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Abstract: The LC-MEMS pressure sensor is an attractive option for an implantable sensor. It senses
pressure wirelessly through an LC resonator, eliminating the requirement for electrical wiring or
a battery system. However, the sensitivity of LC-MEMS pressure sensors is still comparatively
low, especially in biomedical applications, which require a highly-sensitive sensor to measure low-
pressure variations. This study presents the microfabrication of an LC wireless MEMS pressure
sensor that utilizes a PMMA-Graphene (PMMA/Gr) membrane supported on a silicon trench as the
deformable structure. The (PMMA/Gr) membrane was employed to increase the sensor’s sensitivity
due to its very low elastic modulus making it easy to deform under extremely low pressure. The
overall size of the fabricated sensor was limited to 8 mm × 8 mm. The experimental results showed
that the capacitance value changed from 1.64 pF to 12.32 pF when the applied pressure varied from
0 to 5 psi. This capacitance variation caused the frequency response to change from 28.74 MHz to
78.76 MHz. The sensor sensitivity was recorded with a value of 193.45 kHz/mmHg and a quality
factor of 21. This study concludes that the (PMMA/Gr) membrane-based LC-MEMS pressure
sensor has been successfully designed and fabricated and shows good potential in biomedical sensor
applications.

Keywords: (PMMA/Gr) membrane; LC-MEMS pressure sensor; microfabrication

1. Introduction

In the past few years, various polymer materials for highly flexible capacitive mem-
branes have been studied by many researchers [1–7] to replace typical silicon membranes.
This vast interest is because most polymers have low elastic modulus, which produces
a large displacement in response to pressure variation and produces higher mechanical
sensitivity [8]. Extensive research has recognized the graphene role in bio-integrated soft
electronics due to its excellent properties. Recently, the use of graphene as a suspended
membrane for MEMS devices is gaining more traction among researchers because of its
excellent mechanical characteristics as its own nature’s thinnest membrane [9,10], highly
elastic deformation, high tensile strength [11], high conductivity and potentially high
biocompatibility [10]. Moreover, graphene has a strong adhesive force to various substrates
such as silicon nitride and silicon oxide [12] due to its van der Waals forces, large-scale
surface and flatness [13]. These properties make the graphene membrane a promising ma-
terial for the freestanding membrane, which can be applied as pressure sensors. Generally,
graphene is always used with polymers such as PMMA or PDMS as a holder to allow it to
remain suspended and subsequently form a freestanding graphene membrane [3–5,14,15].
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In designing an implantable MEMS sensor, several important critical factors need to
be considered to achieve the targeted specifications as a high-performance sensor. Some of
the requirements that need to be considered during the design process are the appropriate
sensing method, measurement range and precision, frequency response, size, material and
telemetry consideration. In biomedical applications, especially for implantable sensors,
passive telemetry of inductor–capacitor (LC) MEMS pressure sensors is preferable because
this passive wireless sensor does not require batteries to operate, making the system more
compact [16]. With the advancement in micromachining technologies, miniaturized LC
pressure sensors entrenched in resonant theory became viable and received attention. In
LC-based systems, the capacitive membrane, which will bear the applied pressure, plays
an important role. When external pressure is applied to the membrane, the elastomeric
dielectric layer displays distinctive deformity, prompting a variety in the capacitance. A
graphene-based membrane was proposed for the LC-MEMS pressure sensor, considering
its characteristics and potential for a capacitive pressure sensor. In the LC-MEMS pressure
sensor system, a capacitive membrane needs to be attached with a planar microcoil-shaped
inductor to form an LC resonator. When coupling to the external coil, this LC resonator
will allow the changes of the sensor’s frequency response due to changes in capacitance or
inductance, which can be detected remotely.

Several design specifications must be achieved before designing an LC-MEMS sensor
for implantable application, such as the sensor size, safe operating frequency range and high
sensitivity to allow detection in a low-pressure variation. One of the challenges in designing
implantable sensors is to make them as small as possible so that they can be inserted into the
human body without harming the health of the user. In terms of the size, MEMS pressure
sensor implants should be less than the organ to be placed. Critically, implant sensors have
a size of less than 1 cm2 [16–22]. In their studies, Weaver et al. (2010) [23] and Kim et al.
(2014) [24] managed to design sensors with diameter sizes of 10 mm and 8 mm, respectively,
for pressure detection applications in the bladder. Meanwhile, Li et al. (2020) developed
an LC pressure sensor with the dimensions of 3 mm × 15 mm, specifically designed to
monitor intracranial pressure (ICP) [25]. This study set the maximum sensor size at 8 mm
based on the previous reports for biomedical implantation applications [16]. The sensor
should be able to detect low-pressure changes in the range of 0 to 150 mmHg [26] with a
frequency response within the range of 10–100 MHz for biomedical applications. Previous
research revealed that the 10–100 MHz operating frequencies are safe for in vivo wireless
measurements [27]. The sensitivity of the LC-MEMS pressure sensor from previous studies
was in the range between 2 to 162 kHz/mmHg [16–22,25,28]. However, sensitivity values
at higher rates are required for more accurate and precise measurements. In the case of
implantable pressure monitoring applications, the design specifications for this MEMS
pressure sensor are as shown in Table 1.

Table 1. Design specifications of the LC-MEMS pressure sensor for biomedical implantation applica-
tions.

Parameter Value

Pressure range 0–75 mmHg (normal)
~150 mmHg (abnormal) [26]

Frequency response 10–100 MHz [27]
Size 8 mm × 8 mm [16]

Sensor sensitivity 2–162 kHz/mmHg [16–22,25,28]

This study reported the feasibility of using (PMMA/Gr) membranes to measure
capacitance changes in a low-pressure sensing environment. These results suggested that
the capacitance changes can be successfully adopted in an integrated planar microcoil
design, with the potential development of an LC-MEMS pressure sensor for biomedical
implantation applications.
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2. LC-MEMS Pressure Sensor Working Principle

The electrical model of the LC wireless sensing system is shown in Figure 1.
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Figure 1. The electrical model of the LC wireless sensing system.

Capacitor, Cs, inductor, Ls and series resistance, Rs, modelled the LC pressure sensor.
Inductance, Le, represents the readout coil, which is in series with resistance, Re. Faraday’s
law states that the resistance of the wireless system, which is similar to the input viewed
from the readout coil, can be retrieved from circuit analysis as follows

Zin(ω) = Re + jωLe +
(ωM)2Rs
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2 + ω2Ls2
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(1)

where
M = k(LeLs)

1/2 (2)

demonstrates the mutual inductance between readout coil and sensor coil, whereas k is the
inductive coupling coefficient between both coils. The real part of input impedance, with
respect to the angular frequency ω, is as follows

dRe(Zin(ω))

dω
=

d
dω

{
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= 0 (3)

When solving Equations (1) and (3), the equations relate to the sensor’s resonant
frequency [24,25]
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In order to obtain the resonance frequency of a pressure-dependent sensor, the real part
of the peak impedance from the readout coil was monitored. The readout coil’s wireless
sensor system contains an induced peak value at the resonance frequency. Furthermore,
the sensor’s resonance frequency was sensitive towards pressure because the sensor comes
with pressure-dependent capacitance [29].

As for the value of the quality factor, Q, it can be calculated using Equation (5)

Q =
ω0L

R
(5)

where ω0 is the angular resonance frequency (ω0 = 2πf ), L is the inductance value and R is
the coil resistance value.
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3. Methodology

Capacitor and inductor were connected to form LC-MEMS pressure sensor, fabricated
using silicon bulk micromachining (silicon cavity), CVD graphene transfer process (fab-
rication of (PMMA/Gr) membrane) and sputtering process (fabrication of microcoil and
electrode). The steps involved in the MEMS fabrication process of the LC-MEMS pressure
sensor are shown in Figure 2.
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Figure 2. The fabrication process of the LC-MEMS pressure sensor: (a) silicon substrate, (b) KOH
etch and (PMMA/Gr) membrane transfer, (c) upper plate aluminium sputter, (d) glass substrate,
(e) microcoil sputter and pattern (f) silicon–glass bonding.

First, the suspended (PMMA/Gr) membrane that forms the base of the silicon trench
was fabricated, hence, requiring <100> oriented n-type silicon wafer of 4-inch diameter,
525 ± 25 µm thickness, with double-sided 200 nm coated silicon nitride. The photolithog-
raphy and buffered oxide etchant (BOE) etching process began before fabricating silicon
trench using 45 wt% potassium hydroxide (KOH) +10 wt% isopropyl alcohol (IPA) wet
etching. The silicon nitride layer was etched to prepare the window pattern, and BOE
etching was used to remove the nitride layer using 45 nm min−1 at 80 ◦C etching rate. The
sample of this study was immersed in a BOE solution through a double boiling process
at 80 ◦C constant temperature. PMMA (950 PMMA A4, 950 K MW 4 wt%) in anisole by
microchemical and a monolayer thin graphene film, provided by University Wafer Inc.,
were used as the sensor’s membrane.

By employing the wet graphene transfer process, the (PMMA/Gr) layer was then
transferred onto the silicon cavity and subsequently onto the etched silicon. Creating a
freestanding membrane is vital, and any mishandling during the transfer process may
cause the membrane within the cavity area to rupture. Once the suspended membrane
(PMMA/Gr) was successfully fabricated, the membrane was then coated with aluminium
to make it an excellent electrical conductor as well as provide a current path between the
membrane and the connector pad of the MEMS sensor. The direct current (DC) magnetic
spark method was used to deposit a layer of aluminium atoms or molecules on the surface
of the suspended membrane (PMMA/Gr).

In order to fabricate the microcoil, a Pyrex (7740) glass was used as a substrate to
reduce the parallel parasitic capacitance between the microcoil’s turns. After Pyrex glass
was cut and cleaned in acetone and methanol, an aluminium layer was then deposited
onto Pyrex glass by the DC magnetron spark process. The eight cycles of the deposition
process were utilized to deposit the 4 µm aluminium layer, whereby each cycle took 30 min.
The sample of the deposited aluminium was patterned with a positive mask using the
lithography technique. The sample was then spin-coated with AZ1500 photoresist at
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3000 rpm for 30 s and then soft baked for 90 s at 90 ◦C on the hot plate. The sample was
then exposed to UV light for 35 s and soaked in the AZ300K developer for 1 min. Next, the
sample was hard-baked at 120 ◦C for 120 s. In order to etch away the unwanted aluminium
pattern area, the sample was dipped in a mixture of 80% phosphoric acid, 10% distilled
water, 5% acetic acid and 5% nitric acid.

The samples were soaked in the aluminium etchant for 30 min before dipping it
into the acetone solution to remove the photoresist layer. The geometric mask of the
coil were: inner size, di = 1000 µm; winding number, n = 20; trace width, w = 50 µm;
spacing, s = 100 µm. Finally, the silicon and the glass were bonded together to form the
LC resonator. The bonding layer was constructed using double-sided adhesive tape A
WK6500B (Shenzhen Wenke Electronics Co., Ltd., Shenzhen, China) [30].

4. Results and Discussion
4.1. Fabrication of Silicon Trench

A wet etch property, including the etching rate and etched silicon thickness, was
carefully investigated to ensure a fully etched silicon (hole). This investigation was to
determine the required etching time for a fully etched silicon plane (100). Figure 3a,b show
the SEM images of the top and cross-section views of the fabricated, etched silicon. The
etched surfaces were observed to be smooth and free of hillocks problems. The smooth
silicon surface quality was due to the IPA addition to the KOH solution during the wet
etching [31]. From Figure 3a, the etched silicon cavity measurement has the dimension of
approximately 1288 µm2 with an original opening window of approximately 1700 µm2

after 4 h of etching. This dimension is in agreement with the equation developed on the tip
dimension originated from the surfaces and planes orientation, W = L − (2d/1.414) with
W = square-shaped mask, L = dimension of the pyramidal cavity tip and d = thickness of
the silicon substrate [32,33]. From Figure 3b, it can be seen that the V-shaped grooves have
formed between the (100) and (111) planes. This V-shaped groove was a common effect for
KOH wet etching, where the process relied upon the crystallographic directions [34]. After
4 h of etching, the measured silicon thickness was 292 µm. This thickness indicated that
the etching rate was about 1.12 µm per minute. Therefore, the additional time for KOH
etching required approximately 2.7 h to obtain a fully perforated silicon cavity.
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4.2. Development and Characterization of Suspended PMMA/Graphene

After the (PMMA/Gr) layer was transferred onto the silicon cavity and coated with an
aluminium layer, the suspended membrane was characterized to identify the composition
elements of the membrane layer. An optical microscope was used to examine the suspended
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(PMMA/Gr) membrane, as shown in Figure 4. Monolayer graphene has only 2.3% of light
absorption [35], which makes it almost transparent. Observing graphene directly with an
optical microscope was quite difficult. However, the top of SiO2/Si or Si3Ni4/Si substrate
graphene was noticeably more visible because of slight interferences such as its contrast
difference [36,37]. Under the optical microscope observation, the (PMMA/Gr) membrane
contained slightly contrasting colours. The darker colour corresponds to the silicon nitride
layer, and the lighter colour corresponds to the (PMMA/Gr) membrane. Figure 4 shows
that the microscope images of the transferred (PMMA/Gr) were well suspended without
any cracks and tears at approximately 1000 µm2 silicon cavity area. It was also supported
by the strong force of van der Waals.
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The existence of graphene and the number of graphene layers of the (PMMA/Gr)
membrane was testified using Raman spectroscopy. The G and 2D bands are at about
1580 cm−1 and 2690 cm−1, respectively [38,39]. The number of the graphene layer was
determined by the peak intensity ratio of 2D to peak G (I2D/IG) with different ratios, i.e.,
monolayer I2D/IG ~2–3, bilayer 2 > I2D/IG > 1 and multilayer = I2D/IG < 1 [40]. The
Raman spectra of freestanding (PMMA/Gr) membrane at four different locations from
1000 cm−1 to 3000 cm−1 are shown in Figure 5. Additionally, the 2D-band’s graphene
intensity was relatively higher than the G-band’s freestanding membrane, indicating that
the graphene was significant and could testify to the existence of graphene in the membrane.
The inset in Figure 5 also shows the Raman peak intensity values for G and 2D bands for
the (PMMA/Gr) membrane. It shows that the I2D/IG ratios in all four different locations
were in the range of 2–3, hence, proving that the (PMMA/Gr) membrane has monolayer
graphene. Next, the D-peak’s low intensity at 1350 cm−1 (ID) concluded that this sample
was made of high-quality graphene.
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4.3. Development and Characterization of Planar Microcoil

Figure 6 shows the SEM image of the fabricated microcoil. The microcoil was success-
fully fabricated without any ripple, which can cause openings or shorting of any single
trace width. It is crucial to avoid any single trace width being opened or shorted as this
will cause the microcoil to be dysfunctional. From Figure 6, the measured dimension of the
fabricated microcoil: inner diameter size, di ≈ 1000 µm; trace width w ≈ 50 µm; spacing,
s ≈ 100 µm. Additionally, from Figure 6, the thickness of the microcoil was measured to be
4.42 µm. As the total cycle of the sputtering time accumulated to 240 min, the sputtering
aluminium rate was deduced to be at 0.02 µm/min. The measurements of the fabricated
microcoil were performed using an Agilent 4284A precision LCR meter (Hewlett Packard,
Test Equipment Depot, Melrose, MA, USA). The average values of the measured inductance
and resistance values were at 2.49 µH and 58.4 Ω for four samples, respectively, at 1 MHz
operating frequency. These values resulted in the quality factor, Q, of the microcoil being at
0.27. The 1 MHz operating frequency was chosen due to the maximum operating frequency
measured by the Agilent 4284A precision LCR meter. However, the expected value of the
Q-factor can be calculated using Equation (4) at higher operating frequency values.
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4.4. Completed Structure of LC-MEMS Pressure Sensor

The silicon substrate was then bonded onto a glass substrate, forming an LC-MEMS
pressure sensor structure. Figure 7a shows the SEM image of the completed structure of
the LC-MEMS pressure sensor structure without the membrane. The membrane part was
excluded in Figure 7a to show the existence of the microcoil in the structure. The spacing
between the silicon substrate and the glass substrate was adjusted to be approximately
100 µm by a spacer tape and silver paste forming an air gap in the capacitive pressure sensor.
The contact pad of the microcoil was bonded to the contact pad of the membrane part with
the silver paste to provide an LC tank circuit. As shown in Figure 7a, the measured air gap
between the bottom plate (microcoil part) and upper plate (membrane) was 96 µm reaching
the target of 100 µm air gap. Figure 7b shows the SEM image of the fabricated LC-MEMS
pressure sensor structure with the suspended (PMMA/Gr) membrane. The thickness of
the (PMMA/Gr) membrane was measured at approximately 0.5 µm. In Figure 7b, the
membrane hid the microcoil part on the glass substrate.
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4.5. Low-Pressure Testing of LC-MEMS Pressure Sensor

In order to examine the pressure response of the sensor, low pressure from the nitro-
gen gas tank was connected to the pressure chamber through a pressure regulator. The
experimental setup for the measurement of the LC-MEMS pressure sensor is shown in
Figure 8. The gas pressure was controlled using a low range pressure regulator placed
between the pressure gauge for the nitrogen gas tank and the pressure chamber. The sensor
was placed inside the pressure chamber connected to the Agilent LCR meter to measure
the capacitance values as the applied pressure was varied. Figure 9 shows the capacitance
plots of four LC-MEMS pressure sensor samples tested individually against the pressure
of the flowed gas. From Figure 9, the capacitance changed from 1.64 pF to 12.32 pF for
pressure changes within 0 to 5 psi (0~258.57 mmHg). It can also be observed that the
change in the capacitance value for sample 1 was more linear than the other three samples.
This nonlinearity factor might be due to the noise generated during the pressure testing. It
is advisable to use a special chamber for low-pressure sensing to eliminate noise.
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However, it can be observed that the capacitance readings were consistent for all four
samples. Referring to the microcoil characterization, the average values for the resistance
and inductance of the fabricated microcoil were 58.4 Ω and 2.49 µH, respectively. Since the
measured resistance value was very small compared to the ratio of inductance and capaci-
tance (R << L/C), the frequency response to the change in capacitance can be calculated
using Equation (3). The change in frequency response to the applied pressure is shown
in Figure 10. The value of this frequency change was calculated using Equation (3) by
taking the average value of the capacitance from the four sensor samples measured from
Figure 9. The inductance value was applied from the electrical characterization results
of the microcoil. From Figure 10, the relationship between the frequency response to the
varied pressure is fixed within the range of 28.74 to 78.76 MHz. While the expected value
of the quality factor at the operating frequency of 78.76 MHz is worth 21 after applying
Equation (4). Based on the results obtained, it can be seen that the use of a (PMMA/Gr)
material as a membrane in the LC-MEMS pressure sensor structure has successfully in-
creased the sensor’s sensitivity at a high value of 193.45 kHz/mmHg, surpassing the values
obtained from previous studies [16–22,28,29]. Table 2 summarizes the characteristics of the
LC-MEMS pressure sensor from the simulation and fabrication results. This sensor has a
high-pressure sensitivity as the (PMMA/Gr) contributed to a higher mechanical sensitivity
of the sensor [8].
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Table 2. Summarized characteristics of the fabricated LC-MEMS pressure sensor.

Parameter Characteristics

Membrane’s material (PMMA/Gr)
Membrane’s thickness (PMMA/Gr) 0.5 µm

Membrane’s area 1.0 mm × 1.0 mm
Sensor’s size 8 mm

Air gap 96 µm
Capacitance changes 1.64–12.32 pF

Microcoil’s inductance 2.49 µH
Frequency changes 28.74–78.76 MHz

Quality factor 21 (at F = 78.76 MHz)
Sensor’s sensitivity 193.45 kHz/mmHg

5. Conclusions

An LC-MEMS pressure sensor was developed using a MEMS fabrication process,
which incorporated a microstructure of suspended (PMMA/Gr) membrane with an alu-
minium planar micro coil as the wireless-sensing medium. This sensor was designed for
pressure monitoring purposes in biomedical implantation applications. Based on the fabri-
cation results, the suspended (PMMA/Gr) membrane was successfully fabricated on the
silicon etch cavity. The silicon cavity was realized by the bulk micromachining technique
using a 45 wt% KOH + 10 wt% IPA etchant. Meanwhile, the suspended (PMMA/Gr) mem-
brane was realized by employing a graphene wet transfer process using Fe3Cl4 etchant.
The planar microcoil was successfully fabricated by the surface micromachining method
utilizing the DC sputtering magnetron method. The fabricated LC-MEMS pressure sen-
sor was tested in a low-pressure environment. The experimental results show that the
capacitance varied from 1.64 pF to 12.32 pF as the pressure changed from 0 to 5 psi (0 to
258.57 mmHg). These variations of the capacitance caused the resonance frequency to
vary from 28.74–78.76 MHz. From the results and analysis, this LC-MEMS pressure sensor,
which applied the PMMA/Gr as a suspended membrane, has produced a high sensitivity
value of 193.45 kHz/mmHg suitable for implantable pressure sensing application. It is
recommended for future works to focus on the microcoil design, taking into consideration
the material selection and process, so that the Q-factor can be improved.
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