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Abstract
Study Objectives: We investigated associations between actigraphy-assessed sleep measures and cognitive function in people with and 
without HIV using different analytical approaches to better understand these associations and highlight differences in results obtained by 
these approaches.

Methods: Cognitive and 7-day/night actigraphy data were collected from people with HIV (PWH) and lifestyle-similar HIV-negative 
individuals from HIV and sexual health clinics in the United Kingdom/Ireland. A global cognitive T-score was obtained averaging the 
standardized individual cognitive test scores accounting for sociodemographics. Average and SD of 11 sleep measures over 7 days/nights were 
obtained. Rank regression, partial least-squares (PLS) regression, random forest, sleep dimension construct, and latent class analysis (LCA) 
were applied to evaluate associations between global T-scores and sleep measures.

Results: In 344 PWH (median age 57 years, 86% males), average sleep duration, efficiency, and wake after sleep onset were not associated with 
global T-scores according to rank regression (p = 0.51, p = 0.09, p = 0.16, respectively). In contrast, global T-scores were associated with average 
and SD of length of nocturnal awakenings, SD of maintenance efficiency, and average out-of-bed time when analyzed by PLS regression and 
random forest. No associations were found when using sleep dimensions or LCA. Overall, findings observed in PWH were similar to those 
seen in HIV-negative individuals (median age 61 years, 67% males).

Conclusions: Using multivariable analytical approaches, measures of sleep continuity, timing, and regularity were associated with cognitive 
performance in PWH, supporting the utility of newer methods of incorporating multiple standard and novel measures of sleep-wake patterns 
in the assessment of health and functioning.
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Statement of Significance

This is the first study to apply different machine learning approaches to assess the link between sleep and cognition in people with HIV, 
who are considered to be at high risk for both sleep and cognitive disorders.
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Introduction

Widespread access to combination antiretroviral therapy has 
meant that HIV is now a manageable chronic disease for many 
of those affected [1]. Nevertheless, the quality of life of people 
with HIV (PWH) remains poorer than that of the general popu-
lation, in part due to an increased burden of co-morbidity [2], 
including highly prevalent and diverse sleep problems [3]. 
Established etiological pathways and risk factors for sleep prob-
lems in the general population may be exacerbated in PWH by 
the additional prevalence of several psychosocial and behav-
ioral factors also known to disrupt sleep (e.g. depression, stress, 
excessive worry [4, 5]), by inflammation and neuronal damage 
induced by HIV [6] and by adverse effects of antiretroviral 
therapy [7].

Cognitive disorders also remain prevalent among PWH, es-
pecially mild or moderate disorders [8], with a reported preva-
lence often exceeding that seen in HIV-negative populations 
[9]. Sleep deprivation and/or fragmentation can be respon-
sible for alterations of toxin clearance and synaptic function, 
potentially contributing to impairment of many cognitive 
functions [10]. While several studies have demonstrated the 
negative effect of poor self-reported [11] and objective [12, 13] 
sleep health on cognitive function of adults from the general 
population, little is known regarding the association between 
sleep and cognition in PWH, with limited evidence suggesting 
a link between poor self-reported sleep quality and cognitive 
disorders. However, the few studies on PWH that have inves-
tigated these associations either relied on limited sample 
size [14], on self-reported sleep quality [15], or lacked a con-
trol group of HIV-negative individuals [16]. Moreover, most of 
the studies that have investigated the link between sleep and 
cognition in the general population have either considered 
self-reported measures of sleep [11] or have focused on sleep 
duration only [12, 13], with only a few investigating the role of 
multiple dimensions of sleep [17–21]. Thus, information on as-
sociations between objective measures of sleep and cognitive 
function is lacking.

The idea of sleep health as a multidimensional construct 
[22] recognizes that different aspects of sleep (e.g. duration, ef-
ficiency, timing, and regularity) may all be important and have 
differential effects on health. Therefore, investigation of a single 
sleep characteristic only (e.g. sleep duration) may lead to a 
limited understanding of the broader implications of poor sleep 
health. The introduction of accelerometers in clinical research 
has allowed researchers to objectively quantify various aspects 
of sleep over a prolonged period of time. Recently, there has 
been increasing interest in using a variety of statistical methods 
to exploit these data for studying the effect of sleep on health 
outcomes [23]. Several studies have begun to consider multiple 
sleep characteristics using multivariate analytical methods, 
such as random forests, to handle high-dimensional and cor-
related sleep data [24]. Other studies have examined sleep as a 
multidimensional construct and have described the association 
of a composite sleep score or individual sleep dimensions on a 
given outcome [25, 26]. Individual-based approaches have also 
been applied, such as cluster and latent class analysis (LCA), to 
identify sleep health “profiles” based on several sleep charac-
teristics and then investigate differences in health outcomes 
across the different “profiles” [27].

These are conceptually different approaches each of which 
can provide important insight into the association between sleep 

and health outcomes. However, intrinsic differences related to 
the nature of these approaches and their specific aims can poten-
tially lead to different conclusions about the relative importance 
of each sleep characteristic or dimension for a given outcome.

Our overarching aim was to assess the association be-
tween sleep health and cognitive function in both PWH and 
HIV-negative controls and shed light on those aspects of sleep 
most strongly linked to cognition. While addressing this study 
question, we sought to evaluate several different statistical ap-
proaches that differ in how they take into account the relation-
ships between sleep parameters. Secondly, when possible, we 
investigated the extent to which associations between sleep 
health and cognitive function may differ by HIV status.

Methods

Study participants and procedures

The Pharmacokinetic and Clinical Observations in People Over 
Fifty (POPPY) study is an observational cohort study of PWH 
and HIV-negative individuals with similar lifestyles from the 
United Kingdom and Ireland. The study recruited three groups 
of individuals and has been described previously [28]. Briefly, 
two groups of PWH were recruited from eight HIV clinics: PWH 
aged at least 50  years and PWH aged 18–50  years, with the 
latter group frequency-matched on gender, ethnicity, sexual 
orientation, and location to the older group of PWH. Inclusion 
criteria were documented presence of HIV infection, white 
or black-African ethnicity, likely route of HIV acquisition via 
sexual exposure, and ability to comprehend the study infor-
mation leaflet. A group of HIV-negative individuals was also re-
cruited from sexual health centers affiliated to the HIV clinics. 
These individuals were required to be 50 years or older and to 
have a documented negative HIV test. In addition, this group 
was frequency-matched to the group of PWH aged at least 
50 years on gender, ethnicity, sexual orientation, and location.

Subsets of POPPY study participants from the three groups 
were recruited into this nested substudy, without regard to sleep 
symptoms. Additional inclusion criteria were the ability to wear a 
fingertip oximetry device and wrist actigraph for a week and to ad-
here to study procedures (according to the investigator’s judgment).

Participants underwent a single study visit between March 2017 
and July 2018 followed by in-home procedures including a daily 
sleep diary, actigraph and oximetry measurements, and an add-
itional visit to return the devices and the completed diaries. At the 
study visit, participants completed questionnaires detailing sleep 
quality, symptoms of sleep disorders, sleep medical history, and 
medication use for sleep disorders and underwent detailed assess-
ment of anthropometric measurements and cognitive function. All 
participants provided written informed consent and the study was 
approved by the UK Research Ethics Committee (Fulham, London; 
UK number 16/LO/1409) and local ethics committees and/or insti-
tutional review boards. For the present analysis, only participants 
with at least 5 days/nights’ worth of valid actigraphy data and with 
completed cognitive assessment were included.

Cognitive function

Participants underwent a detailed assessment of cognitive 
function using a comprehensive battery of nine tests covering 
five domains known to be affected by HIV-associated cognitive 
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impairment: language, attention, processing speed, executive 
function, and motor function (Supplementary Table 1) [8]. The 
battery was administered by trained research staff. Individual 
test scores were converted into T‐scores (mean of 50 and SD of 
10) using appropriate normative data accounting for age, gender, 
ethnicity, and education as appropriate. Individual test T-scores 
were averaged to obtain domain T-scores which were, in turn, 
averaged to obtain a global T-score of cognitive function. Higher 
T-scores indicate better cognitive function.

Actigraphy data

A triaxial actigraph device (ActiGraph wGT3X-BT; ActiGraph 
Corporation) was used to record activity data and estimate sleep 
parameters. Actigraphs were programmed to collect data at a 
sampling rate of 100 Hz and participants were instructed to 
wear the device on the nondominant wrist continuously until 
the time of return (a minimum of 7  days later), with removal 
only when needed to avoid damage to the device (e.g. contact 
sports, swimming, bathing). In addition, daily sleep diaries were 
completed at home by study participants describing the timing 
of sleep, nocturnal awakenings, daytime napping, and interrup-
tions in the use of the actigraph device.

Upon return of the device to study sites, data from the devices 
were downloaded at an epoch length of 15 s. After successful down-
load, digital data files were transferred to the sleep reading center 
for central scoring. For each recording day, the sleep (or “rest”) 
periods were manually annotated based on a combination of sleep 
diary data (reporting bed and wake times) and visualization of an 
abrupt decrease (<1,000 counts) and increase (≥1,000 counts) in 
activity for 5 or more minutes, respectively. Daytime naps were 
scored based on identifying periods reported in the sleep diary as 
naps, accompanied (within 30 min) by decreased activity. Sleep-
wake epochs were then identified using the Cole–Kripke algorithm 
[29]. Daily sleep measures were obtained including sleep onset, 
midpoint (clock time between sleep onset and offset) and out-of-
bed time, onset latency, duration (total time spent asleep), wake 
duration after sleep onset (WASO), maintenance efficiency (% of 
time spent asleep from sleep onset and sleep offset), movement 
index (% of 60-s epochs with movement divided by time spent in 
bed in hours), fragmentation index (% of 60‐s sleep epochs out of 
the total number of epochs in the sleep period), and number and 
length of nocturnal awakenings. For each participant, the average 
and the within-individual variability (i.e. the SD) across the obser-
vation period were obtained for each of these measures.

Sleep questionnaires

Sleep questionnaires were administered at study visits, including 
the Insomnia Severity Index [30] and the Patient-Reported 
Outcomes Measurement Information System sleep disturbance 
and sleep-related impairment questionnaires [31]. In particular, 
answers to questions related to participants’ satisfaction with 
their current sleep from these two questionnaires were ana-
lyzed: “How satisfied/dissatisfied are you with your current sleep 
pattern?” and “I was satisfied with my sleep,” respectively.

Sleep dimensions

Six dimensions of sleep health as proposed by Buysse [22], 
i.e. satisfaction, alertness, timing, efficiency, duration, and 

regularity (the so-called RU SATED scale [32]), were derived from 
the daily actigraphy measures and questionnaire data. Scores 
for the dimension of satisfaction were determined as follows: 
2 (i.e. “good”) if answering “Very satisfied” or “Moderately sat-
isfied” to the “How satisfied/dissatisfied are you with your cur-
rent sleep pattern?” question and “Quite a lot” or “Very much” 
to the “I was satisfied with my sleep” question; 0 (i.e. “poor”) if 
answering “Dissatisfied” or “Very dissatisfied” and “Not at all” or 
“A little bit,” respectively, to the same questions; and 1 (i.e. “fair”) 
in all other circumstances.

In addition to continuous measures summarizing weekly 
averages and standard deviations, daily number of naps, sleep 
onset and out-of-bed time, maintenance efficiency, and dur-
ation as measured by the actigraphy device were used to de-
rive dichotomous variables indicating “good” vs “bad” health 
for the dimensions of alertness, timing, efficiency, duration, 
and regularity. For each recorded night, “good” vs “bad” sleep 
health was defined as follows: 0 naps vs at least 1 naps (alert-
ness), sleep onset time before 02:00 am and out-of-bed time 
after 04:00 am vs onset time after 02:00 am or out-of-bed time 
before 04:00 am (timing), maintenance efficiency at least 85% 
vs less than 85% (efficiency), sleep duration between 6 and 8 h 
vs less than 6 or more than 8  h (duration), and sleep onset 
time within 30 min of the average sleep onset time across the 
whole observation period vs onset time at least 30  min be-
fore or after the average onset time (regularity). Cutoffs were 
selected to reflect the dimensions as originally proposed by 
Buysse [22], with the exception of sleep efficiency for which a 
current recommendation was used [33]. For each dimension, a 
score of 2 (i.e. “good”) indicates at least 70% of recorded nights 
classified as “good,” 1 (i.e. “fair”) indicates between 30% and 
70% of “good” nights, and 0 (i.e. “poor”) indicates less than 30% 
of “good” nights.

A total sleep health score was obtained by summing up the 
scores from the six dimensions; scores range from 0 to 12 with 
higher values indicating better sleep health.

Statistical analysis

Continuous variables, including cognitive T-scores and 
actigraphy measures, were summarized using the median 
and the interquartile range (IQR); categorical variables were 
described using frequencies and percentages. Comparisons 
of sociodemographic, lifestyle, and clinical characteristics 
across older PWH, younger PWH, and HIV-negative individuals 
were carried out using chi-square test, Fisher’s exact test, and 
Wilcoxon rank‐sum tests as appropriate. The two groups of PWH 
were subsequently combined into a single group of PWH; com-
parisons of actigraphy measures and cognitive scores between 
PWH and HIV-negative individuals were performed using me-
dian regression, adjusting for age.

Different approaches to evaluate the association between 
actigraphy-assessed sleep measures and global cognitive func-
tion (i.e. the global T-score obtained as the average of the five 
domain T-scores) were applied. These approaches have been 
previously used to investigate the link between sleep and health 
outcomes, as also reviewed by Matricciani et al. [23]. A brief over-
view of these methods with advantages and disadvantages of 
each method is reported in Table 1; further details concerning 
their use in this study are given below.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
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Table 1. Overview of the analytical approaches used to investigate the association between sleep health and cognitive function

Analytical 
approach Overview Advantages Disadvantages Comments on statistical power

Traditional 
approach 
(multivariable 
regression  
analysis)

Multivariable regression 
analysis is used to  
describe the  
relationship between 
a set of independent 
variables (e.g. sleep 
parameters) and an 
outcome variable 
 (e.g. a health out-
come), through  
mathematical models  
(e.g. in linear regres-
sion the outcome is 
modeled as a linear 
combination of the  
independent  
variables).

It allows the  
estimation of  
independent  
relationships between 
sleep  
variables.

Due to issues related to the  
number and collinearity of 
sleep variables, its use is often 
limited to the inclusion of few 
preselected sleep variables, in 
order to avoid overfitting and 
instability in the estimation of 
model parameters.

Statistical power depends 
mainly, other than the 
sample size, on the number 
of independent variables. 
There are no generally 
agreed methods for relating 
the sample size versus the 
number of independent 
variables. Common rules-of-
thumbs recommend at least 
15 or 30 observations per 
variable [41, 42].

It is the most widely used 
method to investigate 
associations. Due to its 
popularity, the  
interpretation of regres-
sion analysis is widely 
accessible to non-
statisticians.

It often oversimplifies the  
relationships between the  
variables of interests and 
handling complex patterns of 
relationships is difficult.

Partial  
least-squares 
(PLS)  
regression

PLS-based methods 
reduce the input 
variables (e.g. sleep 
variables) to latent 
variables and regress 
those latent variables 
against the outcome. 
Metrics such as the 
variable importance 
in prediction are then 
calculated to rank 
each of the input 
variables according to 
their importance to 
predict the outcome. 

PLS regression is  
preferable to standard  
regression analysis  
when there are multiple 
input variables,  
and when these input 
variables are correlated.

It is often difficult to interpret the 
model parameters that define 
the latent variables and those 
that relate these to the outcome. 
Both the latent variables and the 
outcome are modeled as a linear 
combination (of the input vari-
ables and the latent variables,  
respectively). Therefore, 
nonlinear relationships  
would be missed.

PLS-based methods are 
thought to provide signifi-
cant advantages when ana-
lyzing small sample sizes or 
data with a small number of 
observations to the number 
of variables ratios. However, 
the optimal approach to 
assess statistical power for 
PLS-based approaches is still 
debated [43].

It only handles continuous input 
variables and does not provide a 
straightforward way to account 
for potential confounders and 
effect modifiers (e.g. HIV-status). 

Statistical power should be 
determined based on various 
factors, such as distributional 
assumptions, characteristics 
of the input variables, or the 
strength of the relationships 
of interest [44].

Random forest Random forest is a 
nonparametric, 
multivariable  
ensemble technique 
based on decision 
trees. Several d 
ifferent decision 
trees, each randomly 
selecting a subset of 
observations and 
 input variables, are 
merged into one 
learner. 

The random selection of 
sampled  
observations and input 
variables helps the  
model to avoid  
overfitting.

It can be computationally  
intense and require longer  
times to train.

Random forest has been re-
ported to be robust to model 
training with small sample 
sizes [45].The estimated relationship  

between the outcome and  
the input variables can be  
difficult to interpret with no 
direct measure to evaluate  
either the direction or  
magnitude of associations.

In particular, it has been shown 
to perform well in terms of 
statistical power, when the 
distributions of input vari-
ables were skewed [46].

It can handle both categor-
ical and quantitative 
variables and deal with 
missing data.

It requires minimal  
assumptions about the 
type of associations be-
tween the outcome and 
the input variables and 
can detect nonlinear asso-
ciations.

Multidimensional 
construct

Objective or  
self-reported sleep 
parameters are  
combined using  
predefined criteria to 
derive several sleep 
dimensions.  
Associations between 
these sleep dimen-
sions are then  
investigated, typically 
using regression-based 
approaches.

It allows to integrate  
clinical knowledge and 
expert opinion into the 
analysis.

There is not an objectively defined 
paradigm that describes which 
are the dimensions that charac-
terize sleep health and how to 
best define and operationalize 
each dimension.

Statistical power depends on 
the statistical method used 
to investigate associations 
between the outcome and 
the sleep dimensions. When 
using regression, the use 
of fewer sleep dimensions, 
compared to the individual 
sleep variables, improves 
statistical power.
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 1. Traditional approach: We investigated individual sleep meas-
ures selected based on prior knowledge and hypothesized 
pathological mechanisms [34, 35], that is the average sleep 
duration, maintenance efficiency, and WASO. Associations 
with global cognitive T-scores were evaluated using rank re-
gression to account for the skewness of variables of interest, 
adjusting for potential confounders such as age, gender, eth-
nicity, education, and use of sleep medication. For sleep dura-
tion, where a U-shaped relationship with cognitive function 
can be expected, we also evaluated the absolute value of the 
difference between the observed duration and the median 
sleep duration (i.e. 7  h). Each sleep measure was analyzed 
independently (using separate regression models) and also 
simultaneously in a single regression model also including 
potential confounders. Analyses were conducted sepa-
rately in PWH (older and younger PWH combined) and HIV-
negative individuals; the interaction between HIV status and 
each sleep measure was tested using rank regression (also 
including potential confounders) to evaluate differences in 
the associations between the two groups.

 2. Partial least-squares (PLS) regression [36]: This multivariate 
approach was applied separately in PWH and HIV-negative 
individuals, to the averages and SDs of all continuous sleep 
measures (sleep onset, midpoint and out-of-bed time, onset 
latency, duration, WASO, maintenance efficiency, move-
ment index, fragmentation index, number and length of 
nocturnal awakenings, i.e. a total of 22 variables) to predict 
global cognitive T-scores. All variables were centered and 
scaled to unit variance. For each variable, the variable im-
portance for prediction (VIP) was calculated as a measure 
of the strength of the association between that variable and 
the global T-score [37] and in order to rank sleep measures 
with respect to their association with cognitive function.

 3. Random forest [38]: This multivariate approach was also 
applied separately in PWH and HIV-negative controls, with 
sleep measures (both the average and SD) and potential 
confounders (age, gender, ethnicity, education, and use 
of sleep medication) as inputs (a total of 22 sleep meas-
ures plus 5 covariates) and the global cognitive T-score as 
the outcome. Among PWH (HIV-negative individuals), the 
random forest approach fitted 5,000 (8,200) regression trees, 
each of which utilized 15 (5) randomly chosen variables of 

the 27 input variables (see also Supplementary Material and 
Supplementary Figure 1) and empirically selected those that 
optimally split the sample into two subgroups with global 
T-scores that were as different as possible. For each input 
variable, the variable importance measure (VIM) indicates 
the total decrease in the residual sum of squares from split-
ting on that variable, averaged over all trees. VIM was used 
to rank input variables in terms of their ability to predict the 
global T-score; variables with larger VIM have greater pre-
dictive ability. In addition, the importance of each variable 
was assessed by comparing the reduction in the R2 conse-
quent to the exclusion of that variable from the model.

 4. Sleep health as a multidimensional construct: We investi-
gated associations of each sleep dimension and their sum 
in the previously proposed six-item RU SATED scale with 
global cognitive T-scores. Associations were investigated, 
separately in PWH and HIV-negative individuals, using me-
dian regression to test differences in overall cognitive func-
tion between individuals reporting good, fair, and poor sleep 
in each dimension, when there were at least five individ-
uals in a given group. The six dimensions were considered 
individually in separate models. The association between 
global T-scores and the total sleep health score obtained as 
the sum of the six dimensions was assessed using rank re-
gression. In all the regression models, we adjusted for age, 
gender, ethnicity, education, and use of sleep medication.

 5. Latent class analysis [39]: This individual-based approach 
was used to identify distinct groups of PWH and, sepa-
rately, of HIV-negative individuals on the basis of the ob-
served sleep measures (both averages and SDs) centered 
and scaled to unit variance. Groups were identified using a 
model-based clustering algorithm based on parameterized 
finite Gaussian mixture models [40]. The optimal number 
of groups was selected using the Bayesian Information 
Criterion (BIC) and was evaluated using the bootstrap likeli-
hood ratio test and appropriate stability measures. In order 
to interpret the obtained groups, means and 95% confidence 
intervals (CIs) of each sleep measure were obtained within 
each identified group. Median regression was used to eval-
uate the difference in global cognitive T-scores between 
groups returned by the LCA, while adjusting for age, gender, 
ethnicity, education, and use of sleep medication.

Analytical 
approach Overview Advantages Disadvantages Comments on statistical power

Latent class  
analysis (LCA)

LCA helps recognizing 
latent sleep profiles 
that are shared by 
many individuals  
who, in turn, may  
experience similar 
risks for health out-
comes. Latent sleep 
profiles refer to the 
specific combinations 
of several sleep  
characteristics  
experienced by  
individuals.

It is flexible with  
respect to the  
distribution of sleep  
variables.

The identification of sleep  
profiles is not oriented toward 
the assessment of relationships 
with health outcomes.

Little is known about the exact 
effect of sample size on the 
ability to identify the set of 
underlying latent profiles. 
Simulations have shown that 
having a too small sample 
size often leads to choosing 
too few latent profiles to ad-
equately describe the data-
generating model [47]. 

It can accommodate 
different data types, 
including non-normal  
and skewed continuous 
sleep variables.

The selection of the appropriate 
number and the underlying 
distribution of profiles is often 
challenging.

Table 1. Continued

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
https://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
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Additional information regarding hyper-parameter optimiza-
tion, validation procedures, and the predictive performance 
of PLS regression, random forest, and LCA are reported in 
Supplementary Material. Analyses were performed using the 
statistical software R, version 3.6.0 and the libraries “quantreg,” 
“ropls,” “randomForest,” and “mclust.”

Results

Participant characteristics

A total of 241 older PWH, 103 younger PWH, and 119 HIV-
negative individuals completed the cognitive battery and had 
at least 5 days/nights of actigraphy data (Table 2). Compared to 
the HIV-negative individuals, PWH were more likely to be male 
(86.3% vs 67.2%, p < 0.001), men who have sex with men (79.1% 
vs 52.9%, p < 0.001), be retired or not working (48.3% vs 37.1%, 
p = 0.006) and to report ongoing use of sleep medication (8.7% vs 
1.7%, p = 0.006), current smoking (26.2% vs 15.1%, p = 0.01), rec-
reational drug (26.7% vs 14.3%, p = 0.006), and current/previous 
injection drug use (9.3% vs 1.7%, p = 0.004). Current alcohol use 
was more frequent among HIV-negative individuals compared 
to older PWH (91.6% vs 81.1%, p = 0.007).

PWH had been diagnosed with HIV for a median (IQR) of 17.6 
(10.8–24.6) years, 97.1% had an HIV RNA less than 40 copies/mL, 
and the median (IQR) CD4+ cell count was 630 (483–835) cells/μL.

Cognitive scores and sleep measures

Median (IQR) global T-score was 50.7 (44.3–55.4) in older PWH, 
48.7 (43.0–54.0) in younger PWH (p  =  0.15 compared to older 

PWH), and 52.0 (48.3–55.6) in HIV-negative individuals (p = 0.04 
compared to older PWH). When combining older and younger 
PWH, global T-scores did not differ significantly from those of 
HIV-negative individuals (median [IQR] in the combined group 
of PWH was 50.0 [44.2–54.9], p  =  0.21 after adjusting for age; 
Supplementary Table 2).

Correlations between actigraphy variables are given in 
Supplementary Table 3. There were no differences between 
PWH and HIV-negative individuals, after adjusting for age, with 
regard to average sleep onset time, onset latency, duration, 
WASO, fragmentation index, and number of nocturnal awaken-
ings (Supplementary Table 2). PWH were observed to have later 
average sleep mid-point and out-of-bed times compared to HIV-
negative individuals (p  =  0.01 and p  =  0.02, respectively). The 
average movement index (%) was greater in PWH compared to 
HIV-negative individuals (median [IQR]: 17.7 [14.3–22.5] vs 15.2 
[12.5–19.6], p  =  0.003), with a tendency toward lower average 
maintenance efficiency (p  =  0.07) and greater mean length 
of awakenings (p  =  0.08) in PWH compared to HIV-negative 
individuals.

There were significant differences between groups with 
respect to the night-to-night variability of sleep onset time 
(p = 0.05), duration (p = 0.01), and movement index (p = 0.04), with 
weaker evidence regarding fragmentation index (p = 0.07) and 
mean length of nocturnal awakenings (p  =  0.08). For all these 
measures, there was greater night-to-night variability in PWH 
compared to HIV-negative individuals.

Finally, PWH were classified as having poorer overall sleep 
health as measured by the RU SATED construct: Median (IQR) 
sleep health score was 7 (6–9) in PWH and 8 (7–10) in HIV-negative 
individuals (p < 0.001 after adjustment for age, Supplementary 

Table 2. Sociodemographic, lifestyle, clinical, and HIV-related characteristics of study participants

Median (IQR) or n (%) PWH (n = 344) HIV negative (n = 119) p

Male gender 297 (86.3%) 80 (67.2%) <0.001
Age (years) 57 (52–62) 61 (57–66) <0.001
White ethnicity 305 (88.7%) 109 (91.6%) 0.37
MSM/homosexual 272 (79.1%) 63 (52.9%) <0.001
University degree or above 158 (45.9%) 61 (51.3%) 0.32
Years of education 16 (12–18) 16 (13–18) 0.76
BMI (kg/cm2) 25.4 (23.5–28.7) 25.8 (23.6–29.7) 0.18
Resting pulse oximetry (mm Hg) 96 (95–98) 96 (95–97) 0.68
Use of sleep medication* 30 (8.7%) 2 (1.7%) 0.006
Work schedule   0.006
 Day shift 120 (35.1%) 60 (51.7%)  
 Other/irregular shift 57 (16.7%) 13 (11.2%)  
 Retired/do not work 165 (48.3%) 43 (37.1%)  
Current alcohol use 279 (81.1%) 109 (91.6%) 0.007
Current smoking 90 (26.2%) 18 (15.1%) 0.01
Current recreational drugs 92 (26.7%) 17 (14.3%) 0.006
Ever injected drugs 32 (9.3%) 2 (1.7%) 0.004
Current CD4+ count (cells/µL) 630 (483–835) N/A N/A
Nadir CD4+ count (cells/µL) 190 (87–290) N/A N/A
Years since HIV diagnosis 17.6 (10.8–24.6) N/A N/A
On antiretroviral treatment 316 (91.9%) N/A N/A
HIV RNA <40 copies/mL 332 (97.1%) N/A N/A
Global T-score 50.0 (44.2–54.9) 52.0 (48.3–55.6) 0.01
Sleep duration (h) 7.0 (6.3–7.6) 7.2 (6.7–7.6) 0.12
Maintenance efficiency (%) 88.7 (84.4–91.4) 90.2 (86.2–92.2) 0.01
WASO (min) 54 (40–74) 49 (35–69) 0.02

PWH, people with HIV; MSM, men who have sex with other men.

*These include Amitriptyline (5 PWH), Nitrazepam (2 PWH), Nytol (2 PWH), Zopiclone (13 PWH and 1 HIV-negative), Diazepam (2 PWH), and other medications.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
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Table 2). In particular, PWH had poorer sleep health than HIV-
negative individuals in the satisfaction (p = 0.008), timing (p ≤ 
0.001), and duration (p  =  0.001) dimensions (Supplementary 
Table 4). Weaker evidence suggests that PWH experienced poorer 
health in the other sleep dimensions: alertness, efficiency, and 
regularity, although only the associations with regularity met 
the strict threshold for statistical significance (p = 0.07, p = 0.07, 
and p = 0.05 for the three dimensions, respectively).

Association between sleep health and overall 
cognitive function

Traditional approach
Among PWH, global cognitive T-scores were not associated with 
average sleep duration (adjusted rho = 0.08, p = 0.12), WASO (ad-
justed rho = −0.03, p = 0.55), or maintenance efficiency (adjusted 
rho = 0.06, p = 0.25, after adjustment for potential confounders; 
Table 3). While there was no strong evidence of an association 
with the absolute value of the median-centered sleep duration 
(p = 0.36) in PWH, longer/shorter sleep duration was associated 
with poorer cognitive function in HIV-negative individuals (ad-
justed rho  =  −0.21, p  =  0.02). Among HIV-negative individuals, 
higher WASO (adjusted rho = 0.16) and lower maintenance ef-
ficiency (adjusted rho = −0.16) were associated with better cog-
nitive function, although associations did not reach statistical 
significance (p  =  0.08 and p  =  0.07, respectively). However, ob-
served associations did not significantly differ between PWH and 
HIV-negative individuals (all ps for the interaction term >0.05).

In multivariable analysis, maintenance efficiency showed 
the strongest association with the global T-score in PWH but 
without reaching statistical significance (adjusted rho  =  0.26, 
p = 0.09), with greater efficiency being associated with better cog-
nitive scores. Among HIV-negative individuals, sleep duration 
remained significantly associated with global T-scores (adjusted 
rho of −0.25, p = 0.008), with no associations for WASO and main-
tenance efficiency (p = 0.49 and p = 0.85, respectively; Table 3).

Multivariate approach: PLS
Among PWH, PLS extracted one predictive component (PLS 
score) obtained as a linear combination of the 22 actigraphy 
variables. This component explained 40.6% of the total vari-
ance in the actigraphy variables and was significantly correl-
ated with the global T-score (rho  =  0.30 [0.20–0.39], p  <  0.001). 

The variables that contributed the most to the PLS score were 
SD of mean length of awakenings (VIP = 1.77), average of mean 
length of awakenings (VIP = 1.67), SD of maintenance efficiency 
(VIP = 1.45), average duration (VIP = 1.27), SD of movement index 
(VIP  =  1.25), SD of out-of-bed time (VIP  =  1.24), average sleep 
onset time (VIP = 1.23), and SD of duration (VIP = 1.22, Figure 1). 
Specifically, as indicated by negative weights, greater variability 
in mean length of awakenings, maintenance efficiency, move-
ment index, out-of-bed time and duration, and later average 
onset time were all associated with poorer cognitive scores. 
Longer average sleep duration (positive weight) was associated 
with better scores.

Among HIV-negative individuals, one component was ex-
tracted, explaining 38.5% of the total variance in the actigraphy 
variables. The component was significantly correlated with the 
global T-score (rho  =  0.38 [0.22–0.52], p  <  0.001), and VIP was 
the highest for SD of mean length of awakenings (VIP = 2.64), 
average of mean length of awakenings (VIP = 2.36), SD of frag-
mentation index (VIP  =  1.66), average number of awakenings 
(VIP = 1.37), and SD of movement index (VIP = 1.29). Based on the 
sign of the respective weights, greater variability of mean length 
of awakenings, fragmentation index and movement index, 
and longer average of mean length of awakenings were associ-
ated with poorer cognitive scores. A greater average number of 
awakenings was linked to better cognitive scores.

Multivariate approach: random forest
The VIMs for the 22 actigraphy variables derived from random 
forest and expressed as the percentage relative to the variable 
with the highest VIM are reported in Figure 1. Among PWH, the 
average mean length of awakenings showed the highest VIM 
among all the actigraphy variables (the corresponding average 
decrease in residual sum of squares was 1,133.1) to separate 
PWH with different cognitive scores. VIM was also high for the 
SD of mean length of awakenings (90.9% of VIM of average mean 
length of awakenings), average sleep duration (82.4%), SD of out-
of-bed time (81.1%), and average sleep onset time (79.2%).

Among HIV-negative individuals, the SD of mean length of 
awakenings showed the greatest ability to predict global cogni-
tive scores, with an average decrease in residual sum of squares 
of 284.6. VIM for the average sleep onset time, sleep mid-point, 
fragmentation index, and movement index were 88.2%, 71.9%, 
71.5%, and 71.4%, respectively of the VIM of the SD of mean 
length of awakenings.

Table 3. Association of average sleep duration, WASO, and maintenance efficiency with the global cognitive T-score, as estimated via rank re-
gression, adjusting for age, gender, ethnicity, education, and ongoing use of sleep medication

Sleep measure

PWH (n = 344) HIV negative (n = 119)

p interactionAdj. rho (95% CI) p Adj. rho (95% CI) p

Univariable analysis      
 Average duration 0.08 (−0.02 to 0.17) 0.12 −0.02 (−0.20 to 0.15) 0.78 0.49
 Absolute value of median-centered average duration −0.04 (−0.14 to 0.05) 0.36 −0.21 (−0.38 to −0.04) 0.02 0.71
 Average WASO −0.03 (−0.13 to 0.07) 0.55 0.16 (−0.02 to 0.34) 0.08 0.27
 Average maintenance efficiency 0.06 (−0.04 to 0.16) 0.25 −0.16 (−0.35 to 0.01) 0.07 0.18
Multivariable analysis      
 Absolute value of median-centered average duration −0.03 (−0.13 to 0.06) 0.51 −0.25 (−0.43 to −0.07) 0.008 0.64
 Average WASO 0.21 (−0.09 to 0.51) 0.16 0.27 (−0.51 to 1.06) 0.49 0.71
 Average maintenance efficiency 0.26 (−0.04 to 0.56) 0.09 0.08 (−0.71 to 0.86) 0.85 0.50

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
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Sleep health as a multidimensional construct
None of the six sleep dimensions (satisfaction, alertness, timing, 
efficiency, duration, and regularity) was individually signifi-
cantly associated with the overall cognitive function of PWH 
(Figure 2). Efficiency was the only dimension approaching statis-
tical significance (p = 0.06) with cognitive scores; PWH with fair 
efficiency (i.e. poor efficiency during 30%–70% of nights) showed 
poorer cognitive scores than PWH with good sleep efficiency (ad-
justed difference in global T-score [95% CI] = −2.7 [−5.3 to −0.2], 
p = 0.04). For all other dimensions, the median global T-score did 
not appear to differ significantly across PWH with poor, fair, or 
good sleep health, after adjustment for potential confounders.

Among HIV-negative individuals, sleep efficiency appeared 
to be associated with overall cognitive function (p = 0.04), with 
individuals reporting fair efficiency showing better cogni-
tive scores than those reporting high efficiency (adjusted dif-
ference in global T-score [95% CI] = 4.3 [1.0–7.7], p = 0.01). This 
association appeared to differ from that seen in PWH (p for 
interaction  =  0.002). Associations of other sleep dimensions 
with the global T-score were weak and nonsignificant (Figure 
2) and did not differ significantly from associations observed in 
PWH (interaction p = 0.16 for satisfaction, p = 0.96 for alertness, 
p = 0.85 for duration, and p = 0.88 for regularity).

Finally, the association of the total sleep health score with 
overall cognitive function was weak in both PWH and HIV-
negative individuals (adjusted rho [95% CI] = 0.04 [−0.06 to 0.14], 
p = 0.42 and −0.05 [−0.24 to 0.13], p = 0.57, respectively). There 

was also no evidence that the association differed by HIV status 
(p for interaction = 0.25).

Individual-based approach: LCA
According to the BIC and stability measures (Supplementary 
Figures 4 and 5), a model with two latent groups was identi-
fied based on sleep parameters observed in PWH. The mean 
and 95% CI of the 22 actigraphy-assessed sleep variables 
in PWH allocated to the two groups are shown in Figure 3. 
Group  1 included the majority of PWH (n  =  331, 96.2%) with 
only 13 (3.8%) PWH in Group 2. Compared to PWH in Group 1, 
those in Group  2 had later average time of sleep onset and 
mid-point, earlier average time of out-of-bed, longer average 
onset latency and WASO, shorter average duration, poorer 
average maintenance efficiency, greater average movement 
index, fragmentation index, number, and length of nocturnal 
awakenings. Variability of all sleep measures except fragmen-
tation index was greater among PWH in Group  2 compared 
to those in Group 1. The median (IQR) global T-score was 50.0 
(44.2–54.9) and 50.0 (45.7–52.4) in PWH in Groups 1 and 2, re-
spectively. After adjustment for potential confounders, the 
difference between the two groups was not significant (ad-
justed difference in global T-score [95% CI] = 1.4 [−2.4 to 4.0], 
p = 0.59).

Two groups were also identified by the LCA in HIV-negative 
individuals (Figure 3). Compared to individuals in Group 1 (n = 93, 
78.2%), those in Group  2 (n  =  26, 21.8%) showed later average 

Figure 1. VIP and VIM for each actigraphy variable as obtained from PLS and random forest, respectively, run separately in PWH (n = 344) and HIV-negative individuals 

(n = 119). Note: VIM is expressed as the percentage relative to that of the variable with the highest VIM. The random forest model additionally included age, gender, eth-

nicity, education, and use of sleep medication; VIM for all variables, including potential confounders, are shown in Supplementary Figure 2.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab035#supplementary-data
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mid-point and out-of-bed time, longer average onset latency and 
WASO, lower average maintenance efficiency, greater average 
movement, fragmentation, and mean length of awakenings. In 
Group 2, the night-to-night variability of all the variables except 
for fragmentation index was greater compared to that observed 
in individuals in Group 1. The median (IQR) global T-score was 
52.9 (48.4–55.9) and 51.5 (47.7–54.7) in HIV-negative individuals 
in Groups 1 and 2, respectively. These did not differ significantly 
after controlling for potential confounders (adjusted difference 
in global T-score [95% CI] = 0.1 [−2.7, 2.7], p = 0.97).

Discussion
This is the first study, to our knowledge, that has comprehen-
sively assessed the relationships between objectively measured, 
actigraphy-assessed sleep characteristics, and cognitive func-
tion in a multicenter cohort of PWH, with an appropriate control 
group. We also applied several analytical approaches to these 
complex, correlated, and multidimensional actigraphy data and 
found that interpretation of results differed by the analytic ap-
proach used, highlighting the importance of more advanced ma-
chine learning approaches to better handle these complex data 
and shed light on the impact of sleep on health outcomes.

When we applied the traditional approach of investigating 
individual sleep characteristics hypothesized to have an impact 
on cognition and other health outcomes, we observed only weak 
associations between cognitive function and sleep duration, 
sleep efficiency and WASO, in line with a previous study of 36 
treated PWH [48].

Multivariate approaches such as PLS regression and random 
forest permit the investigation of a larger number of sleep 

characteristics as well as consideration of within-individual 
variability of these over a period of time, overcoming issues 
related to multicollinearity between sleep measures, multiple 
testing, and the estimation of large numbers of parameters. 
Here, both methods seem to indicate that longer nocturnal 
awakenings and greater within-individual variability of awaken-
ings are associated with poorer cognitive function in PWH, 
with stronger associations than seen with any other sleep 
measure considered. Furthermore, other aspects related to the 
intraindividual variability of sleep patterns (e.g. the variability of 
sleep maintenance efficiency and out-of-bed time) appeared to 
have a negative effect on the overall cognitive function of PWH, 
with average sleep duration itself playing a marginal role. These 
are novel findings, given the limited number of studies that have 
investigated these aspects of sleep in relation to cognition even 
in the general population.

Of studies that have gone beyond sleep duration, several 
have shown similar results in demonstrating the potential dele-
terious cognitive impact of poor sleep continuity, as indicated 
by objectively measured WASO, sleep efficiency, or number of 
nocturnal awakenings, to which sleep duration appeared to add 
little [17, 20, 21]. Nevertheless, we have investigated a larger 
array of measures underlying the variability of sleep patterns 
than previous studies. Our findings suggesting the potential 
deleterious cognitive impact of high night-to-night variability 
of sleep efficiency, high variability of sleep fragmentation, and 
longer duration of nocturnal awakenings have not been com-
prehensively investigated previously and could result from im-
portant behavioral, social, and environmental factors as well 
as circadian or homeostatic drive. While these findings require 
further validation in other cohorts, it is possible that chronic 
disruptions to the circadian rhythm and homeostatic drive 

Figure 2. Association between RU SATED sleep dimensions and global cognitive T-score in PWH (n = 344) and HIV-negative individuals (n = 119). Associations are ex-

pressed as differences in the median global T-scores with participants reporting “good” sleep health as a reference category and adjusting for potential confounders.
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could affect the function and structure of brain regions such 
as the prefrontal cortex [49], responsible for high-order cogni-
tive functions. Our study did not include formal assessments 
of circadian rhythm (e.g. dim light melatonin onset, core body 
temperature tracking) and an actigraphy-derived analysis of cir-
cadian rhythm was beyond the scope of this current analysis, 
but such future analyses will be important to a more compre-
hensive understanding of how sleep and circadian rhythms re-
late to cognition.

The use of a composite sleep score and predefined sleep di-
mensions failed to reveal any strong association between sleep 
and cognition in PWH, with only sleep efficiency showing a weak 
association that was close to reaching statistical significance. 

Finally, an individual-based approach such as LCA, which aims 
to identify homogenous groups of individuals with similar sleep 
profiles, also failed to detect any important relationships be-
tween objective sleep measures and cognition. While LCA iden-
tified two distinct groups of PWH distinguishing those with 
more irregular, fragmented, and inefficient sleep patterns from 
the rest of PWH, it showed no evident differences in the cogni-
tive performance of the two groups.

Another important aim of our study was to assess whether 
the association between sleep measures and cognitive function 
in PWH differed from those seen in HIV-negative individuals 
with similar lifestyles. Of the approaches explored, we could for-
mally compare associations by HIV status using the traditional 

Figure 3. Means (95% CI) of the 22 sleep variables (centered and scaled to unit variance) in PWH and HIV-negative individuals, stratified by groups identified using LCA.
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approach (i.e. specific sleep characteristics using regression 
models) and the overall sleep score because PLS regression, 
random forest, and LCA do not allow assessment of interaction 
terms. In general, associations did not seem to differ between 
PWH and HIV-negative individuals. However, the direction of the 
association between cognitive function and sleep efficiency ap-
peared to be significantly different in the two groups when using 
a categorical score reflecting the frequency of poor efficiency. 
While the possibility of a false-positive finding cannot be ruled 
out, the differential association may reflect different underlying 
causes of poor sleep efficiency in those with and without HIV, so 
further studies are warranted to better elucidate the effects of 
sleep efficiency on cognitive outcomes in PWH.

PLS regression and random forest highlight some similarities 
between the associations seen in PWH and HIV-negative indi-
viduals. In particular, the length of nocturnal awakenings and 
the within-individual variability in this measure seem to have 
a similarly important relationship to cognitive performance, re-
gardless of HIV status. On the other hand, among HIV-negative 
individuals, aspects related to sleep fragmentation and over-
night movement/limb motions are more strongly associated 
with cognition than among PWH. Possible explanations include 
altered clearance of toxins or disturbed sleep neurophysiology 
(e.g. reduced slow-wave sleep and rapid eye movement) re-
flected by greater sleep fragmentation causing less restorative 
sleep and leading, in turn, to deleterious effects on cognition.

By adopting a multimethod analytic approach, we compre-
hensively and robustly investigated the proposed associations 
beyond the limitations of each analytical method, while also 
highlighting the differences in the findings across methods. 
Each approach used has its own strengths as well as weak-
nesses (Table 1). The traditional approach may fail to detect 
associations of individual and often neglected sleep character-
istics that are not selected when only a few characteristics are 
analyzed. PLS regression does not allow the incorporation of po-
tential confounders into analyses and assumes a linear relation-
ship between the sleep measures and the outcome of interest. 
Random forest does not provide a direct measure that would 
allow the evaluation of either the direction or magnitude of any 
associations. Moreover, variable importance metrics obtained 
from random forests are known to be biased when input vari-
ables are of different measurement scales and when are highly 
correlated [50]. Nevertheless, here we also reported another im-
portance metric (i.e. the decrease in R2 due to the exclusion of 
a given variable from the model, Supplementary Figure 3) that 
showed results similar to the VIMs, in terms of the actigraphy 
variables which appear to more strongly contribute toward 
the prediction of cognitive scores. Multidimensional sleep 
constructs rely heavily on a priori conceptualizations of sleep 
health which may not be appropriate for a specific health out-
come or a unique population such as PWH. Moreover, statistical 
power is reduced when continuous measures are dichotomized. 
LCA does not directly aim to evaluate associations with out-
comes but rather aims to partition the population under study 
into groups based on the observed sleep characteristics, without 
regard to the outcome of interest; therefore, the obtained groups 
may not necessarily identify those at greatest risk of a poor out-
come nor, in turn, the sleep characteristics that might predict 
this outcome.

Some limitations of our study need to be considered. 
Firstly, given the cross-sectional nature of the study, we cannot 

establish the direction or causal nature of any associations 
seen. Secondly, unmeasured confounding (e.g. physical exer-
cise and stress) may have resulted in biased estimates of the 
associations of interest. Thirdly, PWH recruited in this study 
are mainly white men having sex with men, on effective HIV 
treatment with stable viral suppression, and therefore our re-
sults may not be generalizable to other populations of PWH with 
different sociodemographic and clinical characteristics, in par-
ticular women and PWH with poorly controlled HIV. Moreover, 
differences in terms of age and age-related factors between 
PWH and HIV-negative individuals may have introduced bias 
when comparing the relationship between sleep and cognition 
across the two groups. However, when possible, we included 
age and other potential confounders in the analysis so to min-
imize this potential bias. The sample size was pragmatically set 
considering resource and time constraints and was not based 
on the statistical power of any of the methods used. While our 
study is one of the largest in its fields, some methods, for ex-
ample LCA, may have a lower power to detect significant asso-
ciations than others, sample size being equal. Lastly, we used 
actigraphy-based assessments of sleep parameters rather than 
more detailed sleep measurements such as polysomnography. 
We therefore could not study detailed sleep physiology and 
mechanisms. Future studies incorporating polysomnogram data 
would likely benefit from machine learning approaches similar 
to our study, given the multidimensional and often collinear na-
ture of polysomnogram data. We feel that such work with de-
tailed physiologic measures and robust statistical approaches 
has tremendous potential to allow our field to better under-
stand mechanistic pathways and to develop novel therapeutic 
interventions.

Conclusions
Through the use of analytical approaches that allow the sim-
ultaneous consideration of multiple sleep characteristics, we 
found that aspects related to sleep continuity and regularity, 
including several novel measures of within-individual vari-
ability of wakefulness during sleep and sleep efficiency, were 
associated with cognitive performance in PWH. Other aspects of 
sleep more traditionally thought to be related to health problems 
(e.g. sleep duration) did not appear to have strong associations. 
Sleep is increasingly recognized as having a multidimensional 
construct, and our analysis demonstrates that multivariate ana-
lytical approaches can provide novel insights into the role of 
sleep on cognitive function and other health outcomes. A better 
understanding of which aspects of sleep are most strongly 
linked to a given outcome would help the development of tar-
geted interventions to improve those aspects of sleep and, in 
turn, improve other health outcomes.

Supplementary Material
Supplementary material is available at SLEEP online.
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