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Strategically located between the thalamus and the cortex, the inhibitory thalamic

reticular nucleus (TRN) is a hub to regulate selective attention during wakefulness and

control the thalamic and cortical oscillations during sleep. A salient feature of TRN

neurons contributing to these functions is their characteristic firing patterns, ranging in a

continuum from tonic spiking to bursting spiking. However, the dynamical mechanism

under these firing behaviors is not well understood. In this study, by applying a

reduction method to a full conductance-based neuron model, we construct a reduced

three-variable model to investigate the dynamics of TRN neurons. We show that the

reduced model can effectively reproduce the spiking patterns of TRN neurons as

observed in vivo and in vitro experiments, and meanwhile allow us to perform bifurcation

analysis of the spiking dynamics. Specifically, we demonstrate that the rebound bursting

of a TRN neuron is a type of “fold/homo-clinic” bifurcation, and the tonic spiking is the fold

cycle bifurcation. Further one-parameter bifurcation analysis reveals that the transition

between these discharge patterns can be controlled by the external current. We expect

that this reduced neuron model will help us to further study the complicated dynamics

and functions of the TRN network.

Keywords: thalamic reticular nucleus, neuron model, bursting, tonic spiking, bifurcation analysis, phase

plane analysis

1. INTRODUCTION

The thalamic reticular nucleus (TRN) is a brain area containing a large population of GABAergic
neurons (Sherman and Guillery, 2001; Pinault, 2004; Halassa and Acsády, 2016; Crabtree, 2018). It
receives glutamatergic projections from the thalamocortical and corticothalamic neurons (Sherman
and Guillery, 2001; Pinault, 2004; Crabtree, 2018), and inhibitory and modulatory inputs from
many subcortical regions (Jourdain et al., 1989; Govindaiah et al., 2010; Beierlein, 2014; Herrera
et al., 2016; Nakajima et al., 2019). However, all its efferents are targeted on cells in the thalamic
nuclei (Sherman and Guillery, 2001; Pinault, 2004; Crabtree, 2018), and nearly every part of the
thalamus receives inhibition from the TRN (Swanson et al., 2019). Located in such a strategical
position, TRN has long been hypothesized to play an important role in the regulation of
information flow transferred through the thalamus. In an influential theoretical proposal, Francis
Crick suggested that “if the thalamus is the gateway to the cortex, the reticular complex might
be described as the guardian of the gateway” (Crick, 1984). This hypothesis of the importance
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of TRN on selective attention has been confirmed by recent
studies on rodents, monkeys, and humans (McAlonan et al.,
2006, 2008; Halassa et al., 2014; Ahrens et al., 2015; Wimmer
et al., 2015; Wells et al., 2016; Nakajima et al., 2019). Moreover, a
growing body of experiments starts to draw the conclusion that
TRN is also a center for the control of the brain oscillation during
sleep. The pioneering work of Steriade et al. (1985, 1987) found
that, in cats in vivo, the TRN-disconnected thalamic nuclei lose
their ability to generate spindle oscillations, while the isolated
TRN deprived of inputs from the cortex and thalamus can itself
generate spindle rhythms, demonstrating TRN is the spindle
pacemaker. Moreover, optogenetic studies have shown that
activation pulses on TRN neurons can evoke spindle oscillations
in the connected thalamic or cortical areas (Halassa et al., 2011;
Barthó et al., 2014; Clemente-Perez et al., 2017). Another study
in awake mice found that local activation of TRN can rapidly
induce delta oscillation in the corresponding region of the cortex
area, along with a decrease in arousal state (Lewis et al., 2015).
Putting together, these experimental results suggest that TRN has
strong functional controls on attentional filtering and oscillation
regulation in the brain.

A key ingredient of TRN neurons to exert their functions
in the brain is their rich firing patterns, including bursts (low-
threshold Ca2+ potentials) when neurons are hyperpolarized
(e.g., during sleep) (Steriade et al., 1986; Huguenard and Prince,
1992; Bal and McCormick, 1993; Llinás and Steriade, 2006),
tonic spikes when neurons are depolarized (e.g., during the
wakefulness or attention state) (Steriade et al., 1986, 1993;
Herd et al., 2013; Rovó et al., 2014; Lewis et al., 2015),
and firing patterns between them (Pinault, 2004; Halassa and
Acsády, 2016). On the one hand, the intrinsic bursting in TRN
neurons is important for the regulation of brain oscillations.
Barthó et al. (2014) demonstrated that the number of spikes
in each TRN burst predicts the progression of a spindle event.
Moreover, genetic deletion of Ca2+ channels in TRN neurons
in mice abolished low-threshold Ca2+ potentials and bursts,
which further suppressed spindle rhythms while enhanced delta
oscillations during sleep (Pellegrini et al., 2016; Fernandez et al.,
2018; Vantomme et al., 2019; Li et al., 2020). On the other
hand, TRN tonic spikes are prevalent during the wakefulness or
attentional state (Pinault, 2004; McAlonan et al., 2006, 2008).
Such tonic inhibition permits information transfer from the
thalamus during an attentional focus (McAlonan et al., 2006,
2008; Coulon and Landisman, 2017), and allows fine-grained
inhibitory control on the thalamic targets (McAlonan et al., 2008;
Wimmer et al., 2015; Halassa and Acsády, 2016).

To reproduce these characteristic firing patterns, detailed
conductance-based neuron models were proposed for TRN
neurons (Destexhe et al., 1996; Bazhenov et al., 1998, 2002;
Vijayan and Kopell, 2012; Fan et al., 2017). However, in these
full models, too many voltage-dependent conductance channels
and dynamical parameters are involved, which makes it hard
to analyze the neuronal dynamics clearly and, hence, prevents
us from understanding the inner mechanism underlying the
rich dynamics of TRN neurons. Furthermore, it has been
documented that distributed TRN cells in different regions
usually exhibit different spiking properties (Brunton and

Charpak, 1997; Lee et al., 2007; Clemente-Perez et al., 2017;
Li et al., 2020; Martinez-Garcia et al., 2020). A full neuron
model with too many parameters makes it hard to identify the
key elements that contribute to this intrinsic heterogeneity in
firing patterns. Without understanding the dynamics of single
TRN neurons clearly, it will be difficult for us to understand
the much more complicated dynamics and functions of the
TRN network.

In this study, motivated by the foregoing shortcomings of a
full neuron model, we present a reduced three-variable model
for TRN neurons by adopting a reduction method proposed by
Kepler et al. (1992). The main idea of this reduction algorithm
is to group different variables operating in a similar time
scale into a single representative variable. The reduced model
is an approximation of the original full model but preserves
its key dynamical features. The reduced model also keeps the
original biological meanings of the corresponding full model,
as the individual channel currents can be recovered from the
reduced variables. The key advantage of the reduced TRN
neuron model is that we can perform theoretical analysis on its
dynamics. Utilizing the reduced model, we carry out an analysis
to elucidate the bifurcation mechanisms under two characteristic
discharge patterns of TRN neurons, i.e., the rebound bursting
and tonic spiking. We show that the rebound bursting is a
type of “fold/homo-clinic” bifurcation and the tonic spiking is
the fold cycle bifurcation. We also carry out a one-parameter
bifurcation analysis and find that transition between these two
firing patterns can be achieved by varying the external input.
We hope that this study will pave the way for us to study the
much more complicated dynamics of the TRN network in the
future study.

2. A FULL MODEL OF TRN NEURONS

The full mathematical model of TRN neurons we consider was
proposed by Bazhenov et al. (1998, 2002), which is described as a
single-compartmentHodgkin-Huxley schema, with a set of active
channels sufficient to produce the typical firing patterns seen in
TRN neurons. Similarly to other dynamical systems that describe
isopotential excitable neural membranes, this model could be
written as this form:

C
dV

dt
+ I (V , {xi}) =

10−3Isyn(t)

A
, (1)

where V is the membrane potential, C = 1µF/cm2 is
the membrane capacitance, I (V , {xi}) is a term expressed
as a function of V and the gating variables xi describing
the ion currents, and Isyn is the received synaptic current
which is normalized by the membrane area A = 1.43 ×

10−4cm2 (Bazhenov et al., 2002). Specifically, this model contains
three active ionic currents, which are fast sodium current INa and
a delayed rectifier IK for spiking generation, and a low-threshold
Ca2+ current IT for rebound bursting, and two leaky currents,
which are a membrane leakage current IL and a potassium leaky
current IKL controlled by neuromodulators like acetylcholine and
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TABLE 1 | Kinetics of gating variables.

θ φθ αθ (V) or θ∞(V) βθ (V) or τθ (V) Reference

m 1 αm =
0.32

(

13.−V+VNa
th

)

exp
(

(13.−V+VNa
th

)/4
)

−1
βm =

0.28
(

V−40.−VNa
th

)

exp
(

(V−40.−VNa
th

)/5
)

−1
1©

h 1 αh = 0.128 exp

(

17−V+VNa
th

18

)

βh = 4

1+exp
(

(40−V+VNa
th

)/5
) 1©

n 1 αn =
0.032

(

15−V+VK
th

)

exp
(

(15−V+VK
th
)/5
)

−1
βn = 0.5 exp(

10−V+VK
th

10 ) 1©

p 6.9 p∞ = 1

1+exp

(

−52−V+VT
th

7.4

) τp = 3+ 1

exp

(

V+27−VT
th

10

)

+exp

(

−V−102+VT
th

15

) 2©

q 3.7 q∞ = 1

1+exp

(

80+V−VT
th

5

) τq = 85+ 1

exp

(

V+48−VT
th

4

)

+exp

(

−V−407+VT
th

50

) 2©

The spike adjusting threshold VNath = VKth = −55mV and the calcium channel threshold VTth = −3mV.

The references 1© and 2© denote Bazhenov et al. (2002) and Huguenard and Prince (1992), respectively.

norepinephrine (McCormick, 1992). The ion current term is
written as,

I (V , {xi}) = IL + IKL + INa + IK + IT , (2)

where the leakage current is modeled as IL = gL(V−EL), with the
leakage channel conductance gL = 0.06mS/cm2 and the leakage
reversal potential EL = −70mV, and the potassium leaky current
is modeled as IKL = gKL(V − EKL), with the reversal potential
EKL = −100mV. The last three items are voltage-dependent
ionic currents which are expressed in a unified form as,

Ii = giM
jNk(V − Ei), i ∈ {Na,K,T} (3)

where gi is the maximal conductance, M is the activation gating
variable, N is the inactivation gating variable, j and k are the
numbers of the gating variables, and Ei is the reversal potential.
Specifically, INa = gNam

3h(V − ENa), IK = gKn
4(V − EK), and

IT = gTp
2q(V − ET), with the maximal conductance gNa =

100mS/cm2, gK = 10mS/cm2, and the reversal potentials ENa =
50mV, EK = −100mV, and ET = 120mV. The dynamics of
gating variables are expressed in the below unified form,

dθ

dt
= φθ

θ∞(V)− θ

τθ (V)
, θ ∈ {m, h, n, p, q}, (4)

where θ∞ is the voltage-dependent steady state, τθ is the voltage-
dependent time constant, and φθ is a constant. For a gating
variable θ ∈ {m, h, n}, θ∞ and τθ are expressed by the voltage-
dependent state transition variables α and β , i.e.,

θ∞(V) =
αθ (V)

αθ (V)+ βθ (V)
, τθ =

1

αθ (V)+ βθ (V)
. (5)

The equations and values of the above variables are listed in
Table 1.

3. REDUCTION OF THE FULL MODEL

As described above, the full model has six dynamical variables (V ,
m, h, n, p, and q), making it hard to analyze the inner mechanism

and difficult to accommodate TRN neurons with different firing
patterns. In this study, by adopting a reduction method proposed
for the conductance-based neuron model (Kepler et al., 1992),
we present a reduced model with a minimal set of variables
to capture the behaviors of the original full model. The overall
reduction procedure can be summarized into the following
four steps.

3.1. Step 1: Converting Gating Variables
Into Equivalent Potentials
In the original expressions, variables are not dimensionally
equivalent. To combine different variables for reduction, making
them dimensionally equivalent is necessary. Membrane potential
provides a connection between these variables, so we consider
that all gating variables are converted into equivalent potentials
vθ , in term of that in the voltage-clamp recording, equilibrium
voltage will gives rise to the value θ , i.e., θ = θ∞(vθ ) or
equivalently, vθ = θ−1

∞ (θ).
Using the equivalent potentials, the original full model

Equation (1) can be re-expressed as,

C
dV

dt
+ F (V , {vθ }) =

10−3Isyn(t)

A
, (6)

where

F (V , {vθ }) =I
(

V ,
{

θ∞(vθ )
})

=gNam
3
∞(vm)h∞(vh)

+ gTp
2
∞(vp)q∞(vq)(V − ET)

+ gKn
4
∞(vn)(V − EK)+ IL + IKL.

(7)

From Equation (5), we also obtain

dvθ

dt
= φθ

θ∞(V)− θ∞(vθ )

τθ (V)θ ′∞(vθ )
= fθ (V , vθ ), θ ∈ {m, h, n, p, q},

(8)
where θ ′∞ denotes the derivative of θ∞ with respect to vθ .

3.2. Step 2: Grouping Variables at a Similar
Time Scale
By simulation, we obtain the dynamics of equivalent potentials
in the full TRN neuron model, which are displayed in Figure 1.
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FIGURE 1 | The evolution of the membrane potential and the equivalent potentials in the full thalamic reticular nucleus (TRN) neuron model. The model (Equations

6–8) receives an inhibitory current with the size of −0.03mS/cm2 during the first 200 ms. In the next 400 ms, the model exhibits a rebound bursting. V and vm have

the fastest time scale and exhibit the largest variations; vh, vn, and vp response at a slower time scale and display intermediate amplitude variations; vq has the

slowest time constant and shows the modest variation. The neuronal parameters used are EL = –77 mV, gKL = 0.00793mS/cm2, and gT = 2mS/cm2.

We see that they can be categorized into three classes. The first
category includes V and vm, which have the largest variations.
The second category includes vh, vn, and vp, which have an
intermediate amplitude of variation and change on a slower time
scale compared to the first category. Note that vh and vn are
anti-synergistic to vp, in terms that the increases in vh and vn
hyper-polarize the membrane potential while the increase in vp
depolarizes the membrane potential. The third category only
includes vq, which has the smallest amplitude of variation and
changes at the slowest speed. These properties suggest that the
dynamics of a TRN neuron in the six-dimensional space can be
effectively reduced to a three-dimensional manifold.

To locate this manifold, we group those equivalent potentials
behaving similarly into a single representative variable as a
weighted average of their values, which are written as,

x = ρVV + ρmvm, (9)

y = ρhvh + ρnvn + ρpvp, (10)

z = vq, (11)

where all the coefficients {ρi}, for i ∈ {V ,m, h, n, p, q}, are non-
negative, and they satisfy ρV + ρm = 1 and ρh + ρn + ρp =

1.

3.3. Step 3: Determining the New Variables
We fix the coefficients for the new variables in Equations (9–11)
under the condition that the dynamics of themembrane potential

of the reduced model can approximate that of the full model as
accurately as possible.

From Equation (9), we have

dx

dt
= ρV

dV

dt
+ ρm

dvm

dt
. (12)

Substituting Equations (6–8) into Equation (12) and
approximating the dynamics in the first-order Taylor expansion,
we have,

C
dx

dt
= ρV

10−3Isyn(t)

A

−

[

ρVF(x, y, z)+ δhρV
∂F

∂vh
+ δnρV

∂F

∂vn
+ δpρV

∂F

∂vp

+ δV

(

ρV
∂F

∂V
−

Cφmρm

τm

)

+δm

(

ρV
∂F

∂vm
+

Cφmρm

τm

)

+ O
(

δ2
)

]

, (13)

where δj = x−j, for j ∈ {V , vm}, and δl = y−l, for l ∈ {vh, vn, vp}.
It is straightforward to check that ρhδvh + ρnδvn + ρpδvp = 0,
and ρVδV + ρmδvm = 0. To get the above result, we have
used the conditions that fm(x, x) = 0 and ∂fm(x, x)/∂V =

−∂fm(x, x)/∂vm = φθ/τm.
We determine the coefficients {ρi} by requiring that

the discrepancy between the reduced and the full models
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(i.e., the first-order Taylor expansion in Equation 13) be
as small as possible. This is formulated as an optimization
problem. Specifically, for determining the coefficients
ρh, ρn, ρp, ρm, andρV , the optimization problem is formulated
as follows,

min

∣

∣

∣

∣

δvhρh
∂F

∂vh
+ δvnρn

∂F

∂vn
+ δvpρvp

∂F

∂vp

+δV

(

ρV
∂F

∂V
−

Cφmρm

τm

)

+ δvm

(

ρV
∂F

∂vm
+

Cφmρm

τm

)
∣

∣

∣

∣

s.t. ρhδvh + ρnδvn + ρpδvp = 0, ρh, ρn, ρp ≥ 0,

ρVδV + ρmδvm = 0, ρm, ρV ≥ 0,

(14)

where the symbol | · | denotes the absolute value. This
optimization problem can be solved by using the Lagrangian
method (as shown in details in Supplementary Material),
which gives,

ρp = k, (15)

ρh = (1− k)
∂F

∂vh
/

(

∂F

∂vh
+

∂F

∂vn

)

, (16)

ρn = (1− k)
∂F

∂vn
/

(

∂F

∂vh
+

∂F

∂vn

)

, (17)

ρV =
−(C φm

τm
+ ∂F

∂V )+
√

(C φm
τm

+ ∂F
∂V )

2 − 4C φm
τm

( ∂F
∂V + ∂F

∂vm
)

−2( ∂F
∂V + ∂F

∂vm
)

,

(18)

ρm = 1− ρV , (19)

where 0 < k < 1 is an undetermined constant, which we
normally set k to be 0.01.

3.4. Step 4: Formulating the Reduced
Model
After fixing the new variables, we can write down their
approximated dynamics. Specifically, for the variable x
(corresponding to the membrane potential), its dynamics is
written as,

C

ρV

dx

dt
= −gNam

3
∞(x)h∞(y)(x− ENa)− gKn

4
∞(y)(x− EK)

−gTp
2
∞(y)q∞(z)(x− ET)− IL − IKL +

10−3

A
Isyn(t).

(20)

In this study, we have ignored the discrepancy term in Equation
(13) from the full model. Note that x has become an alternative
variable of membrane potential V (in the following section we
refer to V as x).

For the variable y, based on Equation (10), we get its dynamics,

dy

dt
= ρh

dvh

dt
+ ρn

dvn

dt
+ ρp

dvp

dt
,

= ρhφh
h∞(x)− h∞(y)

τh(x)h′∞(y)
+ ρnφn

n∞(x)− n∞(y)

τn(x)n′∞(y)

+ρpφp
p∞(x)− p∞(y)

τp(x)p′∞(y)
. (21)

In this study, we have used the approximations vh ≈ y, vn ≈ y,
and vp ≈ y.

For the variable z, based on Equation (11), its dynamics is
written as,

dz

dt
= φq

q∞(x)− q∞(z)

τq(x)q′∞(z)
. (22)

The above Equations (20–22) form the reduced model
of TRN neurons. The details of the model are given in
Supplementary Material: The details of the reduced model.

4. ANALYSIS OF THE REDUCED MODEL

In the above, we have reduced the original six-variable
TRN neuron model into a dynamical system with three
variables. In this section, we investigate the firing patterns
and perform a bifurcation analysis of the reduced model. All
simulations and analyses are performed using the BrainPy library
(Wang et al., 2021).

4.1. Firing Patterns in the Reduced Model
We first verify that our reduced TRN neuron model behaves
similarly to the original full one and can reproduce the firing
patterns as seen in experiments. Two models are set to have
the same parameters, including the neuronal parameters and the
external input currents (Figure 2). Under a constant excitatory
input with the size of 0.2µA/cm2, two models first burst,
then gradually produce the same tonic spikes (Figure 2A).
After shortening the depolarization duration (the excitatory
current is only applied during the first 200 ms, Figure 2B),
the reduced model also shows the same oscillation behavior.
Specifically, bothmodels first burst, then display tonic spikes, and
finally exhibit subthreshold oscillations. Moreover, injection of
a hyperpolarizing current pulse (an inhibitory current with the
size of −0.05µA/cm2 and the duration of 200 ms) results in
a similar rebound bursting (Figure 2C). Therefore, the reduced
model can effectively capture the TRN neuron firing patterns,
including tonic and burst firings, as seen in TRN neurons in vivo
and in vitro (Contreras et al., 1992; Bal and McCormick, 1993;
Lee et al., 2007).

In the next, we are going to apply dynamical system theory
to illustrate the bifurcation mechanism underlying such firing
patterns. We consider a fast-slow decomposition (Rinzel, 1985;
Rinzel and Lee, 1987) based on the time scale differences between
three variables. Specifically, in the reduced model (Equations
20–22), V and y are fast variables, and z is a slow variable.
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FIGURE 2 | Firing pattern comparison between the original (Equation 1) and the reduced (Equations 20–22) TRN neuron model. (A) Two models are stimulated with a

constant excitatory input 0.2µA/cm2. They both exhibit decelerated burst and stationary tonic spikes. (B) Two models receive a step current with the size of

0.2µA/cm2. The removal of the external current results in a similar subthreshold oscillation in both models. (C) An inhibitory current with the size of −0.05µA/cm2

and the duration of 200 ms is applied to two models. Both rebound bursting and subthreshold oscillation observed in the full model are reproduced in the reduced

one. The parameters used in this simulation are gT = 2.25mS/cm2, gKL = 0.0152mS/cm2, and k = 0.01.

4.2. Current-Voltage Relations in the
Reduced Model
In this section, by treating the slow variable z as a parameter,
we analyze the stability of fixed points with the current-voltage
(I-V) relation in the reduced model. In the parameter space of
the biophysical condition, we obtain y(t) = V(t) by solving
dy/dt = 0 in Equation (21). Substituting it into Equation
(20), we get the I-V relation I(V , z) (the full equation, please
refer to Supplementary Material: Current-voltage relations). In
a voltage-clamp experiment, the I(V , z) measures under the given
value of z the membrane current needs to inject to clamp the
potential to the value of V . If I(V , z) = 0, the neuron is in the
rest or equilibrium state at the value of V . The I-V curve of the
reduced model is plotted in Figure 3 for various values of z and
Isyn. The equilibrium points are only plotted for z = −65 mV
because other curves with different values of z have similar fixed
points. The stability of each equilibrium point is evaluated by the
linear stability analysis (refer to Supplementary Material: Linear
stability analysis).

Figure 3A presents the I-V curves when no external input
is applied. It reveals that for a high value of z, there are three
equilibrium points: a stable focus (S) at the low membrane
potential which corresponds to the resting potential, and two
unstable fixed points (U1 and U2) with high potential values.
Usually, the unstable focus (U2) with the highest potential value
(near –20 mV) is surrounded by a stable limit cycle attractor.
This means the system will exhibit bistability for a high value of
z. Gradually decreasing z, the stable equilibrium point S and the
unstable point U1 get close to each other, coalesce at a saddle-
node bifurcation point, and then disappear. This makes the

system display rapid action potentials because only the unstable
point U2 and its associated limit cycle are left when the value of z
is low.

Injection of the external current changes the position of I-V
curves relative to the zero line I = 0. Figures 3B,C show the I-V
curves of the reduced model when the inhibitory and excitatory
currents are applied, respectively. Biophysically, the inhibitory
current usually hyper-polarizes the membrane potential to a
lower value. This can be interpreted by the I-V curves shown
in Figure 3B. The inhibitory current moves the I-V curves
downward, making the resting point S left-shifted. Moreover, the
phenomenon that the injection of excitatory current depolarizes
the neuron to produce action potentials can also be qualitatively
understood by the I-V curve shown in Figure 3C. Because
depolarizing currents shift the curves upward, eliminating the
bistable property of the model and leaving an isolated unstable
point surrounded by a stable limit cycle (corresponds to the
action potential).

4.3. Rebound Bursting via the
“Fold/Homo-Clinic” Bifurcation
The I-V curves above let us inspect the neuronal excitability
under the different values of z and Isyn. However, the mechanism
of why the model produces rebound bursting and tonic spiking
is still not clear. By continually treating the slow variable z as
a bifurcation parameter, in the next two sections, we analyze
the phase portraits of the fast subsystem, and then interpret the
model as the evolution of the phase portraits under the control of
the slow variable z.
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FIGURE 3 | The current-voltage relation in the reduced model. In each panel,

we plot multiple I-V curves with different values of z. I-V relations under the

different settings of Isyn are plotted in (A–C) separately. The colored points

indicate the fixed points when z is set to –65 mV. Other fixed points under the

different settings of z are similar with these of z = −65 mV, so we omit them in

the figure. (A) I-V curves when Isyn = 0.µA/cm2. For the high value of z, the

model has three equilibrium points. (B) I-V curves when Isyn = −0.05µA/cm2.

The injection of inhibitory current results in the lower value of resting potential

V. (C) I-V curves when Isyn = 0.10µA/cm2. Depolarizing currents shift the I-V

curves upward, making the model only have one isolated unstable point

associated with a stable limit cycle (corresponds to the action potential). The

neuronal parameters used in this study are gT = 2.25mS/cm2,

gKL = 0.0065mS/cm2, and k = 0.01.

The behavior sequence in a rebound bursting (Figure 4A)
when the TRN neuron receives a hyperpolarizing current is
illustrated in Figure 4B. At the resting potential without external
input ( 1 ), the model exhibits a bistable behavior: a stable node
(corresponding to the resting potential), a saddle-node, and an

unstable node with a limit cycle. Once a hyperpolarizing current
I = −0.06µA/cm2 is applied ( 2 ), the value of the stable node
starts to decline, resulting in lower values of the membrane
potential V and the slow variable z. Further, the withdrawal
of such inhibitory current ( 3 ) removes the stable equilibrium
state, with only an unstable focus left (associated with a limit
cycle). This leads the model to produce rapid action potential and
gradually increase the slow variable value z. The increasing z once
again makes the model bistable ( 4 ). However, the model is still
in the stable limit cycle state due to the hysteresis. The repetitive
spiking stops when z is too large. This happens when z passes
the value of –63.25 mV ( 5 ), the limit cycle becomes a homo-
clinic orbit to a saddle, and then disappears. When z increases
to the highest value ( 6 ), the bursting trajectory jumps down to
the stable equilibrium corresponding to the resting state (stable
node). Therefore, according to the bursting classification schema
of Izhikevich (2007), the firing pattern exhibited in the TRN
neuron model should be named the “fold/homo-clinic” bursting,
because the resting state disappears through the fold bifurcation
( 2 → 3 ), then the spiking limit cycle state disappears through
the saddle homo-clinic orbit bifurcation ( 5 ).

To summarize the phase portraits shown in Figure 4B, a
bifurcation analysis for the rebound bursting concerning the slow
variable z is presented in Figure 5A. For z < −66.54mV, the
model only exhibits stable action potentials. The amplitude of
action potential decreases with the smaller value of z. However,
for −66.54mV ≤ z ≤ −63.33mV, the model exhibits bi-
stability due to the emergence of a stable node from the fold
bifurcation. The saddle-node denotes the separation of attraction
regions between two stable attractors. For z > −63.33mV, only
the stable nodes are exhibited due to the disappearance of the
action potential through the saddle homo-clinic orbit bifurcation.

In Figure 5A, we also plot the z nullcline V(t) = z(t), which is
obtained by solving dz/dt = 0 in Equation (22). The intersections
of the z nullcline and the bifurcation structure, denoted by the
“×” symbols, are evaluated by the linear stability analysis (refer
to Supplementary Material: Linear stability analysis). When
initialized in the attraction domain of limit cycles, the model
produces a barrage of action potentials (refer to the “trajectory”
line in Figure 5A). During the spike train of action potentials,
z increases until it reaches a point (z = −63.33 mV) that
corresponds to the saddle homo-clinic orbit bifurcation. Then,
the trajectory is attracted toward the stable nodes (red dots in
Figure 5A), and z decreases due to dz/dt < 0. z decreases until
it goes across the z nullcline, and V starts to increase when a fold
bifurcation occurs at z = −66.54 mV. Finally, the trajectory will
terminate at the lowest intersection, which is a stable focus point.

4.4. Tonic Spiking Due to the Fold Cycle
Bifurcation
Another key feature of the TRN neuron is the tonic spiking
(Figure 6A) during a long-lasting excitation. Figure 6B shows
the corresponding phase portraits. Same as Figure 4B, in the
resting state (without external input) the model has a bistable
behavior, in which a stable node and a stable limit cycle coexist
( 1 ). Then, the injection of an excitatory current ( 2 ) destroys
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FIGURE 4 | Phase plane analysis during the TRN rebound bursting. (A) The bursting behavior of the three-variable TRN model after receiving an inhibitory current.

The external input with the size of −0.03mS/cm2 is given during 50–250 ms. (B) Transitions of phase portraits as the slow variable changes over time. 1©: Without

the external input, the model is bistable. Under the initial condition, the model is in the resting state (corresponds to the stable node). 2©: Applying an inhibitory

current makes us get smaller values of resting potential V and slow variable z. 3©: Once upon the current is removed, only the unstable focus and its associated limit

cycle (action potentials) are left. 4©: Repetitive action potentials increase the slow variable z and make the model bistable again. 5©: Once z is so large that the

limit cycle becomes a homo-clinic orbit to a saddle and the repetitive spiking cannot be sustained. 6©: When z reaches its highest value, the model directly jumps to

its global stable node. The neuronal parameters used in this study are gT = 2.25mS/cm2, gKL = 0.0065mS/cm2, and k = 0.01.

this bi-stability property, making the model only have a stable
action potential attractor. Since the slow variable z, which
is initially small, gradually increases, the model exhibits the

decelerated burst discharges at the beginning of the current
injection ( 2 ). Once z is big enough, the slow variable z
will show periodic orbit with the same frequency as the fast
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FIGURE 5 | The bifurcation diagram of the TRN neuron. The colored dots indicate the fixed points evaluated in the V-y two-dimensional sub-system (refer to

Figure 4B). They constitute the slow manifold. The “x” dots, intersections of the slow manifold and the z nullcline, denote the global fixed points evaluated in the V-y-z

system. (A) The bifurcation structure when Isyn = 0.0µA/cm2. When z is small, the model produces a barrage of action potentials, i.e., bursting. Meanwhile, z

increases until it reache z = –63.33 mV, where a saddle homo-clinic orbit bifurcation occurs. Then z decreases due to dz/dt < 0, and the trajectory terminates due to

the attraction of the global stable focus. (B) The bifurcation structure when Isyn = 0.1µA/cm2. The depolarizing current changes the bifurcation structure, and results

in two distinct manifolds. The first is a region where an unstable focus is surrounded by a stable limit cycle. The second is a regime in which multiple fixed points

coexist. During the first regime, the decrease of z (dz/dt < 0) exactly balances the increase of z (dz/dt > 0), leading the model to have the ability to produce tonic

spiking. (C) The bifurcation structure when Isyn = −0.03µA/cm2. Under the weak input, the model to have the ability to produce periodic bursts. (D) The bifurcation

structure when Isyn = −0.06µA/cm2. When the hyper-polarization current is strong, the model will jump to the stable focus state after a homo-clinic bifurcation. The

parameters used in this figure are gKL = 0.0065mS/cm2, gT = 2.25mS/cm2, and k = 0.01.

variable V ( 3 and 4 ). This stable periodic solution, or the
tonic spiking, will last until the external excitatory current is
removed ( 5 ). Because the removal of the excitatory current
will change the distribution of fixed points in the model,
leaving a global stable node corresponding to the resting
state ( 5 ).

Figure 5B summarizes the phase portraits during a TRN
tonic spiking. Different from the bifurcation diagram of a
rebound bursting (Figure 5A), when an excitatory current

with the size of 0.1µA/cm2 is injected, the model displays
two distinct manifolds. The first is a region in which the
model has an unstable focus surrounded by a stable action
potential limit cycle when z is small. This manifold region
terminates after a fold limit cycle bifurcation occurs at z =

−56.26mV. Then the second region appears in which multiple
fixed points coexist. In this manifold, the stable limit cycle
disappears, only leaving a stable node corresponding to the
resting potential.
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FIGURE 6 | Phase plane analysis of the TRN tonic spiking. (A) The model behavior when receiving a constant excitatory input. The external current with the size of

0.1mS/cm2 is injected during 50–350 ms. The model first shows transient decelerated burst and then displays tonic spikes. (B) The evolution of phase portraits as

the slow variable changes in time. 1©: Without the external input, the model exhibits bistable behavior. Under the initial condition, the model is in the resting state

and has a small value of slow variable z. 2©: The excitatory input switches the bistable state to an unstable focus associated with a stable limit cycle. Due to the

initial slow variable, z is small, the model first exhibits a barrage of fast action potentials. 3© and 4©: Once variable z reaches to big value, the potential V and the

slow variable z co-evolve with each other, and the model exhibits stable action potentials. 5© When the input is withdrawn, a global stable state emerges and the

model trajectory jumps to the resting state. The parameters used in this study are gT = 2.25mS/cm2, gKL = 0.0065mS/cm2, and k = 0.01.

4.5. One-Parameter Bifurcation Analysis
In the above, we have investigated the bifurcation mechanism
of the rebound bursting and the tonic spiking by a zero current

and an excitatory current, respectively. In the next, we continue
to inspect the neuronal excitability by varying the size of
external currents.
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Figure 5C presents the bifurcation diagram of the TRN
neuron model when given an inhibitory current with the
size of −0.03µA/cm2. As before, z will increase until z =

−63.77mV, whereupon the action potentials disappear through
a saddle homo-clinic orbit bifurcation. z will continue to increase
until the trajectory passes through the z nullcline. Then the
system moves toward the stable node solution, and z decreases
due to dz/dt < 0 until the stable node disappears when
the saddle-node bifurcation occurs at z = −69.775mV.
Different from the bifurcation diagram shown in Figure 5A, the
lowest intersection of the z nullcline and the slow manifold
is an unstable focus, making the system moves away to the
attraction domain of limit cycles again. The critical feature in
Figure 5C is the bi-stability between two stable solutions (the
limit cycle and the stable node) for z between two bifurcations
(the saddle-node bifurcation and the saddle homo-clinic orbit
bifurcation). It is this bi-stability that is important for the periodic
bursting behavior shown in Figure 5C. Moreover, the length
of the bistable interval determines the number of spikes in
a burst.

However, with the increasing value of the inhibitory
current, the unstable intersection becomes stable. In Figure 5D,
we present the bifurcation diagram when the current of
−0.06µA/cm2 is injected. This time z increases until z =

−64.245mV, and the fold bifurcation occurs at z = −74.8mV.
Once the limit cycle disappears through the homo-clinic
bifurcation, the trajectory will directly jump to the steady-
state where the z nullcline intersects the slow manifold
at−74.776mV.

A one-parameter bifurcation diagram summarizing the
change in the model dynamics with the external input Isyn is
shown in Figure 7. For Isyn < −0.052µA/cm2, the system
has a steady-state as previously demonstrated in Figure 5D. As
Isyn increases, a super-critical Andronov-Hopf bifurcation (SHB)
occurs at Isyn = −0.052µA/cm2 (point “SHB1” in Figure 7)
due to a stable equilibrium state changes to a stable periodic
orbit along with a two-dimensional unstable manifold. The stable
orbit exhibited in the model is the periodic bursting (the red
and green dotted lines · · · in Figure 7). This corresponds to
the situation in Figure 5C, where the bi-stability between two
bifurcations leads the system to have a periodic bursting solution.
The number of the spike in a burst is determined by the size of
the inhibitory current. Specifically, the smaller size of the injected
inhibitory input, fewer spikes in a burst (refer to 1© and 2© in
Figures 7, 8). Intuitively understanding, this is because the higher
value of inhibitory current can drive the neuron into a more
hyperpolarized state. The more the neuron is hyperpolarized, the
low-threshold calcium channel IT is more deinactivated, further
resulting in the neuron producing stronger bursting. Further
increasing Isyn makes the model stable again via another SHB
at Isyn = −0.003µA/cm2 (point “SHB2” in Figure 7). The
post-inhibitory excitation current with the size in this parameter
region (specifically, −0.003µA/cm2 < Isyn < 0.059µA/cm2)
will result in a rebound bursting as illustrated in Figures 4, 5A.
0.059µA/cm2 is the minimum excitation current necessary to
trigger an action potential of the model, because the stable limit
cycle occurs after a fold cycle bifurcation appears at Isyn =

0.059µA/cm2 (point “FCB” in Figure 7). This corresponds to
the situation shown in Figures 5B, 6 where the increase of z
during the trajectory is above the z nullcline exactly balances
the decrease of z during the trajectory is below the z nullcline,
making the sustained action potential occurs (the solid lines—in
Figure 7). It is worth noting that during this parameter region
(specifically 0.059µA/cm2 < Isyn < 0.1316µA/cm2) the system
is bistable, as a stable limit cycle and a stable-steady state coexist.
This means the final state of the system depends on the initial
conditions (refer to 3© in Figures 7, 8). The bistable mode
continues until Isyn = 0.1316µA/cm2, where a fold bifurcation
occurs (“FC” point in Figure 7). While the model still exhibits
sustained action potentials (refer to example of 4© shown in
Figures 7, 8).

5. CONCLUSION AND DISCUSSION

The thalamic reticular nucleus is a strategical locus due to its
pacemaking role in spindle generation during sleep (Steriade
et al., 1985, 1987) and its gatekeeper function in selective
attention during wakefulness (Halassa et al., 2014; Wimmer
et al., 2015; Nakajima et al., 2019). Understanding its intrinsic
dynamics is an important step toward understanding its
functions. Previously, TRN neurons were modeled using
complex realistic conductance-based models whose dynamics
are hard to analyze and visualize. In this study, we developed
a reduced three-variable neuron model to capture the key
dynamical features of TRN neurons. We demonstrated that
the reduced model can effectively reproduce the characteristic
firing patterns of TRN neurons (Figure 2), but its dynamics are
much easier to be analyzed. The bifurcation diagrams illustrate
the underlying mechanisms of the two characteristic TRN
firing patterns, that is, the rebound bursting is “fold/homo-
clinic” bifurcation (Figures 4, 5) and the tonic spiking
is the fold cycle bifurcation (Figures 5, 6). Furthermore,
one-parameter bifurcation analysis demonstrates that the
model displays varying degrees of bursting and tonic
discharges when the size of the external current changes
(Figures 7, 8). We expect that this study will facilitate
our future work to study the complicated dynamics of the
TRN network.

It has been proved feasible that neuron models with high-
dimensional voltage-gating variables by using the Hodgkin-
Huxley schema can be described by a reduced system with
fewer essential variables (Chay, 1985; Av-Ron et al., 1993;
Golomb et al., 1993; Chay et al., 1995; Maeda et al., 1998;
Izhikevich, 2007). The pioneering work is the FitzHugh-
Nagumomodel (FitzHugh, 1961; Nagumo et al., 1962; Izhikevich
and FitzHugh, 2006). It provides a simplified model for the
Hodgkin-Huxley model (Hodgkin and Huxley, 1952) and allows
us to inspect the mechanism of neuronal excitability and
spike generation from the geometrical viewpoints. Later, by
the massive numerical simulation, Krinskii and Kokoz (1973)
provided an empirical conclusion that gating variables n and
h in the Hodgkin-Huxley model have a linear relationship:
n(t) + h(t) ≈ 0.84. Thus, h and n variables can be
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FIGURE 7 | One parameter bifurcation diagram of the TRN neuron model. “SHB” denotes the super-critical Andronov-Hopf bifurcation, “FCB” presents the fold cycle

bifurcation, and “FB” indicates the fold bifurcation. The dotted line is the maximum and minimum values of V during the periodic burst, and the solid line (—) indicates

the maximum and minimum values of V during the limit cycle. Every colored dot is evaluated by the linear stability analysis of the V-y-z system. For the detalied

explanation please refer to the main text. The parameters used are gKL = 0.0065mS/cm2, gT = 2.25mS/cm2, and k = 0.01.

FIGURE 8 | The simulation results under the different settings of Isyn and the initial state. 1© and 2© illustrate that the number of spikes in a burst is determined by

the size of the inhibitory current. 1©: when Isyn = −0.03µA/cm2, the model produces the robust periodic bursting in which each burst has three spikes. 2©:

decreasing the inhibitory current to Isyn = −0.01µA/cm2, the number of spikes in a burst decreases to one. 3© demonstrates the model has the bistable property

when depolarizing current Isyn is small. One is the stable resting state, the other is the stable limit cycle. Specifically, when Isyn = 0.07µA/cm2, models with different

initial states are evolved to different attractors. 4© illustrates that once the external input is big enough, i.e., Isyn = 0.14µA/cm2, the model only has a stable limit

cycle attractor, which corresponds to the tonic spiking mode as seen in the TRN neuron. The parameters used in this figure are gKL = 0.0065mS/cm2,

gT = 2.25mS/cm2, and k = 0.01.
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approximated by a single variable. Inspired by this reduction
idea, Abbott and Kepler (1990) and Kepler et al. (1992)
suggested a more general method to reduce the Hodgkin-
Huxley-type neuron models. The core concept behind this
method is that: if gating variables behave in a similar time
scale, a single variable can be obtained by the weighted
average of them. Specifically, the weights should be the relative
contributions to the overall membrane potential change. In
this study, we applied this method to reduce a full TRN
neuron model (Bazhenov et al., 1998, 2002) into a three-
variable model. Discharge patterns are essential factors in neural
information processing. Our reduction model can reproduce the
firing patterns seen in the original model. This demonstrated
our reduction is valid (Golomb et al., 1993; Maeda et al.,
1998).

Since the seminal paper of Rinzel and Ermentrout
(1998) introduced a geometrical method for phase plane
analysis on neuronal models, phase plane analysis has
become standard on neural modeling. Afterward, under
the guidance of such dynamical system theory, simplified
but powerful neuron models were proposed, such as the
Izhikevich neuron model (Izhikevich, 2003, 2007) and
adaptive exponential integrate-and-fire model (Brette and
Gerstner, 2005; Gerstner and Brette, 2009). These low-
dimensional abstract neuron models are capable of producing
tonic spiking and bursting patterns. However, the neuronal
parameters largely differ between firing patterns, making
the continuous switch between different firing patterns (as
seen in biological experiments Bal and McCormick, 1993;
Llinás and Steriade, 2006; Halassa and Acsády, 2016) difficult.
On the contrary, our proposed three-variable model which
is reduced directly from the realistic conductance neuron

model can effectively capture different firing patterns and the
coherent switch between them (Figures 7, 8). The reduced

three-variable model retains the fundamental biophysical
properties of the original, as each channel dynamics can be
easily recovered from the reduced variables [refer to Eq. (S22) in
Supplemental Material].
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