
fgene-10-00473 May 22, 2019 Time: 17:2 # 1

ORIGINAL RESEARCH
published: 24 May 2019

doi: 10.3389/fgene.2019.00473

Edited by:
Michael Ibba,

The Ohio State University,
United States

Reviewed by:
Jesse Rinehart,

Yale University, United States
Michelle Gibbs,

The Ohio State University,
United States

*Correspondence:
Christian M. T. Spahn

christian.spahn@charite.de
Gong Zhang

zhanggong-uni@qq.com

Specialty section:
This article was submitted to

RNA,
a section of the journal

Frontiers in Genetics

Received: 24 February 2019
Accepted: 01 May 2019
Published: 24 May 2019

Citation:
Zhao J, Zhang H, Qin B,

Nikolay R, He Q-Y, Spahn CMT and
Zhang G (2019) Multifaceted

Stoichiometry Control of Bacterial
Operons Revealed by Deep Proteome

Quantification. Front. Genet. 10:473.
doi: 10.3389/fgene.2019.00473

Multifaceted Stoichiometry Control
of Bacterial Operons Revealed by
Deep Proteome Quantification
Jing Zhao1, Hong Zhang1, Bo Qin2, Rainer Nikolay2, Qing-Yu He1,
Christian M. T. Spahn2* and Gong Zhang1*

1 Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health
Engineering, Jinan University, Guangzhou, China, 2 Institut für Medizinische Physik und Biophysik, Charité –
Universitätsmedizin Berlin, Berlin, Germany

More than half of the protein-coding genes in bacteria are organized in polycistronic
operons composed of two or more genes. It remains under debate whether the operon
organization maintains the stoichiometric expression of the genes within an operon.
In this study, we performed a label-free data-independent acquisition hyper reaction
monitoring mass-spectrometry (HRM-MS) experiment to quantify the Escherichia coli
proteome in exponential phase and quantified 93.6% of the cytosolic proteins, covering
67.9% and 56.0% of the translating polycistronic operons in BW25113 and MG1655
strains, respectively. We found that the translational regulation contributes largely to
the proteome complexity: the shorter operons tend to be more tightly controlled for
stoichiometry than longer operons; the operons which mainly code for complexes
is more tightly controlled for stoichiometry than the operons which mainly code for
metabolic pathways. The gene interval (distance between adjacent genes in one operon)
may serve as a regulatory factor for stoichiometry. The catalytic efficiency might be
a driving force for differential expression of enzymes encoded in one operon. These
results illustrated the multifaceted nature of the operon regulation: the operon unified
transcriptional level and gene-specific translational level. This multi-level regulation
benefits the host by optimizing the efficiency of the productivity of metabolic pathways
and maintenance of different types of protein complexes.

Keywords: operons, proteome quantification, HRM-MS, multifaceted stoichiometry control, mass-spectrometry,
DIA, translation

INTRODUCTION

An operon is a cluster of genes transcribed in a single mRNA. This principle is conserved across
bacterial and archaeal genomes, as well as mitochondria and chloroplast (Wolf et al., 2001; Price
et al., 2005; Zheng et al., 2005). Operons are also found in virus and some lower eukaryotes,
including yeasts, nematodes, and insects (Blumenthal, 2004; Ben-Shahar et al., 2007; Osbourn and
Field, 2009; Pi et al., 2009; Gordon et al., 2015). In a typical bacterial genome, more than half of the
protein-coding genes are organized in multigene operons. A classical bacterial operon generates an
mRNA strand with polycistronic structure containing multiple coding sequences and are translated
together in the cytoplasm. These genes are often of related functions, for example, to build a protein
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complex or to participate in one metabolic pathway. Therefore,
grouping related genes as operons under the control of a single
promotor is often thought to simplify the regulation of gene
expression for rapid adaptation to environmental changes.

An intuitive presumption of the operon organization is to
maintain stoichiometry of the gene products. It was argued that
co-regulation could be evolved by merging two independent
genes in proximity together under the control of the same
promoter, to reduce the control complexity (Lawrence and
Roth, 1996; Osbourn and Field, 2009), Li et al. (2014)
measured protein synthesis rates by using ribosome profiling
and implied that the synthesis rates quantitatively might reflect
the stoichiometry of the protein complexes. Studies showed that
an operon with one complex promoter might be better than
two independent promoters; organization of genes in operons
substantially reduces the shortfall in production of complex-
forming individual proteins (Iber, 2006; Osbourn and Field,
2009). However, recent advances of omics techniques raised
counter-arguments. A transcriptome-level study revealed that
certain adjacent genes within one operon are not similarly
transcribed in M. pneumoniae. In half of the polycistronic
operons, genes exhibited a decaying expression according to
its rank in the operon, which is termed “staircase-like decay
behavior” (Guell et al., 2009). Considering the widespread post-
transcriptional regulations including translational control and
protein turnover (Schwanhausser et al., 2011), it is still under
intensive debate whether this “staircase-behavior” influences the
protein abundance (Maier et al., 2011; Schmidt et al., 2011;
Arike et al., 2012).

Theoretically, proteins in a complex should follow the
stoichiometry, while the proteins involved in the same pathway
may need differential expression controls (Guell et al., 2009). For
example, the enzymes in various amino acids synthesis pathways
are regulated in single-input modules (SIMs). A series of such
enzymes are successively expressed in one operon (Zaslaver
et al., 2004; Seshasayee et al., 2006). Meanwhile, the different
catalytic kinetics of these enzymes determines that these enzymes
should not be expressed at the same quantity (Zaslaver et al.,
2004). These genes tend to duplicate to evolve a larger gene
regulatory network (Teichmann and Babu, 2004), indicating their
regulation is less stringent, and an operon arrangement might
be unnecessary. Therefore, a more detailed proteome-wide and
quantitative investigation is necessary to discover the scope and
impact of the operons in gene expression regulation.

A method capable to assess a quantification of the
proteome should be used in this case. Although stable
isotope labeling methods are more accurate than label-free
mass-spectrometry (MS) methods (Arike et al., 2012), the
isotopes may affect the physiology of the bacteria (Xie and
Zubarev, 2015). The isotope labeling is more suitable for
comparative quantification of multiple samples than estimating
abundance of the proteins within one sample (Neilson et al.,
2011). Therefore, label-free MS methods should be used.
Arike et al. (2012) compared three label-free quantification
methods (iBAQ, emPAI, and APEX) and found a staircase-
like protein expression in most of the transcription units,
and found high correlation abundances between some

well-known complex subunits. In contrast, Schmidt et al.
(2011) found only 5% “staircase behavior” for L. interrogans
operons on the proteome level. These contradictory results
reflected the cons of these label-free MS approaches: the
technical variations and relatively low number of quantified
proteins restricted the accurate and in-depth coverage of
operon-controlled genes.

In this work, we set out to tackle these problems by employing
a highly accurate label-free method, DIA (data-independent
acquisition) (Purvine et al., 2003), to obtain quantification of
the proteins constituting the Escherichia coli proteome with a
high coverage and high accuracy. DIA is a MS-based proteomics
method used in peptide quantification, in which all ions within a
selected m/z range are fragmented and analyzed in a second stage
of tandem mass spectrometry (Law and Lim, 2013). Although
not suitable for discovery-based applications, DIA provides
accurate peptide quantification without being limited to profiling
predefined peptides of interest (Chapman et al., 2014; Doerr,
2015). This allowed us to investigate the protein abundances
within operons and thus to interrogate the possible stoichiometry
in operons of different functions.

MATERIALS AND METHODS

MS Sample Preparation
Escherichia coli K-12 sub-strains BW25113 and MG1655 were
cultivated on glucose M9 minimal medium at 37◦C in flasks
to mid-exponential phase (OD600 = 0.6) and then harvested
in 45 mL volume, immediately cooled in ice water, and then
centrifuged at 10,000 × g for 5 min. The pellet was washed
once with PBS, centrifuged at 10,000 × g for 5 min again.
Pellet was re-suspended on ice with lysis buffer (5 M urea/2
M thiourea in 10 mM HEPES, pH 8.0), and were sonicated
and centrifuged at 17,000 × g for 30 min in a table-top
centrifuge to remove cell debris. Supernatant was collected,
and protein concentrations were determined with a Bradford
Protein Assay (Bio-Rad Protein Assay Dye Reagent Concentrate,
Cat. #500-0006).

For proteome analysis, we employed in-solution protein
digestion with a filter-aided sample preparation (FASP) method
(Zhang et al., 2017). 1 mg of protein was subjected to reduction
(8 M urea and 50 mM DTT at 37◦C, 1 h), followed by
alkylation with 100 mM iodoacetamide (IAA) in dark at room
temperature for 30 min. The solution was transferred to the 30
kDa ultracentrifuge filters (Millipore). Proteins were washed with
8 M urea, and four sequential buffer changes were performed
using 50 mM TEAB, respectively. Trypsin (Promega) was then
added into the filter at a mass ratio of 1:20 for Proteins digested
in 130 µL 50 mM TEAB at 37◦C for 12 h. The released
peptides were collected by centrifugation and dried with a cold-
trap speed vacuum.

MS Experiments
One microgram of sample abovementioned peptides was
analyzed on a C18 column (50 µm × 15 cm, 2 µm, Thermo
Fisher) by using an EASY-nLC 1200 UHPLC connected to an
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Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific).
The peptides with the iRT-standard (1/10 by volume, Biognosys,
HRM Calibration Kit: Ki-3003) were separated by a linear
gradient from 6 to 30% ACN with 0.1% formic acid at 270
nL/min for 100–130 min and linearly increased to 90% ACN
in 20 min. For the data-dependent acquisition (DDA), the
source was operated at 2.0 kV. The DDA scheme included
a full MS survey scan from m/z 400 to m/z 1500 at a
resolution of 60,000 FWHM with AGC set to 4E5 (maximum
injection time of 50 ms), followed by MS/MS scans at a
resolution of 15,000 FWHM with AGC set to 5E4 (maximum
injection time of 30 ms), data-dependent mode was set to
top speed. Isolation window was 1.6. Dynamic exclusion was
set to 90 s with a 10 ppm tolerance around the selected
precursor. For the DIA hyper reaction monitoring (HRM-MS),
individual tryptic peptide samples were mixed with the iRT-
standard (1/10 by volume) and analyzed by the same method
as DDA used. The method consisted of a full MS1 scan at
a resolution of 60,000 FWHM from m/z 350 to m/z 1,200
with AGC set to 4E5 (maximum injection time of 30 ms)
followed by 40 non-overlapping DIA windows acquired at a
resolution of 30,000 FWHM with AGC set to 5E5 (maximum
injection time of 50 ms), cycle time, 3.28 s. The MS/MS
isolation windows were listed in Supplementary Table S1. For
comparison, standard DDA MS experiment was performed as
above. All MS raw data have been deposited in iProX with
accession number: IPX0001095000 and ProteomeXchange with
identifier PXD010126.

Spectral Library Generation
To generate the spectral library, three DDA measurements of
the mixed samples were performed. Raw DDA datasets were
searched against a combined database of the NCBI database of
Escherichia coli str. K-12 (GCF_000005845.2_ASM584v2, 4140
entries) and the iRT standard peptides sequence using the
Sequest HT (Proteome Discoverer v2.1) local server. Common
contaminants in the database included trypsin and keratins.
Precursor and product ion spectra were searched at an initial
mass tolerance of 10 ppm and fragment mass tolerance 0.02
Da, respectively. Tryptic cleavage was selected, and up to
two missed cleavages were allowed. Carbamidomethylation on
cysteine (+57.021 Da) was set as a fixed modification, and
oxidation (+15.995 Da) on methionine was assigned as a
variable modification. A target-decoy-based strategy was applied
to control peptide and protein false discovery rates (FDRs) at
lower than 1%. Confident protein identifications should suit
the following criteria: (1) protein level FDR ≤ 1%; (2) unique
peptides ≥ 1 or 2; (3) peptide length ≥ 6 or 7 aa. The search
result was exported in a pdResult file format containing the
annotation of precursors and fragment ions and their exact
retention times. The pdResult file was then imported into
Spectronaut Pulsar 11 (Biognosys) to generate the spectral
library used for HRM-MS data analysis, which yielded 14608
unique peptide sequences in 2041 protein groups with BW25113,
and 8822 unique peptide sequences in 1607 protein groups
with MG1655. A subset of identified peptides was used in
library creation as modification parameter was set none. The

generated spectral libraries were exported from Spectronaut as in
Supplementary Table S2.

Protein Identification and Quantification
The DIA data were then analyzed with Spectronaut Pulsar
11 with the spectral library, which is a mass spectrometer
vendor independent software for SWATH/DIA data analysis.
Raw data were analyzed according to the user manual of the
software. Default settings were setup for protein identification
and peak area calculation. Raw data were converted into
HTRMS files and imported to Spectronaut Pulsar 11 by
choosing the matched database fasta file and spectral library,
with the default settings of the Spectronaut Pulsar 11:
(1) Calibration: calibration mode, automatic; iRT calibration
strategy, non-liner iRT calibration. (2) Identification: decoy
limit strategy, dynamic; decoy method, mutated; machine
learning, per run; precursor q-value (peptide FDR) cutoff,
0.01; protein q-value (protein FDR) cutoff, 0.01; p-value
estimator, kernel density estimator. (3) Workflow: default
labeling type, label; profiling strategy, none; unify peptide
peaks, false. (4) Quantification: interference correction, true;
major(protein) grouping, by protein-group id; major group
quantity, mean peptide quantity; minor (peptide) grouping,
by stripped sequence; minor group quantity, mean precursor
quantity; minor group top n, true; min, 1; max, 3; quantity
MS-level, MS2; quantity type, area; data filtering, q-value;
cross run normalization, true; row selection, q-value sparse;
normalization strategy, local normalization. (5) Reporting:
scoring histograms, true; pipeline report schema, protein quant;
pipeline reporting unit, experiment. (6) Protein inference:
protein inference workflow, automatic. (7) Data extraction:
MS1 mass tolerance strategy, dynamic; correction factor, 1;
MS2 mass tolerance strategy, dynamic; correction faction, 1.
(8) Post analysis: differential abundance grouping, major group
(quantification settings); smallest quantitative unit, precursor
ion (summed fragment ions); use top n selection, false.
(9) Retention time were used to assist identification. XIC
extraction: XIC RT extraction window, dynamic; correction
factor, 1. After peak extraction and area calculation were
performed, the result was exported as the table format for
further quantification analysis in Microsoft Excel. All MS
raw data, Proteome Discoverer report (∗.msf file) and the
constructed spectra library have been deposited in iProX with
accession number: IPX0001095000 and ProteinXchange with
identifier PXD010126. The relationship of submitted raw data are
shown in Supplementary Data.

Protein abundances was calculated by using Spectronaut
Pulsar protein pivot report, those proteins quantified by
Spectronaut pulsar but not identified by Proteome Discoverer
and not met the confident protein identifications criteria were
removed. The abundances of identified proteins were calculated
as follow procedure. Supposed that top 500 abundant proteins
of E. coli can represent total protein copy numbers of a cell.
Concentration of HRM-MS protein copies per cell was calculated
based on the means of 500 most abundant protein quantities
computed by other three label-free methods (APEX, iBAQ, PAI)
downloaded from Arike et al. (2012). HRM-MS intensity could
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be converted to protein copies per cells by coefficient k, which is
defined by the following formula.

Bi is copy numbers of the gene in iBAQ dataset.
Pi is copy numbers of the gene in emPAI dataset.
Ai is copy numbers of the gene in APEX dataset.
Di is correspondence protein intensities of the gene quantified

in HRM-MS dataset.

k =
n
√∏n

i=0
(Bi+Pi+Ai)

3

n
√∏n

i=0 Di
(1)

The amount of individual proteins was calculated as the
product of conversion coefficient k to their intensity in the
HRM-MS measured sample.

Protein copy number = k× Di (2)

The calculations were performed by in-house generated
python scripts. All scripts used in this study can be downloaded
in the Supplementary Materials (Supplementary Scripts).

Coefficient of Variation of Protein
Abundance in the Operons
Coefficient of variation (CV), which is defined as the ratio of the
standard deviation to the arithmetic mean. Standard deviation
is normalized by n − 1 by default (n is sample size). The CV
of proteins within one operon is defined as the ratio of the
standard deviation of protein quantities within this operon to
the arithmetic mean of all protein quantities within this operon.
For multi-gene operons (protein numbers≥ 2), CV was calculate
as follows:

CV =
2
√∑n

i=1(xi−x̄)2

n−1

mean
× 100% (3)

where xi is the abundance of the i-th gene in this operon. To be
noted, the CV calculation was only performed within one operon,
not across the operons.

The CV of the protein half-life in the operons were calculated
in the same way. Protein half-life time in the M9 minimal
medium was from our previous work (Zhong et al., 2015).

Data Randomization
To compare with the real operon CV level if protein abundances
in operons have stoichiometry control, we reshuffled the protein
quantities detected in the polycistronic operons (846) randomly
to each protein ID, the generated dataset was used as randomized
negative control. Randomized protein quantities in “2-/3-/4-/
≥5-protein” operons were extracted from this randomized
negative control data.

Operon and Gene Ontology (GO) Analysis
Operon library of Escherichia coli str. K-12 were downloaded
from the DOOR2 database (Mao et al., 2014) (NC_000913).
Protein GI numbers were converted to proper identifiers by
DAVID Gene Accession Conversion Tool (Huang et al., 2007).

The quantified proteins were integrated to the operon data. The
PANTHER Version 13.0 (released 2017-11-121) (Mi et al., 2017)
was used to perform the GO overrepresentation analysis with
the significance threshold of 0.01, the quantified proteins of
Escherichia coli in our work was selected as the background
proteome, the Fisher’s Exact test was used to obtain p-values and
‘GO slim’ category were used. The protein subcellular localization
data of E. coli was downloaded from EcoProDB (Yun et al., 2007).

Complex and Pathway Classification
The operon contains more than or equal to two genes were
called polycistronic operons. Among polycistronic operons, those
≥90% genes in operon encoded subunits of one protein complex
is selected and classified as “Complex” group, others were
classified as “Pathway” group.

Physical and Chemical Features
of Proteins
The protein lengths in amino acids were obtained from the NCBI
of Escherichia coli str. K-12 (GCF_000005845.2_ASM584v2,
4140 entries). Information of the hydrophobicity was calculated
by Gravy Calculator2. In addition, the isoelectric point,
protein length, instability and hydrophobicity distribution were
calculated by using python 2.7 scripts and Biopython libraries.

Experimental Design and
Statistical Rationale
To increases the precision of protein expression measurements
of the entire E. coli proteome quantification, two biological
replicates of BW25113 and MG1655 each were cultured in
M9 minimal medium to mid-exponential phase and were
harvest, then processed to HRM-MS analysis independently.
iRT-standard (Biognosys, HRM Calibration Kit) was added to
the peptides with 1/10 by volume. The peptide mixture of two
biological replicates of each strain were used and performed
LC-MS for three times for spectral library creation. Proteome
Discoverer 2.1 and Spectronaut Pulsar 11 were used to generated
spectral library, and Spectronaut Pulsar 11 was used to quantify
the protein groups with little modified parameters. Kolmogorov–
Smirnov test (KS-test) were used to compare the distributions
between CVs at transcriptome, translatome and protein level,
and Mann-Whitney U-test were used to compare the difference
between complex and pathway operons.

mRNA Sequencing
E. coli strain BW25113 was cultivated on glucose M9 minimal
medium at 37◦C in flasks to mid-exponential phase (OD600 = 0.6)
with 100 µg/mL chloramphenicol added 15 min before
harvest, then the cells were centrifuged at 5,000 × g for
10 min at 4◦C, followed by thrice washed with pre-chilled
PBS. Cell pellet was then re-suspended in 6 mL pre-chilled
sucrose-buffer solution [16 mM Tris (pH 8.1) supplemented
with 0.5 M RNase-free sucrose, 50 mM KCl, 8.75 mM

1http://pantherdb.org/
2http://www.gravy-calculator.de
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EDTA, 100 µg/mL chloramphenicol, 12.5 mg/mL lysozyme]
and gently stirred for 5 min on ice. Then the cells were
centrifuged 5,000 × g, 10 min. Total RNA was extracted by
Trizol method, and mRNA-seq libraries were prepared using
standard MGIEasyTM mRNA Library Prep Kit V2 following
the manufacturer’s protocol. Sequencing was performed on a
BGISEQ-500 sequencer for 50 cycles, single-ended mode. This
dataset was deposited in the GEO database under the accession
number GSM3489376, GSM3489377.

Analysis of Sequencing Data
The RNA-seq dataset of E. coli strain MG1655 were obtained
from Haft et al. (2014) (GEO accession number: GSM1360030,
GSM1360031, GSM1360042, GSM1360043) and Bartholomaus
et al. (2016) (SRA accession number: SRR2016457). The datasets
of strain BW25113 were generated as described above. For
all datasets, adapters was trimmed from the reads. Reads
were mapped to coding sequence of E. coli reference genome
(GenBank: U00096) using FANSe3 algorithm (Liu et al., 2017)
with the parameters -E3 -S10 –indel. Genes with at least 10
mapped reads were considered quantifiable (Bloom et al., 2009).
The expression levels were estimated in rpkM.

RESULTS

Near-Complete E. coli Cytosolic
Proteome Quantification Using HRM-MS
To assess the quantification power and reproducibility of the
HRM-MS method, we performed two biological replicates
of E. coli total soluble proteins of strain BW25113 and
MG1655. When using the previous identification criteria (at
least one unique peptide, peptide length ≥6 amino acids) (Arike
et al., 2012), our HRM-MS results quantified 1951 and 1571
proteins in these two strains, respectively. The two biological
replications identified almost identical proteins, demonstrating
high robustness and reproducibility (Figure 1A). Two replicates
quantified almost the same proteins: only a few proteins were
quantified only in one replicate (Figure 1A). Under the stringent
criteria as two unique peptides and at least seven amino
acids peptide length. Even under the stringent criteria, we still
quantified 1675 and 1252 proteins with a high reproducibility
(Figures 1B,C and Supplementary Table S3). The number of
quantified soluble proteins was almost doubled when compared
to the previous results quantified by other methods (1021
proteins for APEX, 1183 for IBAQ and 1138 for emPAI) (Arike
et al., 2012). To rule out the difference of the instruments, we
performed DDA MS experiments for the two strains in the same
Orbitrap Fusion Lumos instrument. Proteins were identified
under the stringent criteria and quantified using iBAQ method.
The DDA MS quantified 1520 and 1482 proteins for BW25113
and MG1655 strains, respectively, comparable with the HRM-
MS experiments. However, the correlation coefficients of the
iBAQ quantification of two biological replicates were 0.932 and
0.939, respectively (Figures 1D,E), lower than the HRM-MS
(R = 0.982 and 0.988 for the two strains, respectively). Each
identified protein was covered by 19.20 and 15.45 peptides in

average in two strains, covering 31.56% and 24.87% of the amino
acid sequences, respectively (Figure 1F), which is higher than
the typical peptide coverage of human proteome MS experiments
(single search engine, up to∼20% coverage) (Zhao et al., 2017).

We previously revealed 2922 genes which are being translated
in the E. coli grown in the same condition using ribosome
profiling (Bartholomaus et al., 2016). Using HRM-MS method
with stringent criteria, we quantified 55.2% of these translating
genes in this work. We next analyzed the possible chemical
and physical features of the translated but unquantified proteins
in this work. The unquantified proteins are significantly
more alkalic, less stable, shorter and more hydrophobic
(Supplementary Figure S1). These are general factors that
decreases the visibility of these proteins in shotgun MS
experiments. Since our experiments were not optimized for
membrane proteins, which are more prone to aggregate during
the protein extraction, these proteins are expected to be less
detected in the MS. Notably, we quantified 93.6% translating
cytosolic proteins, showing a near-complete quantification of the
soluble proteins.

Considering the advantage of the HRM-MS, all the subsequent
analysis was based on the HRM-MS under the stringent criteria.

Operons Tend to Unify Gene Expression
in General
The high coverage of proteome quantification allowed us to make
an in-depth investigation of protein abundances in operons.
Indeed, our quantification covered 67.9% and 56.0% of the
translating polycistronic operons in BW25113 and MG1655,
respectively. We calculated the coefficient of variation (CV,
%) of proteins abundances within each operon. To compare
with the real operon CV level, we random redistribution the
protein quantities quantified in the experiment as randomized
negative control. Smaller CV represent the unified expression
level of the proteins within one operon. The mean of real
CV was significantly smaller than that of randomized negative
control data (Mann–Whitney U-test, p = 5.05 × 10−10 and
p = 3.40 × 10−5 for BW25113 and MG1655, respectively)
(Figure 2). The median CV of quantified proteins were also
smaller than the randomized control (Kruskal–Wallis H-test,
p = 1.44× 10−8 and p = 1.18× 10−6 for BW25113 and MG1655,
respectively). As a positive control, the trend to unified expression
is also valid in transcription (an operon is transcribed as an entire
mRNA) (Supplementary Figure S2). This indicated that most
polycistronic operons were co-regulated, and the stoichiometry
balance of protein abundances within polycistronic operons
exists in general, although with exceptions. These results were in
general consistent with previous studies (Ishihama et al., 2008;
Arike et al., 2012).

Functional Enrichment of the Operon
Stoichiometry Control
We then examined if the number of genes per operon could
affect the stoichiometry of proteins encoded within operons in
both BW25113 and MG1655 strains. We found all the medians
of subgroups were lower than the randomized negative control
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FIGURE 1 | Comparison of protein abundances obtained by different label-free quantification methods. (A) Quantified protein numbers in two biological replications
of HRM-MS method of two strains. (B,C) The quantification reproducibility of HRM-MS method in relaxed and stringent criteria of two E. coli strains, respectively. R
is the Pearson correlation coefficient. The protein abundance range was divided into low (<2.0 log scale), mid (2.0–3.5 log scale) and high (>3.5 log scale) sections.
r_low, r_mid and r_high are the Pearson correlation of the proteins in these sections. (D,E) The reproducibility of DDA MS experiment of the two strains. Proteins
were quantified using iBAQ method. (F) The peptide coverage of the HRM-MS-identified proteins in two E. coli strains, respectively.

(RD), which was in accordance with our abovementioned results
(Figure 3A), indicating operon expression regulation exists in
general. We continue to divide operons into two subgroups by
their functions.

Next, each group was separated into two subgroups by the
median CV of randomized data, the high CV subgroups (H2-
H5, higher than median of randomized data) and the low CV
subgroups (L2–L5, lower than median of randomized data). Gene
ontology (GO) overrepresentation analysis was performed for
each subgroup both in both strains (Figures 3B,C, see details
in Supplementary Table S5). Most low CV subgroups (L2–L5)
showed functional enrichment against the quantified proteins as
background. The L2 group was overrepresented in almost all
metabolic activities, and the L5 group was highly enriched in

complexes and structural molecules in both E. coli strains. This
provided a hint that the stringent stoichiometry control might
be important for the efficient assembly of protein complexes. In
contrast, there are little significant functional enrichment of GO
terms enriched in H2–H5 subgroups in BW25113, and only the
GO terms enriched in H2 and H5 subgroup in MG1655. These
results indicated that the large CV of most of these operons might
be caused by experimental error.

Since the operons in L2–L5 subgroups were enriched in
metabolic pathways and complexes, we specifically divide these
operons into “Complex” and “Pathway” groups. The group
“Complex” are the operons encoding proteins for the same
protein complex. The group “Pathway” are the operons encoding
proteins involving in the same metabolic pathway. Similar to
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FIGURE 2 | Protein coefficient of variation (CV) within operons of measured data and randomized negative control.

FIGURE 3 | Functional-dependence of operon stoichiometry control. (A) Protein CVs within operons, categorized according to the number of genes in operon. RD,
randomized data. Blue dashed line represents the median of the randomized data. (B,C) Gene ontology (GO) overrepresentation of the operons with lower CV than
the randomized median (L2–L5) and higher CV than the randomized median (H2–H5). The number refer to the number of genes in operon. GO terms with P > 0.001
were considered insignificant and marked as gray. BP, biological process; CC, cell component; MF, molecular function. (B) BW25113 and (C) MG1655 strain.
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the Figure 3A, we performed randomization for each group
multiple times for robustness. In almost all cases the 2-/3-/4-/
≥5-protein “Complex” and “Pathway” operons exhibited lower
CVs than the corresponding randomized data (Supplementary
Figure S3), indicating that the stoichiometry is still maintained
for the protein complexes and metabolic pathways in a certain
extent, which is consistent with the traditional hypothesis.

However, there seems to be a trend that shorter operons
(containing lower number of genes) possess lower CV
within operon (Figure 3A), suggesting a length-dependent
stoichiometry control. Since the mRNA of an entire operon
is transcribed as a unit, the abovementioned phenomenon
opened a question of the origin of the length-dependent
stoichiometry control.

Length-Dependence of Stoichiometry
Control Is Functional-Dependent
Linear regression analysis was performed to calculate the CVs
at RNA and protein levels, within operon that encodes proteins
forming complexes or involving in the metabolic pathways
(Figure 4A and Supplementary Figure S4). Since the mRNA
of one operon is transcribed as one unit, the CV within operon
at RNA level is much lower than the randomized control, as
expected (Figure 4A and Supplementary Figure S4). However,
the “Pathway” operons did not show length dependence at
protein level, while significant and positive correlation of
protein CV within operon versus length were observed in
“Complex” groups in both BW25113 and MG1655 (P-value of
BW25113 = 0.0004, P-value of MG1655 = 0.022). In contrast,
among the “Pathway” groups, those operons exhibited similar
CV distribution regardless of their lengths (regression P > 0.05)
(Figure 4A, “Protein” plots). This reflects necessity that the
proteins operating in a pathway need to be more independently
tuned and thus do not have to follow the stoichiometry. Those
results indicating a length- and functional-dependence of operon
stoichiometry control for larger operons. The RNA–protein
correlation also echoed this trend (Figure 4B). In both strains, the
Pearson R2 of the RNA–protein correlation in “Complex” group
is considerably higher than in “Pathway” group (Figure 4C).
These results indicated that there may be some inherent
difference between “Pathway” and “Complex” type operons.

Significant difference (p < 0.01) of protein CV distribution
were observed among the 2-protein operons against larger (4-/
5-protein) operons only in “Complex” subgroups, but not
observed in the “Pathway” operon subgroups in both BW25113
and MG1655 strains (Figure 4D, see details in Supplementary
Table S4), consolidated our abovementioned observation that the
shorter operons among “Complex” groups operons tend to be
regulated more stringently.

Enzyme Activity Correlates to the
Differential Translation of
“Pathway” Genes
Figure 5A showed examples of “Complex” and “Pathway”
operons, respectively. Genes in three operons showed almost
same RNA abundance. However, the operon ID 3641 encoding

ribosome proteins showed similar protein abundance, while
the operon ID 3767 encoding enzymes in arginine synthesis
pathway and the operon ID 3157 encoding enzymes in biotin
synthesis pathway showed exaggerated difference in protein
abundance. Both translation and degradation may affect the
protein abundance. We found no significant difference of the
“Complex” and “Pathway” operons in terms of the CV of protein
half-life within operons (KS-test, P = 0.932) (Supplementary
Figure S5). Therefore, the translational regulation should be the
major factor leading to such differential protein expression in
“Pathway” operons.

It is expected that the “Complex” proteins tend to be tightly
stoichiometrically controlled to build functional complexes. In
contrast, what benefit is related to the differential translation of
the “Pathway” genes in one operon?

Since “Pathway” proteins comprise pathways, they
sequentially catalyze conversion of a substrate to product
via multiple and successive reaction steps. Therefore, we
hypothesize that the bacteria require less high-efficiency enzymes
to avoid energy waste. Supplementary Figure S6 showed the
arginine synthesis pathway in E. coli, where ArgB and ArgC are
two enzymes that relay. The Michalis constant (KM) of ArgB is
more than 3 times higher than ArgC (Table 1), showing that the
binding of ArgB to the substrate is weaker. Although lacking
the measured value of ArgB kcat in E. coli, ArgB kcat value in
yeast (56% homology in amino acid sequence) is approximately
1/3 of ArgC in E. coli, as a reference. These data indicated that
the catalytic efficiency of ArgC is higher than ArgB. Therefore,
ArgC is less needed in E. coli, which matched the proteome
quantification (Figure 5A). No argH activity data is available in
E. coli. The homologous enzyme in Anas platyrhynchos (75%
homology in amino acid sequence) showed also lower catalytic
efficiency than ArgC. Similar trend was also observed in the
biotin synthesis pathway (Supplementary Figure S6). The
enzyme BioF possess kcat value one order of magnitude higher
than BioB, indicating higher conversion efficiency. Therefore,
BioF is much less produced in E. coli. The enzyme BioC is
extremely efficient with three orders of magnitude higher kcat
value than BioF and much lower KM value than bioB and BioF.
Therefore, BioC is orders of magnitude lower than the other two
enzymes in E. coli.

To further validate this hypothesis, we manually went through
all quantified “Pathway” operons and found other nine operons
which fit the following criteria: (a) at least two quantified
proteins in one operons, and they must exist in the same
metabolic pathway; (b) their pathway must be branch-free, i.e.,
the substrate should be converted sequentially by these enzymes
without introducing other rate-limiting metabolites as branches
in pathway, at least in the range of the quantified enzymes
(illustrations see Figure 5B); (c) enzyme activity parameters,
e.g., kcat or KM, should be available, and the activity parameters
of at least one enzyme should be available in E. coli. The
RNA abundance, protein abundance and the KM values are
illustrated in Figure 5C. All of the nine operons validated the
correlation of the enzyme activity and the protein abundance
without exception: less active enzymes (represented by higher KM
values) were expressed in higher amount at protein level. To be
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FIGURE 4 | Length-dependence of operon stoichiometry control. (A) Linear regression analysis of gene CVs at RNA and protein levels within operon that encodes
proteins forming complexes or involving in the metabolic pathways in BW25113 strain. P-values of the regression are indicated in the plots. P < 0.05 are considered
significant. RD, randomized control. (B) The RNA–protein scatter plots of the gene expression levels of the “Complex” and “Pathway” operons in two strains,
respectively. (C) The correlation coefficient R2 of the RNA–protein correlation shown in (B) panel. (D) The mutual P-value (Mann–Whitney U test) matrix of the protein
CV within “Pathway” operons and “Complex” operons, respectively. ∗P < 0.05; ∗∗P < 0.01.

noted, six out of nine operons showed inverse proportion of RNA
and protein expression, suggesting that such regulation is mainly
conducted at translation level.

Divergence of Stoichiometry Control Is
Regulated at Translation Level by the
Gene Intervals
Next, we investigated the factor that could determine the
lower stringency of “Pathway” groups of operons. As both
groups of operons contain a wide variety of genes, the
major difference should lay on the gene structures. This is
reflected by the gene intervals, defined as the distance from
the stop codon of the first gene to the start codon of
the next gene downstream within one operon (Figure 6A).
A strongly significant difference on gene intervals was observed

between two groups on their gene interval distributions
(p = 1.314 × 10−5, KS-test, Figure 6B). The genes in
“Complex” genes tend to be arranged very near to each other,
while the “Pathway” genes tend to be located far from each
other, reflected by the larger mean and median value of
the gene interval.

Both a 70S ribosome and a 30S subunit cover about 40
nucleotides of the mRNA, roughly 18–20 nucleotides upstream
and 16–18 nucleotides downstream of the P-site codon (Beyer
et al., 1994). If a terminating 70S ribosome would have a
downstream initiation site nearer than 40 nucleotides, a 70S
termination event and a downstream 30S-binding initiation
could not be independent events due to a steric clash between
70S and 30S. In this case, the 70S scanning initiation mode
plays a major role for translation, meaning the first cistron
is initiated by 30S and the downstream cistrons by 70S
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FIGURE 5 | Examples of “Complex” and “Pathway” operons. (A) The gene expression at RNA and protein levels in E. coli K-12 MG1655 strain. The detailed
expression level are marked on the data points. <1 means the expression level is too low to be confidently quantified. (B) Illustrations of the “branch-free” and
“branched” pathways. E1 and E2 represent the quantified proteins in the same operon. (C) All nine operons which encodes enzymes that exist in branch-free
pathways. Their RNA abundance, protein abundance and KM values were plotted. KM values are plotted in orange bars. Detailed KM values are listed in Table 1.
Detailed pathways are illustrated in Supplementary Figure S6.

scanning to achieve a strict and precise 1:1 stoichiometric ratio
(Yamamoto et al., 2016). This may be one of the factors explained
that the “Complex” operons, with shorter gene intervals, are more
stringently regulated for stoichiometry.

DISCUSSION

Near-complete coverage of proteome identification and
quantification is always a goal of proteomics research, as
it reveals detailed global dynamics of important biological
processes; for example, the dormancy and resuscitation
of Mycobacterium tuberculosis (Schubert et al., 2015). The
high proteomic resolution of quantification allows in-depth
investigation of many scientific questions in debate for decades.
In this study, we employed DIA based HRM-MS, a highly
reproducible label-free quantification method in E. coli strains
BW25113 and MG1655. Our datasets were better than the
previously reported DDA-based E. coli proteome quantification
datasets in terms of reproducibility. We therefore generated
the most complete investigation on abundance of proteins
encoded within operons in E. coli based on tryptic digestion up
to date, which allows us to accurately evaluate the stoichiometry
presumption of the operon organization. To further increase
the sensitivity of identification, other complement approaches
such as LysC digestion might be helpful (Wisniewski and Rakus,

2014). Nevertheless, since we have already quantified 93.6%
of the cytosolic proteins, specific methods dealing with the
hydrophobic nature of membrane proteins should be employed
to further expand the proteome coverage. The DIA based
HRM-MS relies heavily on DDA spectral libraries. Therefore,
they share the same shortcomings, e.g., the dependence on the
physical and chemical properties of proteins.

We confirmed from our HRM-MS results that the operons
coordinate the gene expression more stringent than the
randomized control in general. In addition, we found a
multifaceted nature of the operon regulation: operons are
not created equal. The stringency is length-dependent and
functional-dependent at protein level. Such multifaceted
organization of operons revealed two-level control: the operon
unified transcriptional level and gene-specific translational level,
which benefits the host in different aspects.

Although the operon organization maintains in general
the stoichiometry of the genes in the operons compared
to fully randomized scenario, the operons for metabolic
pathways are in general less strictly controlled for stoichiometry
balance compared to those operons for protein complexes.
Protein complexes needs stoichiometry to maintain their
functions. Therefore, the operons encoding protein complexes
are tightly regulated to ensure the equal expression, such
as the ribosome protein operons (Figure 5A). In contrast,
since the operons for metabolic pathways are not necessarily
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TABLE 1 | Kinetic parameters of the enzymes in one metabolic pathway.

Enzyme kcat (s−1) KM (mM) Homology to E. coli protein (for
non-E. coli proteins)

References

ArgB 4.9
(S. cerevisiae)

1.3 56% Gil-Ortiz et al., 2010; de Cima et al., 2012

ArgC 14 0.4 McLoughlin and Copley, 2008

ArgH 4.9
(Anas

platyrhynchos)

0.4
(Anas platyrhynchos)

75% Chakraborty et al., 1999

BioB 0.0039 0.002 Farh et al., 2001; Taylor et al., 2008

BioF 0.05825 0.025 Turbeville et al., 2011

BioC 98.334
(Bacillus
cereus)

0.00108
(Bacillus cereus)

62% Lin and Cronan, 2012

GuaB 13 0.061 Kerr and Hedstrom, 1997

GuaA 23 0.053 Oliver et al., 2014

AceB 0.022 Lohman et al., 2008

AceA 0.063 MacKintosh and Nimmo, 1988

BetA 1.5 Landfald and Strom, 1986

BetB 1.8 Gruez et al., 2004

UxuA 4.79 Qiu et al., 2012

UxuB 1 Hickman and Ashwell, 1960

DadA 30 Franklin and Venables, 1976

DadX 3.03 Wu et al., 2008

ProB 1.2
(Pseudomonas

aeruginosa)

74% Krishna and Leisinger, 1979

ProA 300 McLoughlin and Copley, 2008

OtsA 1 (Thermoplasma
acidophilum)

65% Gao et al., 2014

OtsB 0.61 Kuznetsova et al., 2006

CysC 0.0005 Satishchandran and Markham, 2000

CysD + CysN 0.0045
(Thiobacillus
denitrificans)

67% (CysD) Gay et al., 2009

PurD 0.03 Cheng et al., 1990

PurH 0.082
(Methanocaldococcus

jannaschii)

50% Graupner et al., 2002

Values are measured in E. coli unless specified. Non-E. coli data were used as a reference when no E. coli data is available.

forming a complex for their functions, their distinct specific
activities set their specific demand in quantity. All quantified
operons which encode enzymes in branch-free pathways
and with available enzyme activity data validated this
hypothesis without exception (Figure 5C). Nevertheless,
bacteria need to regulate related metabolic pathways in quick
response to environmental stimuli. Therefore, organizing
the proteins in the same pathway under the control of
one promoter would minimize the regulatory complexity
of the adjustments, leaving the delicate control of each
individual gene to the translational level. The available
data indicated that such translational regulation is quite
common (Figure 5C).

Our data also showed that the shorter operons, whose
products form complexes, tend to be more tightly controlled
in stoichiometric expression (Figure 4). This could be
understandable such as two-component protein complexes

would be invalid if there were imbalanced expression of the
components. For instance, the assembly efficiency decreased
remarkably if two subunits of bacterial luciferase LuxA and
LuxB were split at distant chromosomal sites (Shieh et al., 2015).
Large operons tend to encode proteins for large complexes
such as ribosomes (Figure 4). Such large complexes would
sustain for relatively long time in cells to perform essential
functions. For example, half-life of mammalian ribosomes
can be as long as 300 h (Nikolov et al., 1983). Many protein
components of ribosomes are dissociable and interchangeable
with unbound counterparts (Schafer et al., 2003). This allows
the rapid renewal of the damaged proteins of the complex
without degrading and re-synthesizing the entire complex,
which is the most energy-efficient way to keep these valuable
complexes in good condition. This requires the delicate
expression control of these proteins within one operon to meet
the actual demand.
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FIGURE 6 | Gene intervals in the “Complex” and “Pathway” operons.
(A) Illustration of the gene interval within one operon. (B) Distribution of the
gene intervals of “Complex” and “Pathway” operons.

In another aspect, the differential expression regulation within
an operon is also important for bacteria. Previous studies
proposed that such regulation happens via generating different
transcripts from multiple promotors/terminators [e.g., Bacillus
subtilis dnaK operon (Homuth et al., 1999), Vibrio vulnificus
putAP operon (Lee et al., 2003), Zymomonas mobilis gap operon
(Eddy et al., 1989), E. coli glpEGR operon (Yang and Larson,
1998)], or via differential degrading mRNAs [e.g., Acinetobacter
calcoaceticus mop operon (Schirmer and Hillen, 1998), E. coli
atp operon (McCarthy, 1990; McCarthy et al., 1991)]. However,
these studies included only individual cases of specific operons.
Taking advantage of deep coverage of E. coli cytosolic proteome,
our data indicated that enzyme activity seems to be an additional
driving force for the differential expression regulation within
an operon. Highly efficient enzymes tended to be less produced
than the other counterparts in the same pathway. In such cases,
deviating from stoichiometry minimizes the energy waste and
thus may provide survival advantage. This explained the fact
that no significant length-dependent stoichiometry is observed
in “Pathway” proteins. Our analysis was restricted by the very
limited availability of the enzyme activity and kinetics data.
Validation using more such data is necessary in the future.

In this study, we noticed that the gene intervals in operons
may serve as a regulatory factor for stoichiometry. It is a
general accepted notion that termination of bacterial protein
synthesis is obligatorily followed by recycling step governed by
the factors ribosomal recycling factor (RRF), EF-G, and IF3,
where the ribosome dissociates into its subunits (Hirokawa et al.,
2006). In contrast, a recently described 70S-scanning mode of
initiation holds that after termination, the 70S ribosomes do
not dissociate after termination step but rather scan along with

the mRNA until reaching the initiation site of the downstream
cistron of the same mRNA (Yamamoto et al., 2016). Binding of
fMet-tRNA triggers 70S scanning, which occurs in the absence
of energy-rich compounds (e.g., ATP, GTP) and seems to be
driven by unidimensional diffusion (Yamamoto et al., 2016).
Therefore, the 70S scanning initiation might be a mechanism
to read out the “stoichiometry code” of closely located genes
in operons. In addition, the rate of translation of an ORF is
controlled by a number of other mRNA features. For example,
the codon selection and the cognate tRNA concentration
dictate the translational pausing, which is a strong determinant
of co-translational folding for most proteins (Zhang et al.,
2009; Zhong et al., 2015; Lian et al., 2016). Shine–Dalgarno
(SD) sequence accessibility and strength have been implicated
in translational initiation (Steitz and Jakes, 1975). Genome-
wide mRNA secondary structure analysis indicated that ORF
translation rate is correlated with its mRNA structure in bacteria
(Burkhardt et al., 2017), but not in mammalian cells (Lian
et al., 2016). Although highly stable mRNA structures in direct
proximity to the initiation codon diminish translation efficiency
(de Smit and van Duin, 1990), secondary structure hiding
the SD sequence in front of the second cistron prevents 30S
binding initiation, but the secondary structure can be resolved
by scanning 70S ribosomes when the secondary structure has a
comparable stability (1G ≥ −6 kcal/mol at 30◦C) (Qin et al.,
2016; Yamamoto et al., 2016). These molecular mechanisms
should be universal beyond exponential growth condition,
although further validation would be needed.

This two-level regulation mode involving transcription and
translation would balance the regulation in different time-scale.
As transcriptional control takes effects at least in half an hour,
it is suitable for sustained alteration in gene expression and in
pathway-scale. In contrast, rapid and fine adjustment can be
only performed at the translational level, which takes effects in
less than 1 min and occurs at the individual gene level (Zhong
et al., 2015). This rapid responsiveness would be also ideal
for real-time adjustment of the proteins needed in complexes
and pathways. Translational regulation largely contributes to
the proteome complexity and minimizes the energy waste
on synthesizing unnecessary proteins. Thus, the delicate and
differential translational regulation in bacteria maintains the
functionality and efficiency of both macromolecular complexes
and metabolic pathways, which is a desperate need of the survival
and competence of bacteria.
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FIGURE S1 | Physical and chemical features of quantified and unquantified
proteins in E. coli. Panels (A–D) are distributions of protein isoelectric point,
instability, protein length, and hydrophobicity. Instability tests a protein for stability,
which value above 40 means the protein has a shorter half-life. The
Kolmogorov–Smirnov test (KS-test) was used to test the distribution between
quantified and unquantified proteins. Significance different were found between
quantified and unquantified proteins indicated different physical–chemical
characterizations of them.

FIGURE S2 | CV within operons of measured data and randomized negative
control at RNA level.

FIGURE S3 | Length- and functional-dependence of operon stoichiometry control
compare to randomized data. (A–E) Distribution among “Complex,”
“Complex_random,” “Pathway,” and “Pathway_random” groups in BW25113.
(F–J) Distribution among “Complex,” “Complex_random,” “Pathway,”
“Pathway_random” groups in MG1655. In most cases, the CV in “Complex” and
“Pathway” groups were lower than corresponding “Complex_random” and
“Pathway_random” groups in both strains, indicating real robust signals but not
statistical artifacts in operons present in E. coli.

FIGURE S4 | Length dependence of the stoichiometry control at RNA and protein
levels. Same figure in MG1655 strain, comparable to the Figure 4A.

FIGURE S5 | Distribution of protein half-life CV in “Complex” and
“Pathway” operons.

FIGURE S6 | Pathways in Figure 5.

TABLE S1 | DIA MS/MS isolation windows table.

TABLE S2 | Spectral library used in HRM-MS analysis.

TABLE S3 | Protein abundances and properties used in this analysis.

TABLE S4 | P-value of Mann–Whitney U test between complex and pathway
operons shown in Figure 3C.

TABLE S5 | P-value of gene ontology (GO) overrepresentation of the operons with
lower and higher CV groups shown in Figures 3D,E.

SUPPLEMENTARY SCRIPTS | The python scripts used in this study.
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