cells towards a particular subset, but increases only the Th1/Treg ratio indicating a

skewing of the polarization towards Th1 subset in IBC. Moreover, there is a negative correla-

tion between expression of Sdc-1 mRNA and IL-4, IL-17 and Foxp3 mRNA levels in carci-

noma tissues of IBC and that correlation was reversed in non-IBC. Mechanistically, Sdc-1

silencing mediates Th17 cells expansion possibly via upregulation of IL-23 and DLL4 (Fig 6).

Our findings suggest a role for tumor Sdc-1 in modulating the polarization of Th cells within

the tumor microenvironment of breast cancer dependent on the type the disease (non-IBC vs.

IBC). Further research on large patient collectives is warranted to verify our findings and to

clarify the exact functions of different Th subsets induced by Sdc-1 silencing on IBC cells.

Supporting information

S1 Fig. Confirmation of Sdc-1 siRNA transfection in SUM-149 cells. (a) Quantitative PCR

analysis for mRNA expression of Sdc-1 in control and Sdc-1 siRNA transfected SUM-149

cells. Total cellular RNA was isolated and reverse transcribed into cDNA and gene expression

level was measured by qPCR. (b) Flow cytometric analysis of Sdc-1 expression in control and

Sdc-1 siRNA transfected SUM-149 cells. 500,000 cells were stained for isotype control mouse

IgG1-PE and mouse anti-human Sdc-1-PE and the cells were subjected to flow cytometry.

Each plot shows mouse IgG-PE control (dark histogram) and Sdc-1-PE-stained cells (white

histogram). The median fluorescence intensity (MFI) of events is given for each peak. Data are

a single experiment representative of three independent experiments.

(TIF)

S2 Fig. Flow cytometric analysis of CD4+ T cell subsets of IBC patients upon tumor Sdc-1

silencing. Lymphocytes isolated from axillary blood of IBC patients were stimulated by the

secretome of Sdc-1-silenced SUM-149 cells for 96 h. Lymphocytes were then stained with

labeled antibodies against CD4-FITC, IFN-γ-PE, IL-4-PEcy7, IL-17-PE, and Foxp3-PEcy7.

Relative to control cells, tumor Sdc-1 silencing did not significantly change the percentages

of (a) Th1 (IFN-γ+CD4+), (b) Th2 (IL-4+CD4+), (c) Th17 (IL-17+CD4+), and (d) Treg

(Foxp3+CD4+) subsets. Left panels of (a-d) are representative flow cytometric analysis of

CD4+ T cell subsets. Data shown is representative for a single experiment. Right panels of

(a-d) show the quantification of CD4+ T cell subsets as analyzed by flow cytometry. Data
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represent the mean ± SEM, n = 5, statistically significance is considered at P� 0.05 as deter-

mined by Student’s t test.

(TIF)

S3 Fig. No significant differences for IL-4, IL-17, and Foxp3 mRNA expression in carci-

noma tissue of non-IBC vs. IBC patients. Total RNA was extracted from non-IBC and IBC

carcinoma tissue collected during surgical operation, reverse transcribed into cDNA, and rela-

tive mRNA expression of a) IL4, b) IL-17, and c) Foxp3 were quantified by qPCR. RQ values

of mRNA expression are log2 transformed and normalized to values of normal tissues col-

lected during reduction mammoplasty. n = 15, P< 0.05 is considered significant as deter-

mined by Mann-Whitney U-test.

(TIF)
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