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Abstract. Sheep milk is the most important feed resource for newborn lambs and an important food resource
for humans. Sheep milk production and ingredients are influenced by genetic and environmental factors. In this
study, we implemented selection signature analysis using Illumina Ovine SNP50 BeadChip data of 78 meat La-
caune and 103 milk Lacaune sheep, which have similar genetic backgrounds, from the Sheep HapMap project to
identify candidate genes related to ovine milk traits. Since different methods can detect different variation types
and complement each other, we used a haplotype-based method (hapFLK) to implement selection signature
analysis. The results revealed six selection signature regions showing signs of being selected (P < 0.001): chro-
mosomes 1, 2, 3, 6, 13 and 18. In addition, 38 quantitative trait loci (QTLs) related to sheep milk performance
were identified in selection signature regions, which contain 334 candidate genes. Of those, SUCNR1 (succinate
receptor 1) and PPARGC1A (PPARG coactivator 1 alpha) may be the most significant genes that affect sheep
milking performance, which supply a significant indication for future studies to investigate candidate genes that
play an important role in milk production and quality.

1 Introduction

Sheep have been raised for milk for thousands of years,
which is much longer than cow milk production (Zervas and
Tsiplakou, 2011). Sheep milk and its products are widely
consumed in some parts of the world, especially in the
Mediterranean. Sheep milk has a high degree of similarity
to human milk in total fatty acid composition, which makes
it a good raw material for infant formula production (Mar-
tin et al., 2016). In the sheep industry, prolific sheep usually
cannot lactate enough milk for lambs, which could decrease
lamb survival rate (Bradford, 1985). A milk replacer is some-
times used as alternative, but it is costly and labor-intensive.
Therefore, it is important to identify genes related to sheep
milk and then genetically improve sheep milk performance,
which will obtain a better profitability in the sheep industry
and diversify human milk resources.

Specialized strains of livestock have been cultivated by hu-
mans in long-standing husbandry practices; artificial and nat-
ural selection have imposed detectable selection signatures
within genomes. These selection signatures can provide deep
insights into selection mechanism and further uncover the
causal genes related to relevant phenotypes. In sheep, selec-
tion signature analyses of closely related populations with di-
vergent production purposes were successfully implemented
in milk traits (Moioli et al., 2013), tail types (Moradi et al.,
2012; Moioli et al., 2015; Yuan et al., 2017), gastrointestinal
nematode-resistant traits (McRae et al., 2014) and reproduc-
tive traits (El-Halawany et al., 2016).

In order to find genes associated with ovine milk traits,
researchers have conducted a selection signature analysis be-
tween five non-milk sheep breeds and five milk sheep breeds,
and they have identified some milk-related genes such as
ABCG2 and SPP1 (Gutierrez-Gil et al., 2014). However,
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this previous study still had some limitations in experimen-
tal design. First, the sheep breeds that they have chosen
have different characteristics not only in milk performance
but also in other phenotypic differences, such as in wool
traits, which could lead to some false positives of the can-
didate genes. Meanwhile, this study analyzed milk Lacaune
and meat Lacaune genome only using site frequency-based
methods, although it has been suggested that the regression-
based selection mapping approach is more accurate than that
of haplotype-based analysis methods (e.g., extended haplo-
type homozygosity, EHH; integrated haplotype score, iSH)
(Wiener and Pong-Wong, 2011). However, different meth-
ods can detect different variation types and complement
each other, which could accurately and comprehensively re-
veal the selection signature that exists within the genome.
With meat and milk Lacaune from the Sheep HapMap
project (http://www.sheephapmap.org/hapmap.php, last ac-
cess: 6 August 2019), we used a haplotype-based method
(hapFLK) and considered population stratification to conduct
the selection signatures searching within the sheep genome.
We further identified genes related to sheep milk and then
provided a potential theoretical basis for sheep breeding.

2 Materials and methods

2.1 Experimental data pre-processing

The Illumina Ovine SNP50 BeadChip data of 78 meat-
purpose Lacaune sheep and 103 milk-purpose Lacaune
sheep were downloaded from the Sheep HapMap project
database (http://www.sheephapmap.org/, last access: 6 Au-
gust 2019). The detailed description of these data was
well done by Kijas et al. (2012). To facilitate subse-
quent gene annotation, the PLINK 1.07 software (Purcell
et al., 2007) was used to upgrade the map file to match
the sheep genome Oar_v3.1 and implement data quality
control. Single-nucleotide polymorphisms (SNPs) were ex-
cluded from the subsequent analysis: (1) call rate < 90 %, (2)
minor allele frequency (MAF) < 0.01 and (3) significantly
deviated from Hardy–Weinberg equilibrium (P < 10−6).

2.2 Population structure analysis

The filtered SNPs were pruned using the indep-pairwise
option (plink – file input – indep-pairwise 50 5 0.1) in
PLINK 1.07 software (Purcell et al., 2007) to avoid the
strong influence of SNP clusters in principal component
analysis (PCA) and relatedness analysis. PCA identifies the
principal components representing the population structure
based on genetic correlations (shared identity-by-state seg-
ments) among individuals. The PCA was implemented us-
ing the snpStats R package (https://www.rdocumentation.
org/packages/snpStats, last access: 6 August 2019). To ver-
ify PCA results, ADMIXTURE (Alexander et al., 2009) was
implemented. ADMIXTURE estimates ancestry in a model-

based manner from large autosomal SNP genotype datasets,
and it includes a cross-validation procedure that allows the
user to identify the number of presumed ancestral popula-
tions (K) for which the model has best predictive accuracy.
In this study, K was set from 1 to 5, and a 10-fold cross-
validation procedure was performed.

2.3 Genome scans for selection signatures using
hapFLK

The hapFLK statistics detect selection signatures based on
differences of haplotype frequencies between populations
(Fariello et al., 2013). Considering the population stratifi-
cation of samples, the hapFLK method, which is based on
haplotype frequency and considers population stratification,
was used in this experiment. We used hapFLK software to
compute the hapFLK statistic and kinship matrix assum-
ing 10 clusters in the fastPHASE model and used 98 Aus-
tralia Poll Merino samples as an outgroup (http://www.
sheephapmap.org/hapmap.php, last access: 6 August 2019).
Then the hapFLK statistic was computed as the average
across 20 expectation–maximization (EM) iterations to fit the
LD model. However, the hapFLK statistic does not strictly
follow any of the existing statistical distributions. To inves-
tigate the distribution of the hapFLK statistics, we plot a
histogram of the hapFLK statistic. Then, we standardized
hapFLK following Eq. (1):

Standardized hapFLK=
Raw hapFLK−mean(raw hapFLK)

SD(raw hapFLK)
, (1)

where SD (raw hapFLK) is standard deviation of raw
hapFLK. Thus, the standardized hapFLK (Z scores) roughly
follows a standardized normal distribution. Finally, we com-
puted the P value for each SNP according to this standard-
ized normal distribution.

2.4 Gene annotation

Candidate regions identified by hapFLK were annotated
using ovine reference genome (Oar_v3.1). Gene function
was annotated using the National Center for Biotechnol-
ogy Information Gene (http://www.ncbi.nlm.nih.gov/gene/,
last access: 6 August 2019), which was used for Gene
Ontology (GO) analysis. The sheep QTL database (http:
//www.animalgenome.org/cgi-bin/QTLdb/OA/index, last ac-
cess: 2 May 2019) was used to find whether the known milk-
related QTLs are located in selection signature regions. In
addition, the online database OMIM (http://www.ncbi.nlm.
nih.gov/omim/, last access: 6 August 2019) and genomic in-
formation from other species, including humans, mice and
bovines, were used to predict gene function.

2.5 GO and KEGG enrichment analysis

To extract biological meanings from the list of candidate
genes, GO enrichment and Kyoto Encyclopedia of Genes and
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Genomes (KEGG) enrichment analyses were performed us-
ing the OmicShare tools (https://www.omicshare.com/tools/,
last access: 6 August 2019). For GO enrichment, all candi-
date genes were mapped to GO terms in the Gene Ontol-
ogy database. Gene numbers were calculated for every term,
and significantly enriched GO terms in candidate genes com-
pared to the genome background were defined by a hyperge-
ometric test. The P value calculated from hypergeometric
distribution follows Eq. (2):

P = 1−
m−i∑
i=0

(
M
i

)(
N−M
n−i

)
N
n

, (2)

where N is the number of all GO-annotated genes; n is the
number of candidate genes in N ; M is the number of par-
ticular GO-term-annotated genes in N ; m is the number of
particular GO-term-annotated genes identified by selection
signature in M . For pathway enrichment analysis, signifi-
cantly enriched pathways in candidate genes compared to the
genome background were also defined by a hypergeometric
test. The calculated P value went through fast discovery rate
(FDR) correction following Eq. (3):

FDR= P · n/(rankP ), (3)

where P is the raw P value, n is the number of tests and
rankP is the rank for the specific raw P value. Taking
FDR≤ 0.05, GO terms and pathways meeting this condition
were defined as significantly enriched for candidate genes.

3 Results and discussions

3.1 Population genetic structure

A total of 46 781 SNPs and 171 individuals were selected
for further analysis after quality control. After implementing
LD pruning, 13 935 SNPs with low LD were used for PCA
and ADMIXTURE analysis. The PCA results showed that
all animals can be divided into two groups by the first prin-
cipal component (PC1): milk and non-milk sheep (Fig. 1a).
The first two principal components (PC1 and PC2) can divide
these samples into four subgroups (Fig. 1a) and explained
2.8 % and 1.7 % of the variance respectively (Fig. 1b). The
results from the ADMIXTURE analysis showed that the
least amount of cross-validation error occurred when K = 4
(Fig. 1c) indicating that K = 4 was the optimal modeling
choice. Therefore, these samples could be appropriately di-
vided into four subgroups (Fig. 1d), which was consistent
with PCA.

3.2 Genome scans for selection using hapFLK

The hapFLK histogram shows that the hapFLK statistic ap-
proximately follows a normal distribution (Fig. 2, top right),
which is similar to the previous study (Kijas, 2014; Yuan

et al., 2017). Therefore, the P values could be calculated
from the normal distribution. Negative log10 P values plot-
ted in genomic order revealed six regions under strong se-
lection (Fig. 2). The genomic location, size, peak SNP and
peak genes in the selection regions identified using Oar_v3.1
(Jiang et al., 2014) were summarized in Table S1 in the Sup-
plement. The average size of selective regions was 7.97 Mb
ranging from 4.33 to 17.00 Mb. These six selected regions
in this study were compared with the six convergence can-
didate regions (CCRs) identified by Gutierrez Gil et al.
(2014). However, only an overlapping region (Chr6: 38.64–
43.02 Mb) was found, and the majority of selection regions
are not overlapping. A similar situation also appeared in the
sheep-tail-type selection signature analyses (Moradi et al.,
2012; Moioli et al., 2015). There are several reasons that may
explain this result: (1) only one breed was analyzed in the
current study, while 10 breeds were incorporated in a previ-
ous study (Gutierrez-Gil et al., 2014); (2) the methods be-
tween this study and Gutierrez-Gil et al. (2014) were differ-
ent, which can detect different variants; (3) the low SNP den-
sity in both the current study and Gutierrez-Gil et al. (2014)
might lead to a low statistical power (Simianer et al., 2014).
These results suggested that separate populations selected for
similar breeding goals have the low repeatability of selection
signature analysis results.

3.3 Genes and functional annotations

To understand the function of these selection regions, we
mapped them to the sheep genome Oar_v3.1 and sheep
QTL database (http://www.animalgenome.org/cgi-bin/
QTLdb/OA/index, last access: 2 May 2019). As a result,
38 QTLs related to milk traits (Table 1) and 334 candidate
genes (Table S1) were identified in selected regions. These
38 milk-related QTLs were enriched in all milk-related
QTLs in the sheep QTL database with a hypergeometric
test of P = 2.65506× 10−7 (significantly different from
what is expected by chance). Significantly, the majority
of milk-related QTLs (27 out of 38) were located at
chromosome 1 (Chr1: 228.88–245.88 Mb). In detail, these
27 QTLs were linked to the percentage of milk fat and
milk protein as well as yield of milk protein and milk fat
in sheep (Sutera et al., 2019; Hao et al., 2019) suggesting
that selection region on chromosome 1 may play an im-
portant role in sheep milk performance. In chromosome 13
selection region (Chr13: 43.57–53.55 Mb), two copy num-
ber variation regions (CNVRs) (Chr13: 48.83–49.71 Mb,
Chr13: 49.01–49.71 Mb) were identified to be significantly
(P = 6.051× 10−7) associated with milk yield in Valle
del Belice sheep (Di Gerlando et al., 2019). However,
there was no known milk-related QTL in chromosome 18
selection region (Chr18: 37.95–42.60 Mb). This may be
the relatively poor annotation of the current sheep QTL
database (release 38), and this will be addressed when more
milk-related QTLs are identified in the future.
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Figure 1. Population structure of the seven sheep populations. According to PC1, (a) all samples can be divided into four groups, and
(b) the first two PCs can explain 2.8 % and 1.7 % variance respectively; (c) when K = 4, the least amount of cross-validation error occurred;
(d) makes it fairly clear that K = 4 was the optimal modeling choice. The blue background represents the meat sheep group; the red
background represents the milk group.

Figure 2. Manhattan plot of hapFLK statistics. The histogram in the top right shows the hapFLK statistics roughly followed a normal
distribution. Black dotted line means the suggestive line; the − logP value above this line means significant.

Of those candidate genes, succinate receptor 1
(Chr1: 234.11–234.16 Mb, SUCNR1) has been reported
as close to the SNP rs417079368 (Chr1: 233.59 Mb), which
was significantly (P = 4.07× 10−7) associated with milk
fat percentage and protein percentage in Valle del Belice
sheep (Sutera et al., 2019). Its ligand, succinate, plays an

important role not only in adenosine triphosphate generation
(Littlewood-Evans et al., 2016) but also in signalling trans-
duction by binding to and activating its specific receptor,
SUCNR1 (also known as G-protein-coupled receptor-
91, GPR91) (Mu et al., 2017). SUCNR1 is expressed in
multi-tissues and organs in sheep, such as the omentum,
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Table 1. Milk-related QTLs located in selection regions.

Region Chromosome Start End Size Sheep QTL
(Mb) (Mb) (Mb)

1 1 228.88 245.88 17.00 170 224 (Chr1: 233736829–233736869, MF) (Sutera et al., 2019)
170 226 (Chr1: 233736829–233736869, PP) (Sutera et al., 2019)
169 252 (Chr1: 236278074–236278174, PY) (Hao et al., 2019)
169 251 (Chr1: 236278074–236278174, FY) (Hao et al., 2019)
169 400 (Chr1: 236299569–236299669, FY) (Hao et al., 2019)
169 150 (Chr1: 236964320–236964420, FY) (Hao et al., 2019)
169 182 (Chr1: 237198394–237198494, FY) (Hao et al., 2019)
169 181 (Chr1: 237198394–237198494, MY) (Hao et al., 2019)
169 180 (Chr1: 237198394–237198494, PY) (Hao et al., 2019)
169 524 (Chr1: 237368505–237368605, FY) (Hao et al., 2019)
169 208 (Chr1: 237476668–237476768, MY) (Hao et al., 2019)
169 207 (Chr1: 237476668–237476768, PY) (Hao et al., 2019)
169 206 (Chr1: 237476668–237476768, FY) (Hao et al., 2019)
169 442 (Chr1: 237702646–237702746, FY) (Hao et al., 2019)
169 168 (Chr1: 237899096–237899196, MY) (Hao et al., 2019)
169 167 (Chr1: 237899096–237899196, PY) (Hao et al., 2019)
169 166 (Chr1: 237899096–237899196, FY) (Hao et al., 2019)
169 446 (Chr1: 240960592–240960692, MY) (Hao et al., 2019)
169 445 (Chr1: 240960592–240960692, FY) (Hao et al., 2019)
169 280 (Chr1: 241703508–241703608, PY) (Hao et al., 2019)
169 279 (Chr1: 241703508–241703608, FY) (Hao et al., 2019)
169 499 (Chr1: 242397140–242397240, FY) (Hao et al., 2019)
169 388 (Chr1: 242789285–242789385, FY) (Hao et al., 2019)
169 387 (Chr1: 242789285–242789385, PY) (Hao et al., 2019)
169 386 (Chr1: 242789285–242789385, MY) (Hao et al., 2019)
169 551 (Chr1: 243458586–243458686, FY) (Hao et al., 2019)
169 144 (Chr1: 243778419–243778519, FY) (Hao et al., 2019)

2 2 34.95 39.28 4.33 169 594 (Chr2: 37635669–37635769, MY) (Hao et al., 2019)
13 911 (Chr2: 37102076–37260066, PP) (Gutierrez-Gil et al., 2009)
57 738 (Chr2: 32023745–207420807, PP) (Garcia-Gamez et al., 2013)
13 915 (Chr2: 8804882–248905321, MF) (Gutierrez-Gil et al., 2009)

3 3 91.37 97.96 6.59 57 740 (Chr3: 97143203–97187127, MY) (Garcia-Gamez et al., 2013)

4 6 38.64 43.94 5.30 169 477 (Chr6: 41850279–41850379, FY) (Hao et al., 2019)
13 818 (Chr6: 43152047–43302377, MY) (Arnyasi et al., 2009)
13 819 (Chr6: 43152047–43302377, MLACT) (Arnyasi et al., 2009)
13 820 (Chr6: 43152047–43302377, MY) (Arnyasi et al., 2009)
13 821 (Chr6: 43152047–43302377, MLACT) (Arnyasi et al., 2009)

5 13 43.57 53.55 9.98 169 479 (Chr13: 45264465–45264465, FY) (Hao et al., 2019)

6 18 37.95 42.60 4.65 –

Note: milk fat percentage – MF; milk protein percentage – PP; milk protein yield – PY; milk fat yield – FY; milk yield – MY; milk lactose yield – MLACT.

spleen, liver and mammary gland (Clark et al., 2017).
Additionally, the expression of SUCNR1 is related to milk
protein trait in sheep (Suarez-Vega et al., 2016). PPARGC1A
(Chr6: 43.23–43.33 Mb, PPARG coactivator 1 alpha) located
near a multi-effect milk-related QTL region (Chr6: 43.15–
43.30 Mb) (Arnyasi et al., 2009). Many scholars have shown
that this gene was associated with milk production, milk fat
percentage, and other milk-related properties (Khatib et al.,

2007; Weikard et al., 2005; Schennink et al., 2009; Cong et
al., 2016).

In order to further extract known biological meanings from
these 334 candidate genes, GO and KEGG enrichment anal-
yses were implemented using the OmicShare tools (https:
//www.omicshare.com/tools/, last access: 6 August 2019).
GO analysis has shown that these candidate genes par-
ticipated in 47 second-level GO categories (Fig. 3) and
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Figure 3. Second-level GO categories of candidate genes.

significant (FDR≤ 0.05) enrichment in 12 GO terms (Ta-
ble S1). The highest numbers of genes of second-level GO
categories of biological processes (BPs), cellular compo-
nents (CCs) and molecular function (MFs) are cellular pro-
cess (GO: 0009987, biological process, 221 genes), cell
(GO: 0005623, cellular components, 241 genes), cell part
(GO: 0044464, cellular components, 241 genes) and bind-
ing (GO: 0005488, molecular function, 189 gene). Previ-
ously, genes involved in these second-level GO terms showed
strong associations with ruminant milk productivities. For
example, it has been reported that genes located in bovine
milk yield QTL regions are preferred to enrichment in cel-
lular process (GO: 000987), cell (GO: 0005623), cell part
(GO: 0044464) and cellular process (GO: 0009987) (Salih
and Adelson, 2009). Further, genes involved in cellular pro-
cess (GO: 0009987) were found to be associated with fat
yield, milk yield, protein yield and fertility index in Nordic
red cattle (Iso-Touru et al., 2016). Also, miRNA target genes
of goat mammary gland were enriched in cellular processes
(GO: 000987, biological process), cell (GO: 0005623, cel-
lular component), cell part (GO: 0044464, cellular compo-
nent) and cellular process (GO: 0005488, molecular func-
tion) (Ji et al., 2012). All these findings support the candidate
genes identified in the current study contribute to fundamen-
tal physiology of dairy sheep.

The most significant GO term of CC is cytoplasm
(GO: 0005737, P =6.93E10-8, FDR= 2.98× 10−5). The
most significant GO term of MF was the G-protein
coupled nucleotide receptor activity (GO: 0001608, P =

6.37007×10−5, FDR= 6.37007×10−5) and G-protein cou-
pled purinergic nucleotide receptor activity (GO: 0045028,
P = 6.37007× 10−5, FDR= 6.37007× 10−5). The finding
that the cytoplasm GO term (GO: 0005737) was enriched
in our gene set is interesting. Previous studies have re-
ported that candidate genes associated with milk pro-
tein composition traits in a Chinese Holstein population
were significantly (FDR= 0.0247) enriched in cytoplasm
(GO: 0005737) (Zhou et al., 2019). Apart from GO analy-
sis, KEGG analysis showed that candidate genes could be
annotated to 36 KEGG classes (Fig. S1) and could partici-
pate in 173 pathways. The highest number of genes of KEGG
categories was signal transduction (29 genes). However, no
significant pathways were found.

4 Conclusions

Based on haplotype-based methods, the current study has six
significant selection regions, which contains 38 known QTLs
associated with milk yield. The identified six selection re-
gions harbored 334 candidate genes. Some of the key can-
didate genes such as SUCNR1 and PPARGC1A may play an
important role in sheep milk performance. The findings from
this study can be useful to optimize breeding programs to im-
prove the milk-related traits after further functional studies
and validation of the association in other independent popu-
lations.
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