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Methylation of CpG island is not a ubiquitous
mechanism for the loss of oestrogen receptor in breast
cancer cells

Z Chen, A Ko, J Yang and VC Jordan

Robert H Lurie Cancer Center, Northwestern University Medical School, Olson Pavilion 8258, 303 E. Chicago Avenue, Chicago, IL 60611, USA

Summary Methylation has been shown to play an important role in the down-regulation of oestrogen receptors (ER) in breast cancer cells.
One critical question that remains unclear is whether methylation can account for the loss of ER expression in cells derived from an ER-
positive cell line. This laboratory has established an in vitro cell system using long-term growth of human ER-positive breast cancer cell line
T47D in oestrogen-free medium. A clonal cell line, T47D:C4:2 (C4:2), has been characterized. Unlike T47D:A18 (A18), which is a T47D line
maintained in oestrogen medium, C4:2 has lost the expression of ER and hormone responsiveness. DNA fingerprinting and restriction
fragment length polymorphism (RFLP) analysis results confirmed that C4:2 was of the same lineage as A18. These cell lines provide an
invaluable system to study the mechanism of ER expression and regulatory pathways leading to hormone-independent growth. The results
here clearly demonstrate that the ER CpG island in C4:2 cells remains unmethylated. The loss of ER in the cell line must be due to
mechanisms other than methylation. We also evaluated the ER CpG island in the MDA-MB-231 :10A (10A) cell line, which is a clone from the
MDA-MB-231 line obtained from ATCC and the DNA from the MDA-MB-231 cell line used in the original report. Unlike the cell line from the
report, which showed a full methylation pattern in the island, the 1 OA line only showed a partial methylation pattern in the CpG island. Possible
mechanisms pertaining to the heterogeneous methylation pattern of the ER CpG island in the breast cancer cells are discussed.
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The presence of functional oestrogen receptors (ER) in breast
cancer predicts the clinical response of a patient to endocrine
therapy (Jordan, 1994). ER-positive patients respond well to anti-
oestrogens such as tamoxifen, which produces a favourable
response in up to 60% of the patients (Lemer and Jordan, 1990;
Jordan, 1996). Unfortunately, hormone dependency is ultimately
lost in advanced breast cancer after an initial response to the
therapy. The loss of ER expression in recurrent breast cancer has
been closely associated with poor response to endocrine therapy
(Kuukasjarvi et al, 1996). ER expression is therefore critical for the
control of hormone-dependent breast cancer. An understanding of
ER regulation to maintain the control of breast cancer growth with
hormone antagonists would be an invaluable goal and provide a
useful therapeutic target. However, the molecular mechanisms of
ER regulation and disease progression remain largely unknown.

Ideally, precise information about the loss of ER should be
obtained from well-characterized laboratory models. However,
until recently, there were no human models available to address
molecular mechanisms of ER regulation. Recently, we have
described two models of ER regulation in breast cancer cells (Pink
and Jordan, 1996). ER in MCF-7 cells is down-regulated by
oestrogen but in T47D cells oestrogen is capable of up-regulating
ER. With this knowledge, we focused our attention on the T47D
cell line to develop a model of ER loss by long-term oestrogen
deprivation. Initially, our stocks of T47D cells were ER positive
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and oestrogen would induce growth and progesterone receptor
synthesis. After years of long-term oestrogen deprivation, we
successfully cloned our ER-negative cell lines that have irre-
versibly lost ER (Pink et al, 1996). We confirmed that the cells are
from the same patient using restriction fragment length poly-
morphism (RFLP) using single locus probes. Thus, the cells
provide a unique opportunity to study the molecular mechanism
for the loss of ER.

Recent studies have demonstrated a close correlation between
hypermethylated 5' CpG islands and inactivation of the corre-
sponding downstream genes including p16 (Herman et al, 1995),
E-cadherin (Graff et al, 1995), von Hippel-Lindau (Herman et al,
1994) and ER (Ottaviano et al, 1994; Issa et al, 1994, 1996a,
1996b; Ferguson et al, 1995) in human cancers. In breast cancer,
methylation of the ER CpG island was detected in some ER-nega-
tive breast cancer cell lines. Most encouraging was the observation
that treatment of cells with the methylation inhibitor deoxyazacyti-
dine results in the re-expression of ER in the ER-negative MDA-
MB-231 breast cancer cells (Ferguson et al, 1995). In addition,
aberrant methylation of this ER promoter region was also found in
nine out of nine leukaemia cell lines examined, 86% of the human
haematopoietic tumours (Issa et al, 1996b) and 100% of human
colorectal tumours (Issa et al, 1994). For lung cancer, methylation
of this region appears to depend on exposure to carcinogens (Issa
et al, 1996a). There was no significant difference in the methyla-
tion pattern between smokers and non-smokers. However, sponta-
neous and plutonium-induced lung tumours had a 82% incidence
of the aberrant methylation in this ER CpG island compared with
about 17% lung tumours with hypermethylation in response to
tobacco-derived carcinogen exposure in rodent models.
Nevertheless, studies using existing cell lines and specimens from
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l and Jordan, 1992). T47D:C4:2 (C4:2) was cloned from T47D in
oestrogen-free media (Murphy et al, 1990). T47D:A18 (A18) is a

Bsml clone of T47D maintained in oestrogen-containing media (Murphy
1300 l et al, 1990). MCF-7 and 1OA were maintained in minimal essential

medium (MEM) (Gibco-BRL, Bethesda, MD, USA) supple-

Hhal HhaIl Bsml mented with 5% fetal calf serum (FCS) 6 ng ml-' of bovine insulin,
350 Ia280 1 215 l 100 gg ml- streptomycin, IX of non-essential amino acids and

2 mm of L-glutamine. A18 and C4:2 were maintained in RPMI-
1640 supplemented with 10% heat inactivated fetal bovine serum

Sacil Sacil Bsml (FBS) and other components as described above. Deoxyazacytidine
200 1 260 1

(deoxyC) and azacytidine (azaC) were obtained from Sigma
in-sensitive restriction sites of the ER CpG Chemical (St Louis, MO, USA). Selected cells were treated with
ve enzyme Bsml generates a 1.3-kb deoxyC at 0.75 ,UM for 5 days or azaC at 2.5 jM for 7 days, as
The methylation-sensitive Hhal and Sacil
e lengths of the fragments from BsmllHhal described previously (Ferguson et al, 1995). The media were
shown changed once every 2 days with freshly prepared compounds.

non-oestrogen target tissues leave open the critical question of
whether methylation is the cause of gene silencing or an epigenetic
mean used by organisms to stabilize the inactive state of the unex-
pressed genes. Even in the case of the breast cancer cell lines, there
is no evidence that the cells were ever ER positive.

Using the unique cell model (Pink et al, 1996), we tested the
hypothesis that methylation of the CpG island is the fundamental
mechanism responsible for the loss of ER expression in breast
cancer cells. The results showed that ER CpG island is not methyl-
ated in either C4:2 or A18 cell lines. As these two cell lines were
derived from the same progenitor, this study not only suggests that
methylation of the region is not a prerequisite for the loss of ER
expression, but also challenges the theory of methylation as the
primary cause of ER down-regulation in breast cancer cells.

MATERIALS AND METHODS

Cell lines and cell culture

MDA-MB-231 and T47D were obtained from ATCC. MCF-7 cells
were obtained from Dr Dean Edwards, then in the Department of

Southern blot analysis and RFLP analysis

DNA was isolated from the cells with the QIAGEN Blood & Cell
Culture Kits (QIAGEN, Chatsworth, CA, USA) according to the
manufacturer's protocol. Genomic DNA from the other MDA-
MB-231 cell line was generously provided by Dr NE Davidson
(The Johns Hopkins Oncology Center, Baltimore, MD, USA). The
restriction enzymes were obtained from New England BioLabs
(Beverly, MA, USA). Each restriction reaction contained 15 jig of
the genomic DNA and 200 units of either SaclI or HhaI in the
appropriate buffer at 37°C overnight. The digested DNA samples
were precipitated with ethanol and digested again with 50 units of
BsmI at 65'C for 6 h. Southern blot analysis was performed
according to standard protocols (Ausubelt et al, 1994). A-1.3-kb
BsmI fragment from the plasmid pGHERI (Professor P Chambon,
Institute de Chimie Biologique, Strasbourg, France) was used as
the probe for the CpG island in the ER gene.
RFLP analysis was performed by Cellmark Diagnostics

(Germantown, MD, USA) using Hinfl restriction enzyme and
single-locus probes including MS3 1, MS43, g3 and cdYNH24.
The results show that the DNA banding pattern obtained from the
sample A18 matches the DNA banding pattern obtained from the
sample C4:2.
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Figure 2 Southern blot analysis of the ER CpG island. DNA samples were obtained from MCF-7 (lanes 1-3), 1OA (lanes 4-6), MDA-MB-231 (lanes 7-9), A18
(lanes 10-12), C4:2 (lanes 13-15), deoxyC-treated 1OA (lanes 16-18) and deoxyC treated C4:2 (lanes 19-21). Bsml-digested samples are in lanes 1, 4, 7, 10,
13, 16 and 19. Sacil- and Bsml-digested samples are in lanes 2, 5, 8, 11, 14, 17 and 20. Hhal-and BsmI-digested samples are in lanes 3, 6, 9, 12, 15, 18 and
21. Molecular sizes of a DNA standard are indicated
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Figure 3 Northern blot analysis of ER expression. Total RNAs were isolated
from MCF-7 (lane 1), 10A (lane 2), A18 (lane 3), C4:2 (lane 4), deoxyC-
treated 1OA (lane 5), deoxyC-treated C4:2 (lane 6) and deoxyC-treated A18
(lane 7). A shows the ER transcripts present in lanes 1, 3 and 7. B shows ,B-
actin as a loading control

Northern blot analysis

Total RNA was isolated from the cells using TRIzol reagent from
Gibco-BRL. RNA samples at 20 gg per lane were resolved in a
formaldehyde gel and analysed according to standard Northern
blot protocols (Chen and Sager, 1995; Ausubel et al, 1994). A 1.8-
kb EcoRI fragment from the pSG5-HEGO plasmid generously
provided by Professor P Chambon was used as a probe for human
ER. Human ,B-actin cDNA was used as a control probe for RNA
loading.

Western blot analysis

Protein samples were extracted with protein loading buffer supple-
mented with 0.4 M sodium chloride without bromophenol blue and
resolved in 10% polyacrylamide gels according to standard proto-
cols (Ausubel et al, 1994). Each well contained 80 jg of the
total protein measured using the method of Bradford (Bio-
Rad Laboratories, Hercules, CA, USA). The proteins were
electroblotted to nitrocellulose membrane and analysed with
monoclonal anti-human ER antibody H222 (Abbott Laboratories,
Abbott Park, IL, USA). Peroxidase-conjugated goat anti-rat IgG
(American Qualex Antibodies, La Mirada, CA, USA) was used
as the secondary antibody. Chemiluminescence detection was
performed according to standard protocols (Amersham, Arlington
Heights, IL, USA).

RESULTS

Methylation of the CpG island in ER promoter was determined
using methylation-sensitive restriction endonucleases including
SaclI and HhaI, as described previously (Ferguson et al, 1995).
BsmI, which is methylation insensitive, was used to generate the
1.3-kb fragment of the DNA that includes the CpG island. When
the island is not methylated, a complete digestion of the BsmI frag-
ment should produce three bands corresponding to approximately
0.83, 0.26 and 0.2 kb for SacII and four bands of 0.38, 0.35, 0.28
and 0.22 kb for HhaI (Figure 1). The results are shown in Figure 2.
As expected, restriction digests of ER-positive MCF-7 DNA
resulted in complete digestion, indicating that the CpG island was
not methylated (lanes 1-3). The results from the ER-negative
MDA-MB-231:10A cells showed the island was only methylated
in the two most 5' HhaI sites and minimally methylated in the most
3' HhaI site (lanes 4-6). Unlike the lOA cell line, the other MDA-
MB-231 cell line showed complete methylation in this region
(lanes 7-9), as previously reported (Ferguson et al, 1995). The
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Figure 4 Western blot analysis of ER expression. Total protein samples
were extracted from MCF-7 (lane 1), 1OA (lane 2), A18 (lane 3), C4:2 (lane
4), deoxyC-treated 1 OA (lane 5) and deoxyC-treated C4:2 (lane 6). Lane 7
contains in vitro-translated ER. Protein standards are indicated

difference between IOA and the other MDA-MB-231 cell line
demonstrated that there was a diverse cell population with hetero-
geneous methylation patterns within the research community.
Different methylation patterns within a clonal cell population were
reported (Reis and Goldstein 1982).

To evaluate the role of methylation in an ER-negative cell line
derived from ER-positive T47D cell line, we compared the CpG
islands in C4:2 and A18 cell lines. The results showed that, as in
A18 (lanes 10-12), C4:2 had a completely unmethylated CpG
island in the ER promoter (lanes 13-15). This observation strongly
suggests that hypermethylation does not play a role in the loss of
ER expression during the conversion from hormone sensitive to
hormone independent in this cell line. There was a possibility that
critical residues in the island were methylated and undetected by
the restriction enzymes used. This possibility was tested by
treating the cells with deoxyC and azaC. The results showed that
deoxyC treatment on 1OA cells (lanes 16-18) and C4:2 cells (lanes
19-21) had little effect on the partially methylated and unmethy-
lated CpG island. Treatment of the cells with azaC showed the
identical results (data not shown). A recent study on human 0-6-
methylguanine DNA methyltranserase (MGMT) suggested that
methylation of the CpG island containing all the relevant transcrip-
tion factor binding sites was unnecessary for silencing of MGMT
expression (Pieper et al, 1996).

To correlate the methylation pattern with ER expression, total
RNA and proteins isolated from the cell lines were analysed using
Northern blot and Western blot techniques. Figure 3 shows that ER
transcripts were clearly detected in MCF-7 (lane 1) and A18 (lane
3) but not in 1OA (lane 2), C4:2 (lane 4), deoxyC-treated 1OA (lane
5) and deoxyC-treated C4:2 (lane 6). DeoxyC treatment did not
alter ER expression in A18 (lane 7). Western blot results show an
identical expression pattern (Figure 4). MCF-7 (lane 1) and A18
(lane 3) show abundant ER protein, whereas IOA (lane 2), C4:2
(lane 4), deoxyC-treated IOA (lane 5) and deoxyC-treated C4:2
(lane 6) have no detectable ER. Lane 7 is the ER from in vitro
translation and served as a quick reference for the 67-kDa receptor.
These results show a clear correlation between hormone respon-
siveness and ER expression as expected. In contrast, the correla-
tion of methylation and ER expression appeared to be
complicated. ER down-regulation was associated with full
methylation of the ER CpG island in one MDA-MB-231 cell line
and a partial methylation pattern in 1OA or with an unmethylated
CpG island in C4:2 cells.
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DISCUSSION

This study demonstrates clearly that the ER CpG island in C4:2
remains unmethylated after the loss of ER expression in T47D
cells, and the results demonstrate that the loss of ER expression in
breast cancer cells does not require methylation of the CpG island.
Whether the methylation can eventually occur in C4:2 remains to
be seen. These results are consistent with a recent report (Safarians
et al, 1996) from somatic cell hybridization studies that also
demonstrated that the loss of ER in the C8161 x MCF-7 hybrids
was not due to methylation of the CpG island. The studies
suggested that the presence of dominant trans-acting factors
played a key role in the regulation of ER expression in the hybrids.
The association of CpG island methylation and suppression of

gene expression has been well documented (Cross and Bird, 1995;
Martienssen and Richards, 1995). Housekeeping genes and a large
number of the tissue-specific genes contain CpG islands at the 5'
end of the genes. Under normal conditions, the CpG islands are
unmethylated. The precise molecular mechanism of methylation is
still under vigorous investigation, but one possible mechanism of
the maintenance of the methylation-free island is the binding of
transcription factors such as Spl in the promoter/enhancer region
(Razin and Cedar, 1994; Cross and Bird, 1995). In agreement with
this model, it is likely that the loss of factors binding to a CpG
island may render the sites susceptible to DNA methyltransferase
and result in aberrant hypermethylation of this region for some
genes, including ER in cancers. Strong evidence in support of this
model came from the observations that the p16 CpG island is
hypermethylated whereas ER CpG island is unmethylated in the
same T47D breast cancer cell line (Ferguson et al, 1995; Herman
et al, 1995). The loss of promoter/enhancer-specific factors may
better explain the promoter-specific methylation than does the
level of the DNA methyltransferase because the events occur in the
same cell. This model also leaves open the possibility that the loss
of the promoter/enhancer-binding factors, including transcription-
ally active factors, may come first before methylation occurs. The
results from C4:2 may be explained by this mechanism.
The scenario that methylation of the ER CpG island requires

stepwise inactivation of the factors critical for the protection of the
area may explain the heterogeneous methylation pattems observed
in breast cancer cells. When subsequent loss of the factors occurs,
hypermethylation may provide an efficient way to preserve the
inactive state of the ER CpG island in the cells. Otherwise, the ER
CpG island will remain unmethylated and the cells will continue to
show the loss of ER expression. From this perspective, the
methylation results observed in C4:2 cells are consistent with the
previous findings that hypermethylation of ER CpG island occurs
in some but not all of the breast cancer cells (Ferguson et al, 1995).
One essential prerequisite for this model is that de novo methyla-
tion must be able to take place. Studies using neoplastic colon
tissues suggested that methylation of the p16 CpG island occurred
during progression from early lesion to the carcinomatous lesion
(Herman et al, 1995). The ER and E-cadherin CpG islands were
shown to be unmethylated in MCF-7 breast cancer cells and subse-
quently became hypermethylated in a drug-resistant subline MCF-
7/ADR (Graff et al, 1995; Ottaviano et al, 1994). These studies
suggested that de novo methylation can occur as the result of
tumour progression.

Other mechanisms, such as gene rearrangement, can also result
in the loss of gene expression (Carter et al, 1990; Kamb et al,
1994; Nobori et al, 1994). The results in Figure 2 and restriction

analysis (Pink et al, 1996) show no major structural alterations of
the ER gene and the promoter region in C4:2 cells. The loss of
transcription activators may also result in the loss of gene expres-
sion. A putative ER regulatory factor, ERF-1, was reported to stim-
ulate ER expression in T47D cells (deConinck et al, 1995). We are
in the process of evaluating the role of ERF- 1 as the mechanism
for the loss of ER in the cell line. The possible. role of dominant
trans-acting factors (Safarians et al, 1996) offers another alterna-
tive mechanism for the control of ER expression.

In conclusion, our findings showed that methylation of the CpG
island is not required for the loss of ER expression in ER-negative
breast cancer cells derived from ER-positive cells. The results do
not rule out the possibility that methylation can be an alternative
mechanism in some cells or a subsequent event after the loss of
expression of the gene. The C4:2 and A18 cells are an excellent
new model for the study of the regulation of ER expression and
regulatory pathways leading to hormone independent growth of
breast cancer cells.
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