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The visualization of massive datasets, such as those resulting from comparative
metatranscriptome analyses or the analysis of microbial population structures using
ribosomal RNA sequences, is a challenging task. We developed a new method called
CoVennTree (Comparative weighted Venn Tree) that simultaneously compares up to three
multifarious datasets by aggregating and propagating information from the bottom to the
top level and produces a graphical output in Cytoscape. With the introduction of weighted
Venn structures, the contents and relationships of various datasets can be correlated and
simultaneously aggregated without losing information. We demonstrate the suitability of
this approach using a dataset of 16S rDNA sequences obtained from microbial populations
at three different depths of the Gulf of Aqaba in the Red Sea. CoVennTree has been
integrated into the Galaxy ToolShed and can be directly downloaded and integrated into
the user instance.
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1. INTRODUCTION
In recent years, new high-throughput sequencing technologies
such as 454, Illumina and SOLiD have become available and have
led to an enormous increase in the volume of available sequence
data while simultaneously facilitating a dramatic decrease in
sequencing costs. The development of these technologies has
enabled the large-scale application of metatranscriptomics and
metagenomics approaches and has been responsible for sub-
stantial advances in a broad variety of research, including the
large-scale identification of DNA polymorphisms, investigations
of the compositions of microbial communities, and genome- and
population-wide gene expression studies at single-nucleotide res-
olution. For the first time, the comprehensive comparison of
sequences obtained in the field with sequences from databases
using annotated functions has become possible and has enabled
the assessment of environmentally important genes and their
linked metabolic pathways. The first step in the analysis of
sequencing data is based on either a composition or a com-
parison approach. The latter consists of the mapping of reads
against a database using BLAST (Altschul et al., 1990), followed
by an assignment algorithm that assigns the reads to their corre-
sponding taxonomy groups. The result is a tree-like data struc-
ture that contains a specific number of reads for every group.
The taxonomy tree is a rooted tree with nodes and edges that
are well-ordered and allows for distinguishing between distinct
groups, such as kingdoms and phyla, down to the species level.
To date, the NCBI taxonomy tree contains more than 22,928
entries for “higher taxa” and over 444,254 entries for “total taxa”
(January 28, 2015). A BLAST search against such a complex
database is time-consuming; moreover, complex datasets are also
difficult to visualize in a comparative way. Several groups have

developed visualization tools that can analyze large datasets, such
as MEGAN (Huson et al., 2007), Krona (Ondov et al., 2011),
BLASTatlas (Hallin et al., 2008), and MetaSee (Song et al., 2012);
however, all of these applications are subject to limitations in one
aspect or another. For instance, the graphical presentation may
suffer from a lack of information; alternatively, with the addition
of more details, the graphs may become difficult to interpret and
impossible to present on a single printed page. An uncollapsed
tree down to the leaf level is usually bushy and deeply branching
and contains information concerning the relationships (diversity
and similarity among leaves) of every single leaf with every other.
A possible approach to reducing the complexity of the presented
data without losing important information, or even increasing
in complexity, is to combine scalable weighted Venn diagrams
with a tree structure in which every node is transformed into a
weighted Venn diagram and the leaf information is condensed
by grouping related child leaves at a higher level toward the root
node. Additionally, the size of the weighted Venn circles can be
correlated with the number of members that belong to a node,
and up to three datasets can be compared in a single weighted
Venn diagram. Here, we have developed a new method called
CoVennTree (Comparative weighted Venn Tree) that compares
up to three datasets by aggregating and transferring information
from the bottom to the top level and produces a graphical output
in Cytoscape (Shannon et al., 2003). The underlying concept of
CoVennTree is to bring information from the leaf level up to the
root node while maintaining the properties of the content of every
dataset. With the introduction of weighted Venn structures, the
amounts and relationships of data associated with different con-
ditions can be correlated and simultaneously aggregated without
losing relevant information.
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2. METHODS
2.1. DEFINITION OF WEIGHTED VENN COMPUTATION
A weighted Venn data structure for three datasets is completely
defined by a 6-tuple (w1, w2, w3, w1,2, w1,3, w2,3), where wi is the
weight for condition i and wi,j is the weight of the co-occurrence
of conditions i and j. To compute a parent weighted Venn dia-
gram, all relevant children are summed. The initial leaf weights
are the raw counts for the corresponding conditions. For val-
ues of w1 = 1000, w2 = 3000, and w3 = 4000, the co-occurrence
weights are w1,2 = 1000, w1,3 = 1000, and w2,3 = 3000. The
resulting weighted Venn diagram for each leaf contains three
interleaving circles, which overlap by 100%.

2.2. DEFINITION OF THE WEIGHTED VENN DECOMPOSITION
SIMILARITY (VDS) VALUE

Prior to the VDS calculation, three sets are defined as follows:
“V := the set of weighted Venn diagrams (children) for a cor-
responding parent,” “S(x) := the number of conditions with a
weight greater than zero for any child of node x” and “O(x) := the
number of conditions with co-occurrence weights greater than
zero for any child of node x.”

To compute the VDS value for the given children, five steps
are required (Equation 1). The two sums in Equation (1) repre-
sent the decomposition of the weighted Venn diagrams: the first
sum is related to the total content of every dataset, and the sec-
ond sum is related to the overlaps between different datasets.
The maximum number of datasets or possible overlaps is three;
therefore, the sums run from 1 to 3. To normalize the values
to an interval of [0, 1], the outcome of each sum is divided by
its corresponding set, |S| or |O|. Summing both values then
increases the relevant interval from [0, 1] to [0, 2], necessitating
multiplication by 1

2 to transform the value back to the interval
[0, 1]. The result is assigned to the corresponding parent node
and characterizes the similarity among the children in size and
structure.

Equations (2) through (5) describe the essential steps that are
involved in the decomposition in detail. In this context, decom-
position means the splitting of every child node (weighted Venn
diagram) into two vectors. One vector contains the number of
data points in every dataset (called weights), and the other con-
tains the numbers of data points that are shared between datasets
1 and 2, between datasets 1 and 3, and between datasets 2 and
3 (called co-occurrence weights). All vectors of the children of a
parent node are stored in a corresponding matrix. Matrix � con-
tains all sets, and matrix � contains all overlaps. Every column
ϑ1n, ϑ2n, and ϑ3n in matrix � is related to a corresponding col-
umn in matrix �: π1n, π2n, and π3n, respectively. Every row in
matrix � corresponds to a condition, and every row in matrix
� corresponds to a co-occurrence (the co-occurrence of condi-
tions 1 and 2, the co-occurrence of conditions 1 and 3 or the
co-occurrence of conditions 2 and 3). The information contents
of the matrices � - �, �′ - �′, �′′ - �′′, and �′′′ - �′′′ are distinct,
but the mathematical operations are the same for each step.

VDS = 1

2

(
1

|S|
3∑

i=1

ϑ ′′′
i + 1
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3∑

i=1

π ′′′
i

)
(1)

In Equation (2), the variables ϑi. and πi. for i ∈ 1, 2, 3 contain the
sum of every row. These quantities are used to compute a ratio
for every entry in matrices �′ and �′, and these ratios reveal the
degrees of correlation between specific datasets. Thereafter, every
row is summed, and the outcomes are stored to the variables ϑ ′

i.
and π ′

i. for i ∈ 1, 2, 3 (see Equation 3). Equation (4) represents
a condensation step and reduces the matrix dimension from 3 ×
n to 3 × 1 (where n := number of children) using the outcome
of the previous step. Finally, a normalization step is required to
bring the values into the interval [0, 1] (see Equation 5). Then,
the values ϑ ′′′

i and π ′′′
i for i ∈ 1, 2, 3 can be used to compute the

final value (Equation 1).
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2.3. DESCRIPTION OF FRAME COMPUTATION
The following formulas (Equations 6–11) represent the procedure
used to compute the frame size (space), which is essential for
drawing a weighted Venn diagram. The graphical output, con-
sisting of a weighted Venn diagram, is achieved by applying the
Google API, but this tool does not allow for the manual adjust-
ment of the position of a single set. Therefore, a combination of
the complete sums [f (nodesum)] and the overlaps with the largest
set [f (addsum)] is required to determine the frame size in pixels
(Equation 6). The function f (x) allows for the transformation of
a large number range into an integer value and thus renders visu-
alization feasible. To determine the value of nodesum, the available
sets for the corresponding weighted Venn diagram are summed
(Equation 8).
For instance, if only the first two sets are available, the final
set (3 of 3) takes a value of zero and does not contribute to
the outcome. The additional value addsum represents the region
in which there is no overlap between the largest set and the
remaining smaller sets, which is incorporated into the weighted
Venn diagram structure. Equation (9) returns the sum of the
smaller sets, and Equation 10 returns the overlap between the
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largest set and the smaller sets. The non-overlapping compo-
nent is determined by subtracting corrov from corrset, and this
additional value addsum is used to expand the native frame
size.

frame = f (nodesum) + f (addsum) (6)

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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√
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√
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√
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�1.8 3.1
√
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�1.8 3.7
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(7)
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(9)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1,2 + w1,3 if w1 = max
i∈{1, 2, 3}
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w1,2 + w2,3 if w2 = max
i∈{1,2,3}

(wi)

w1,3 + w2,3 if w3 = max
i∈{1,2,3}

(wi)

(10)

addsum = corrw − corrov (11)

3. RESULTS
3.1. PRINCIPLES AND WORKFLOW
CoVennTree associates rooted tree data structures with weighted
Venn diagrams to produce an aggregated and comparative tree
visualization for up to three massive datasets (Figure 1; for more

FIGURE 1 | Comparative weighted Venn tree based on partial 16S rRNA

gene sequences of seawater samples from the Red Sea at 60 m (blue

circles), 100 m (red circles), and 130 m (yellow circles). The tree was
computed using CoVennTree. The numbers in parentheses refer to VDS

values. The overlap of weighted Venn circles of parental nodes reflects
sequence reads originating from the same organism (group). The libraries
were normalized to 100,000 reads, and singletons were excluded from the
analysis.
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details, see section below). The first step of computation requires
a rooted tree as input; this tree can be calculated using either
MEGAN (Huson et al., 2007) or other sources (Figure 2). The cal-
culation begins at the deepest level (here, level 2; see Figure 2A)
by summing all children to their corresponding parent nodes
(Figure 2B) and simultaneously calculating the weighted Venn
decomposition similarity (VDS) value for every parent (Equation
1, Figure 2C). The VDS value expresses the similarity among the
children in terms of datasets used, co-occurrences and weights.
If these properties are identical for all children associated with
a given parent, then the VDS value is 1. The previous steps
are repeated until the algorithm reaches the root node and ter-
minates. The workflow depicted in Figure 3 describes the steps
required for the final visualization of CoVennTree. For the calcu-
lation of the tree, an external path file is used to create a network
file and the associated attribute file. The input file contains a
header line with the corresponding path and value information
(for an example, see the Supplementary Material, Figure S1). The
tree can be visualized in Cytoscape v2.8.x (Shannon et al., 2003),

which uses both files and communicates directly with the Google
application programming interface (API) to create the weighted
Venn diagrams for every node in the tree. In the near future
we will be presenting a new visualization plug-in that allows to
perform the entire workflow in Galaxy. CoVennTree has been
integrated in the Galaxy ToolShed (Blankenberg et al., 2014) and
can be directly downloaded and integrated into the user’s Galaxy
instance (Giardine et al., 2005; Blankenberg et al., 2010; Goecks
et al., 2010). Step-by-step video tutorials for the generation of
CoVennTree graphs are available in the Supplementary Material,
Files S1–S3.

3.2. VDS VALUE
We developed a new correlation measure named the VDS (Venn
decomposition similarity) value. The VDS value is computed
based on child information and specifies how similar the chil-
dren are in structure (position of the circles), size (number of
data points per dataset) and data content with respect to their
parents. If the VDS value is 1, then the structure of the children

FIGURE 2 | Principle of CoVennTree. (A) The algorithm starts with
transforming the input path file into a rooted tree structure and computes
weighted Venn diagrams for all leaves. (B) In a second step the parent

weighted Venn diagram is computed by summing up all leaf weighted Venn
diagrams. (C) In a final step all computed values for leaf diagrams are added up
to the parent node until the root node is reached and the algorithm terminates.

FIGURE 3 | Abstract model to create a weighted Venn tree from a given

path file. CoVennTree requires an input path file for the transformation tool
CoVennTree, which produces two new files. One file includes the entire

network of the tree (network.sif) and the second one contains the attributes
(attribute.venn) to describe every node. Cytoscape processes both files and
creates a weighted Venn graph by using the URL attribute.
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FIGURE 4 | 16S rDNA sequence analysis of the three water samples

using the SILVA database. The taxonomic distributions of the marine
communities are visualized in three individual Krona charts for 60 m, 100 m,
and 130 m.

are identical to the parent. One of the key characteristics of
CoVennTree is that a few nodes from the root level contain
the complete information of all subsequent nodes. When one is
working with large datasets, which produce complex tree struc-
tures, only a subset of the entire tree can be visualized in detail.
However, the VDS value evaluates the similarity between a parent
weighted Venn structure and its children, thereby enabling the
estimation of the weighted Venn structures of the hidden child
layer. The benefits of the VDS value become obvious in the anal-
ysis of large datasets. Our weighted Venn tree, with 277 nodes, is
relatively small compared with the typical volumes of metatran-
scriptome data, which can constitute up to tens of thousands of
nodes.

3.3. APPLICATION AND COMPARISON WITH ESTABLISHED METHODS
To demonstrate the power of CoVennTree and illustrate its use,
a comparative analysis was performed using three 16S rDNA
datasets containing more than 150,000 sequences. Sampling for
the 16S rDNA analysis was performed at station A in the Red
Sea at depths of 60 m, 100 m, and 130 m. The processing of the
samples has been described by Steglich et al. (2014). For phylo-
genetic classification, all sequence reads were compared against
the SILVA database using BLASTn with the following settings:
E-value 1e-5, dc-megablast. The BLAST results were further pro-
cessed following the workflow described above or using the SILVA
database (http://www.arb-silva.de/). For better comparison, each
dataset was normalized to 100,000 reads. The graphical output
of a CoVennTree result produced from these data is presented in
Figure 1. CoVennTree assigns a specific color to each dataset and
offers a choice among five color schemes (see the CoVennTree
application in Galaxy; here, the 60 m data are shown in blue, the
100 m data in red, and the 130 m in yellow). For better com-
parison with the results from SILVA, only 49 of the 277 nodes
that were determined by MEGAN are shown in Figure 1. Every
node possesses a taxonomy label, and every parent node also lists
the VDS value. Terminal nodes, which typically correspond to the
species level, do not possess a VDS value because the calculation
of the VDS value begins with these nodes and proceeds toward
the root level. For example, the species Prochlorococcus belongs
to the family Prochlorococcaceae, the order Prochlorales, and
the phylum Cyanobacteria. Because Cyanobacteria other than
Prochlorococcus were present at the sampling site and their depth
distributions differed considerably from that of Prochlorococcus,
the VDS value for Cyanobacteria is very low (VDS = 0.082). In
contrast, the VDS values for Prochlorales and Prochlorococcaceae
are each equal to 1.0, the maximal value, implying that all mem-
bers of the order leaf and the family leaf belong to the species
Prochlorococcus. This result explains why the weighted Venn dia-
grams from the order Prochlorales down to the species level are
identical. The depth distribution of Prochlorococcus is compa-
rable to the enumeration of the same samples via flow cytom-
etry (Steglich et al., 2014). The highest cell numbers and the
majority of 16S rDNA reads of Prochlorococcus were observed
at 60 m. However, the majority of sequence reads were mapped
to the phylum Proteobacteria, of which the alphaproteobacte-
rial clade SAR11 constituted the most numerically abundant
group. These results are consistent with previous reports, which
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FIGURE 5 | Complete, uncollapsed rooted tree constructed by MEGAN version 5. This graph contains all three datasets, represented by the bars for each
node, and illustrates the number of reads assigned. Note that the different library sizes of the three datasets were not normalized to produce this figure.
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have consistently found SAR11 to be the numerically dominant
group in the marine environment (Rapp and Giovannoni, 2003;
Schattenhofer et al., 2009; Thompson et al., 2013). A database
that is frequently used for the analysis and visualization of ribo-
somal sequences is SILVA. SILVA-processed data can be presented
as Krona plots (Figure 4) or “taxonomic fingerprint” plots (data
not shown). The database is excellently curated; however, it does
not contain all of the ribosomal reads that have been deposited,
for instance, at NCBI. Within each Krona plot, data from a single
sample can be visualized. Although Krona provides an intuitive
overview of the data from every individual sample, it does not
provide direct information regarding the correlation between dif-
ferent datasets in terms of read numbers and sequence content
within a node. Therefore, changes in composition between differ-
ent samples are not easily captured. In contrast, MEGAN (Huson
et al., 2007) allows more than one dataset to be compared in a
single graph and visualizes each dataset as a single bar in a chart
diagram. The relative number of reads for a specific taxon is rep-
resented through the height of the bar. Figure 5 visualizes the
complete, uncollapsed rooted tree for the three conditions and
exemplifies the various problems encountered when this type of
visualization style is used. Although the graph contains only 277
nodes (note that a metatranscriptome analysis can easily produce
more than 25,000 nodes), it is not suitable for visualization on a
single printed page. The most obvious disadvantage of MEGAN
compared with CoVennTree is that the datasets cannot be corre-
lated. For small datasets, a manual inspection of every taxon may
be possible; however, the interpretation of large volumes of data
by eye is not very practicable and is very time-consuming if not
impossible. CoVennTree is able to overcome these limitations and
integrates all information into a single weighted Venn diagram
instead of computing three separate graphs; it therefore serves
as an excellent complement to the existing set of well-established
visualization tools.

4. DISCUSSION
Producing clear, publication-ready trees for large datasets that
can be presented on a single printed page is not a simple task.
Most attempts focus on the extensive analysis of single datasets
(for example, Krona Ondov et al., 2011) or compare only rel-
ative numbers of members per node for several datasets (for
example, MEGAN (Huson et al., 2007) but in a non-printable
format. Most importantly, none of the existing attempts can cor-
relate all data points among several datasets in a comparative
fashion. CoVennTree addresses these limitations by introducing
weighted Venn diagrams, which visualize the number and cor-
relation of members per node for each dataset. The adoption
of a new method for calculating the similarity among sets in
a weighted Venn diagram (defined by the VDS value) enables
the computation of the diversity/similarity among children. The
determination of the VDS value allows for the estimation of rela-
tionships between parents and their corresponding children at all
tree levels. Our approach can be used for all rooted tree data struc-
tures that include multiple different conditions. For example,
the “UPGMA” algorithm (Sokal and Michener, 1958) could be
used to create a phylogenetic tree that contains several conditions
per node. In this case, each condition corresponds to a circle

in a weighted Venn diagram. An obvious limitation of our new
method is that it can be used to analyze a maximum of three
datasets. A typical Venn diagram is drawn in congruent circles
and information about data size and intersection is given by num-
bers. This “static” approach allows to use more than three circles
(datasets) in one Venn diagram. However, CoVennTree was devel-
oped to offer a graphical representation of data size (size of the
circle) and intersection (overlap between datasets), which cannot
be arranged for more than three datasets.
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The Supplementary Material for this article can be found
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Figure S1 | Example formats for the CoVennTree input file and the two

corresponding output files. The input file contains a header line; for three

samples, the header reads as follows: #Datasets set1 set2 set3. The input

file also contains a separate path for every node: “root;A;C;” 600,000

300,000 500,000. All words or values in the header line and path line are

tab-delimited. The file is used as the input file for CoVennTree. The

network file (network.sif) includes the entire network of the tree, and the

attribute file (attribute.venn) contains the attributes to describe every

node.

File S1 | The movie “Part1-MEGAN5” shows the merging of the tree and

the extraction of the tree structure together with the number of

sequences.

File S2 | The movie “Part2-Galaxy” describes the uploading of the data

into a Galaxy instance and the application of CoVennTree to the imported

MEGAN files. Before an analysis can be performed, CoVennTree must be

installed in a running Galaxy instance.

File S3 | The movie “Part3-Cytoscape2.8” illustrates the uploading of the

network file (∗.sif) and the corresponding attribute file (∗.venn) into

Cytoscape version 2.8.x and provides an example of graph structuring.
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