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Introduction
Pancreatic ductal adenocarcinoma (PDAC) has 
the worst prognosis among common cancers.1,2 
The 5-year survival rate of PDAC is approxi-
mately 9%,1,2 despite the recent success with 
combination chemotherapies and targeted ther-
apy.3–6 The incidence, mortality, and disease 

burden of PDAC are all rapidly increasing 
worldwide;1,7,8 PDAC is predicted to become 
the second leading cause of cancer-related death 
in the United States by 2030.1,7
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Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis among 
common cancers. The genomic landscape of PDAC is defined by four mutational pathways: 
kirsten rat sarcoma virus (KRAS), cellular tumor antigen p53 (TP53), cyclin dependent kinase 
inhibitor 2A (CDKN2A), and SMAD family member 4 (SMAD4). However, there is a paucity of data 
on the molecular features associated with clinical outcomes after surgery or chemotherapy.
Methods: We performed comprehensive molecular characterization of tumor specimens 
from 83 patients with PDAC who received surgery, using whole-exome sequencing and 
ribonucleic acid sequencing on tumor and matched normal tissues derived from patients. We 
also systematically performed integrative analysis, combining genomic, transcriptomic, and 
clinical features to identify biomarkers and possible therapeutic targets.
Results: KRAS (75%), TP53 (67%), CDKN2A (12%), SMAD4 (20%), and ring finger protein 
43 (RNF43) (13%) were identified as significantly mutated genes. The tumor-specific 
transcriptome was classified into two clusters (tumor S1 and tumor S2), which resembled 
the Moffitt tumor classification. Tumor S1 displayed two distinct subclusters (S1-1 and S1-
2). The transcriptome of tumor S1-1 overlapped with the exocrine-like (Collisson)/ADEX 
(Bailey) subtype, while tumor S1-2 mostly consisted of the classical (Collisson)/progenitor 
(Bailey) subtype. In the analysis of combinatorial gene alterations, concomitant mutations of 
KRAS with low-density lipoprotein receptor related protein 1B (LRP1B) were associated with 
significantly worse disease-free survival after surgery (p = 0.034). One patient (1.2%) was an 
ultrahypermutant with microsatellite instability. We also identified high protein kinase C lota 
(PRKCI) expression as an overlapping, poor prognostic marker between our dataset and the 
TCGA dataset.
Conclusion: We identified potential prognostic biomarkers and therapeutic targets of patients 
with PDAC. Understanding these molecular aberrations that determine patient outcomes after 
surgery and chemotherapy has the potential to improve the treatment outcomes of PDAC 
patients.
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(TCGA) Research Network have provided the 
mutational landscape of PDAC.9,10 The genomic 
landscape of PDAC is defined by four mutational 
pathways that are essential drivers of carcinogen-
esis; kirsten rat sarcoma virus (KRAS), cellular 
tumor antigen p53 (TP53), cyclin dependent kinase 
inhibitor 2A (CDKN2A), and SMAD family mem-
ber 4 (SMAD4). Along with these four major driv-
ers, the additional frequently mutated genes 
including ring finger protein 43 (RNF43) and 
AT-rich interactive domain-containing protein 
1A (ARID1A) have been identified in the previ-
ous systematic genomic profiling of PDAC. The 
key mutation in PDAC is activated KRAS, which 
occurs early in carcinogenesis, whereas mutations 
in SMAD4 occur later and are thought to facili-
tate the progression of PDAC.9,10 Germline and 
somatic mutations in the DNA damage repair 
(DDR) genes, BRCA2, partner and localizer of 
BRCA2 (PALB2), and ATM, were observed in a 
minority of cases, representing a class of patients 
for whom platinum-based chemotherapy and/or 
poly(ADP-ribose) polymerase (PARP) inhibition 
may have therapeutic benefit.9,10 Several groups 
have described transcriptomic subtypes in PDAC, 
with mostly consistent findings concerning two 
major lineages that separate PDAC into the squa-
mous (alternatively named basal-like and quasi-
mesenchymal) and classical subtypes.11,12

However, there is a paucity of data on the molec-
ular features associated with clinical outcomes 
after curative surgery and previous studies do not 
provide any correlative information with respect 
to chemotherapy response. In the current study, 
we performed integrative genomics analyses of 
PDAC patients who received surgery and/or 
chemotherapy to facilitate identification of bio-
markers and possible therapeutic targets.

Materials and methods

Patient enrollment
Among the patients with PDAC who received 
curative surgery at Samsung Medical Center, 
Seoul, South Korea, between September 2008 
and June 2017, 83 patients with available samples 
were included in this study. The molecular analy-
sis included whole-exome sequencing and ribo-
nucleic acid (RNA) sequencing on tumor and 
matched normal tissues derived from patients. 
Clinical information including age, sex, primary 
tumor site, histologic type, stage, and treatment 
outcomes was extracted from hospital records. 

We also evaluated the outcomes of palliative 
chemotherapy. Computed tomography scan and/
or magnetic resonance imaging were performed 
every two cycles to evaluate the chemotherapy 
response according to RECIST 1.1 criteria.13

The collection of specimens and associated clini-
cal data used in this study was approved by the 
Institutional Review Board of Samsung Medical 
Center (IRB #2015-10-062 and #2018-03-162). 
All patients who participated in this study pro-
vided written informed consent prior to enroll-
ment and specimen collection. This study was 
performed in accordance with the principles of 
the Helsinki Declaration and the Korean Good 
Clinical Practice guidelines.

Tumor sample collection
Tumor tissues were obtained during surgery. If 
the tumor content was ⩾40% after pathological 
assessment, tumor deoxyribonucleic acid (DNA), 
and RNA were extracted from freshly acquired 
tissues using a QIAamp Mini Kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s 
instructions. For DNA, we used RNase A (cat. 
#19101; Qiagen). We determined the concentra-
tions and absorbance ratios (OD260/OD280 and 
OD260/OD230) with an ND1000 spectrophotom-
eter (NanoDrop Technologies, Thermo Fisher 
Scientific, MA, USA) and quantified DNA/RNA 
using a Qubit fluorometer (Life Technologies, 
CA, USA).

Whole-exome sequencing for tumor tissue
For the generation of standard exome capture 
libraries, we used the Agilent SureSelect Target 
Enrichment protocol for Illumina paired-end 
sequencing library, version B.3, June 2015 
(Agilent Technologies, Inc. Santa Clara, CA, 
USA) with 200 ng of input formaldehyde-fixed, 
paraffin-embedded DNA. In all cases, the 
SureSelect Human All Exon V5 probe set was 
employed. DNA quantity and quality were evalu-
ated using PicoGreen14 and NanoDrop.15 
Fragmentation of 1 ng of Inc., MA, USA‘’′ end, 
and Agilent adapters were ligated to the frag-
ments. Once ligation had been assessed, the 
adapter-ligated product was amplified by poly-
merase chain reaction (PCR). Subsequently, the 
final purified product was quantified using quan-
titative PCR (qPCR) under the qPCR 
Quantification Protocol Guide and assessed using 
the Caliper High Sensitivity DNA LabChip Kit 
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(PerkinElmer Inc., MA, USA). For exome cap-
ture, 250 ng of DNA library was mixed with 
hybridization buffers, blocking mixes, RNase 
block, and 5 µl of SureSelect All Exon capture 
library, according to the standard Agilent 
SureSelect Target Enrichment protocol. 
Hybridization to capture baits was performed at 
65°C using the heated lid option of a thermocy-
cler at 105°C for 24 h on a PCR machine. The 
captured DNA was amplified. The final purified 
product was quantified using qPCR according to 
the qPCR Quantification Protocol Guide and 
assessed using the TapeStation RNA ScreenTape 
(Agilent). Finally, we performed sequencing 
using the HiSeq™ 2500 platform (Illumina, San 
Diego, CA, USA).

Whole-exome sequencing data analysis
The resulting reads from whole-exome sequenc-
ing were mapped to human genome version 19 
(hg19) using the Burrows-Wheeler Aligner (ver-
sion 0.7.12-r1039) with the BWA-MEM algo-
rithm.16 SAMtools sorted the aligned sequences 
by genomic coordinates (v0.1.19).17 The sorted 
reads were subjected to the Genome Analysis 
Toolkit (GATK, v3.6 and v.4.13) for duplicate 
marking, indel realignment, and base recalibra-
tion.18 We performed MuTect2 from GATKv4.13 
to detect tumor somatic mutations using the rec-
alibrated BAM files from tumor and matched 
normal samples. After removing possible ger-
mline events (population allele fraction <2.5e−6 
in gnomAD), we annotated the called mutations 
using variant effect predictors (VEP).19 The 
resulting variant events were converted to MAF 
format, and then the variants with altered reads 
<4 were eliminated for further analysis in R. 
Using MSIsensor, we calculated the microsatel-
lite instability (MSI) score of each tumor by com-
paring the BAM file of the tumor sample with 
that of the matched normal sample. We called the 
tumor ‘MSI’ if the MSI score of the tumor was 
>3.5.20 Otherwise, the tumors were classified as 
‘microsatellite stable (MSS)’. The COSMIC v3 
single base substitution (SBS) mutational signa-
tures of each tumor sample were determined by 
deconstructSigs (v1.8.0, R package).21,22 
Significantly mutated genes were identified by 
MutSigCV (v1.41)23 on MATLAB. To estimate 
copy number alterations, CNVkit (v0.9.7.b1)24 
was used for copy segmentation, followed by 
GISTIC2.025 to calculate copy number altera-
tions for each gene with log2 threshold = 1.

RNA sequencing
Total RNA concentration was estimated using 
Quant-IT RiboGreen (Invitrogen, Waltham, 
MA, USA). To determine the DV200 (% of RNA 
fragments >200 bp) value, samples were run on 
the TapeStation RNA ScreenTape (Agilent). 
Overall, 100 ng of total RNA was subjected to 
sequencing library construction using a TruSeq 
RNA Access Library Prep Kit (Illumina) accord-
ing to the manufacturer’s protocol. Briefly, total 
RNA was first fragmented into small pieces using 
divalent cations under elevated temperature. The 
cleaved RNA fragments were copied into first-
strand complementary DNA (cDNA) using 
SuperScript II reverse transcriptase (Invitrogen, 
#18064014) and random primers. This was fol-
lowed by second-strand cDNA synthesis using 
DNA polymerase I, RNase H, and deoxyuridine 
5-triphosphate. The cDNA fragments were sub-
jected to an end-repair process, addition of a sin-
gle ‘A’ base, and subsequently, ligation of the 
adapters. Thereafter, the products were purified 
and enriched with PCR to create the cDNA 
library. All libraries were normalized, and six 
were pooled into a single hybridization/capture 
reaction. Pooled libraries were incubated with a 
cocktail of biotinylated oligos, corresponding to 
the coding regions of the genome. Targeted 
library molecules were captured via hybridized 
biotinylated oligo probes using streptavidin-con-
jugated beads. After two rounds of hybridization/
capture reactions, the enriched library molecules 
were subjected to a second round of PCR ampli-
fication. The captured libraries were quantified 
using a KAPA Library Quantification Kit for 
Illumina Sequencing platforms according to the 
qPCR Quantification Protocol Guide (KAPA 
BIOSYSTEMS, #KK4854) and assessed using 
the TapeStation D1000 ScreenTape (Agilent 
Technologies, # 5067-5582). Indexed libraries 
were subsequently submitted to an Illumina 
HiSeq 2500 platform (Illumina), and paired-end 
(2 × 100 bp) sequencing was performed by 
Macrogen Inc. (Seoul, South Korea).

Gene expression calling and analysis
RNA sequence reads were mapped on hg19 by 
STAR (v2.6.1d)26 and sorted according to 
genomic coordinates. Cufflinks (v2.2.1) was used 
to calculate gene expression levels in fragments 
per kilobase million (FPKM)27 using Ensembl 
gene annotation. The FPKM values were log2-
transformed for further analysis. Based on gene 
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expression profiling of tumor samples, to assign 
predefined tumor subtypes,11,28–30 nearest tem-
plate prediction was applied using gene markers 
of each subtype in R. To identify the differentially 
expressed genes in tumor samples compared with 
their matched normal samples, we performed a 
paired t test and selected genes with adjusted 
p-values < 0.05 and log2 fold-change >1. As a 
result, 5012 genes remained that we defined as 
‘tumor-specific’ genes. Among these, highly vari-
able genes were selected with a standard devia-
tion (SD) >1 for unsupervised hierarchical 
clustering (HC). To assume the expression scores 
of tumor microenvironment-associated cell mark-
ers, we used MCPcounter in R.31 Tumor purities 
based on gene expression profiles were calculated 
by R package ESTIMATE.32 Expression scores 
of gene sets were estimated using a single sample 
gene set enrichment analysis (ssGSEA) algorithm 
in GSVA (R package).33 GSEA was performed on 
GSEA-P.34 Gene ontology analysis was per-
formed on DAVID (https://david.ncifcrf.
gov/).35,36 Differentially expressed genes (log2 
fold change >1 and false discovery rate <0.05) 
among HC-based tumor groups were identified 
through DESeq2 in R.37

TCGA PAAD data download. Processed gene 
expression profiles (in FPKM) and clinical infor-
mation on pancreatic adenocarcinoma (PAAD) 
from the TCGA were downloaded through GDC 
using the R-TCGAbiolinks package.10,38

Survival analysis
All survival analysis was conducted on the R sur-
vival package. Disease-free survival (DFS) was 
defined as the time between surgery and disease 
recurrence while overall survival (OS) was defined 
as the time between surgery and death. We per-
formed univariate Cox regression for OS and DFS 
analysis using age, sex, tumor location, differentia-
tion, adjuvant chemotherapy and radiation ther-
apy, carbohydrate antigen 19-9 (CA19-9) level, 
and stage. Multivariate Cox regression survival 
analysis was also conducted with the risk factors 
(univariate Cox regression analysis p-val-
ues < 0.05). To identify tumor-specific gene 
expression-based poor prognostic factors, univari-
ate Cox regression OS analysis was applied to both 
the PDAC cohort and to the TCGA PAAD cohort 
using their gene expression profiles (summarized 
in log2-transformed FPKM). Genes with a hazard 
ratio (HR) > 1 and p-values < 0.05 were left and 
used for multivariate Cox regression analysis with 

risk clinical factors (i.e., tumor differentiation 
grade and stage). To reveal gene mutations associ-
ated with OS and DFS, we used the R package, 
maftools.39 The association between genomic 
alterations and responses to chemotherapy was 
calculated via Fisher’s exact test in R.

Results

Patient characteristics
The baseline characteristics of the study partici-
pants are summarized in Table 1. All 83 patients 
were pathologically confirmed as PDAC and 
received curative surgery. Fifty-two patients 
(62.7%) were male and the median age was 
65 years (range, 37–82). There were 26 patients 
(31.3%) with stage I, 36 (43.3%) with stage II, 
and 17 (20.5%) with stage III/IV at diagnosis. 
The most common tumor location was pancreas 
head (49.4%). CA19-9 levels were higher than 
the upper limit of normal (ULN, 37 U/ml) in 65 
patients (78.3%) at diagnosis.

We evaluated the clinicopathological factors that 
are associated DFS and OS. As expected, poorer 
differentiation and higher stage of cancer resulted 
in worse prognosis. In addition, a CA19-9 level 
higher than the ULN was significantly associated 
with short DFS in univariate analysis 
(Supplemental Tables 1 and 2).

Genomic landscape of 83 PDAC patients
To characterize genomic and transcriptomic pro-
files of the 83 PDAC patients, we obtained tumor 
and matched normal pancreas tissues with blood 
samples from each PDAC patient. The collected 
samples were subjected to whole-exome sequenc-
ing and RNA sequencing. Whole-exome sequenc-
ing data derived from tumor and blood samples 
were used to estimate somatic mutations and 
copy number variations.

In the PDAC cohort, the median number of 
somatic nonsilent coding mutations was 45 (7–
10028), which is comparable with previous find-
ings10 [Supplemental Figure 1(a) and (b)]. In 
addition, including four major drivers in PDAC, 
five significantly mutated genes (SMGs) were 
identified; KRAS (75%, q = 4.19e−12), TP53 
(67%, q = 1.05e−11), CDKN2A (12%, 
q = 9.07e−12), SMAD4 (20%, q = 9.07e−12), 
and RNF43 (13%, q = 1.01e−06), as was also pre-
viously reported (Figure 1).10
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Activating KRAS mutations are illustrated in 
Supplemental Figure 2(a). Multiple oncogenic 
KRAS alleles were identified, including G12D 
(n = 23, 27.7%), followed by G12V (n = 22, 
26.5%) and G12R (n = 10, 12.0%), as well as 
another hotspot at codon 12, and 61 mutant 
alleles at a lower prevalence. KRAS mutations 
affecting two separate codons were found in one 
patient (KRASG12D and KRASD92V). Patients who 
had KRAS mutations showed no significant dif-
ference in clinical outcomes, in terms of DFS and 
response to palliative chemotherapy, compared 
with patients with KRAS wild-type tumors. 
However, in the analysis of combinatorial gene 
alterations, concomitant mutations of KRAS with 
LRP1B, which is known as a functional tumor 
suppressor gene, were associated with signifi-
cantly worse DFS (p = 0.034) [Supplemental 
Figure 2(b)].

Germline and/or somatic mutations in the DDR 
system were found in nine patients (10.8%), 
showing mutations in serine/threonine kinase 11 
(STK11) (4.8%), ATM (3.6%), MutL homolog 
1 (MLH1) (3.6%), BRCA2 (2.4%), BRCA1 
(1.2%), and PALB1 (1.2%). It should be noted 
that one tumor (#74) was ultrahypermutant with 
MSI. The mutational signature of this sample 
showed that 72% of mutations were attributed to 
a DNA mismatch repair (dMMR)–MSI mecha-
nism with a high frequency of C–T transition 
[Figure 1 and Supplemental Figure 3(a)]. When 
we examined its gene expression profiles using 
RNA sequencing data, this MSI tumor showed 
high expression scores for immune cell markers, 
particularly in cytotoxic lymphocytes, natural 
killer (NK) cells, and monocytic lineage cells. 
Overexpression of PDCD1 and CD274 was also 
detected [Supplemental Figure 3(b) and (c)].

Tumor-specific and normal tissue 
transcriptomic classification of PDAC
Because molecular characterization of PDAC has 
been limited by the high level of stromal cell 
involvement, we conducted tumor-specific and 
normal tissue transcriptomic analysis. Through 
differentially expressed gene (DEG) analysis 
between tumors and their matched normal tis-
sues, we identified 5012 and 413 tumor-specific 
and normal genes, respectively (absolute log2-fold 
change >1, adjusted paired t test p-value < 0.05). 
According to previous studies, PDACs can be 
classified into several transcriptomic sub-
types.11,28,29 To identify tumor-specific and 

Table 1. Baseline characteristics.

Characteristics Total (N = 83)

Age, years

 Median 65

 Range 37–82

Sex, no. (%)

 Male 52 (62.7)

 Female 31 (37.3)

Pancreas tumor location, no. (%)

 Head 41 (49.4)

 Body 24 (28.9)

 Tail 18 (21.7)

Differentiation, no. (%)

 Well 6 (7.2)

 Well to moderately 1 (1.2)

 Moderately 49 (59.3)

 Moderately to poorly 5 (6.0)

 Poorly 22 (26.5)

Stage at diagnosis, no. (%)

 IA 8 (9.6)

 IB 18 (21.7)

 IIA 5 (6.0)

 IIB 31 (37.3)

 III 15 (18.1)

 IV 2 (2.4)

Level of CA19-9 at diagnosis, no. (%)

 Normal 18 (21.7)

 ULN to ⩽59 × ULN 60 (72.3)

 >59 × ULN 5 (6.0)

Adjuvant treatment (N = 42), no. (%)

 Chemoradiation 31 (73.8)

 Chemotherapy 10 (12.0)

 Radiation 1 (2.4)

Palliative first-line chemotherapy (N = 29), no. (%)

 Gemcitabine monotherapy 20 (70.0)

 Gemcitabine-based combination 5 (17.2)

 FOLFIRINOX 3 (10.3)

 TS-1/cisplatin 1 (1.2)

CA19-9, carbohydrate antigen 19-9; FOLFIRINOX, folinic acid/fluorouracil/
irinotecan/oxaliplatin; TS-1, tegafur/gimeracil/oteracil; ULN, upper limit of normal.
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normal subgroups in this cohort and compare 
them with the previously identified subtypes, we 
performed unsupervised HC using highly variable 
tumor-specific and normal genes (standard  
deviation > 1) [Figure 2(a) and Supplemental 
Figure 4(a)]. Tumor-specific gene expressing pro-
filing was classified into two clusters (tumor S1 
and tumor S2), which resembled the Moffitt 
tumor classification, and were also generated by 
tumor-specific genes [Figure 2(a) and (b)]. Tumor 
S1 displayed two distinct subclusters (S1-1 and 
S1-2). The transcriptome of tumor S1-1 

overlapped with the exocrine-like (Collisson)/
ADEX (Bailey) subtype while tumor S1-2 mostly 
consisted of the classical (Collisson)/progenitor 
(Bailey) subtype. On the other hand, 88% of 
basal-like, 96% of quasi-mesenchymal, and 92% 
of squamous subtypes were clustered as tumor S2 
[Figure 2(b)]. We could not find any survival dif-
ferences between the tumor-specific HC-based 
PDAC groups, although tumors with poor differ-
entiation were significantly frequent in tumor S2 
(p = 0.36, OR = 2.99, 19/27 poorly differentiated 
versus 23/56 well-differentiated and moderately 

Figure 1. Genomic and molecular characteristics of 83 PDAC patients. From top to bottom, shown are the 
number of mutations per tumor detected by WES (the y-axis indicates the number of mutations in log10 scale), 
mutational signatures of the COSMIC v3 SBS, treated chemotherapy information and responses to the therapy, 
clinicopathological features, MSI status, transcriptome subtypes, and genomic alterations in major oncogenic 
pathways of PDAC. SMGs are indicated by red asterisks.
APOBEC, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; dMMR–MSI, deficient mismatch repair–
microsatellite instability; DSBR, double-strand break repair; gemcitabine-combi, gemcitabine-based combination 
treatment; germline-NA, not available for MSI status due to lack of normal WES data; MD, moderately differentiated; 
MSI, microsatellite instable; MSS, microsatellite stable; NE, not evaluable; PDAC, pancreatic ductal adenocarcinoma; PD, 
progressive disease; PD, poorly differentiated; PR, partial response; S-1/CDDP, TS-1/cisplatin treatment; SBS, single base 
substitution; SD, stable disease; SMGs, significantly mutated genes; WD, well differentiated; WES, whole-exome sequencing.
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differentiated) [Figure 2(a) and Supplemental 
Figure 4(c)]. In addition, we investigated the asso-
ciation between genomic alterations and tumor 
groups. We found that TP53 mutations occurred 
with significantly greater frequency in tumor S1-1 
than in other groups (p = 0.0018, OR = 13.4) 
[Figure 2(c)].

To dissect the cellular composition of the tumor 
microenvironment (TME) according to HC-based 
tumor group, we applied ESTIMATE and 
MCPcounter algorithms [Figure 3(d) and (e)]. 

With lower tumor purities, higher scores for 
immune cell and endothelial markers were found 
in tumor S1-1 than in other types. By comparison, 
markers for fibroblasts were upregulated in tumor 
S2, which showed high mesenchymal traits. 
ESTIMATE and MCPcounter results demon-
strated the low infiltration levels of TME in tumor 
S1-2. Collectively, we identified three clusters 
using tumor-specific genes: tumor S1-1 was char-
acterized by high stromal/immune cell infiltration 
and high frequency of TP53 mutations; tumor 
S1-2 displayed high tumor purities, resembling the 

Figure 2. Tumor-specific transcriptomic subgroups in PDAC. (a) Unsupervised HC of 83 PDAC tumor tissues based on gene 
expression profiling; 399 tumor-specific genes with SD > 1 were used in this clustering. Bars at the top of a heat map represent 
HC-based tumor groups (top) and tumor differentiation grade (bottom). (b) Pie chart showing the number of samples in HC-based 
PDAC groups (inner circle), Moffitt subtypes (second inner ring), Collisson subtypes (third inner ring), and Bailey subtypes (outer 
ring). (c) Alteration frequency of each HC-based tumor group for genes altered in >4 PDAC patients (p-value: Fisher’s exact test). 
(d) Z-normalized MCPcounter scores among HC-based tumor groups. Z-normalization was performed across the tumor samples 
for each cell marker in the tumor microenvironment. Statistically significant differences in scores among the tumor groups are 
indicated by red asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, Student’s t test). (e) Immune scores (left panel), stromal scores (middle 
panel), and tumor purities (right panel) in HC-based tumor groups (p-value: Student’s t test). ESTIMATE calculated the scores and 
tumor purities based on gene expression profiling.
HC, hierarchical clustering; MD, moderately differentiated; PDAC, pancreatic ductal adenocarcinoma; PD, poorly differentiated; SD, standard 
deviation; WD, well differentiated.
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conventional classical subtype, and; tumor S2, 
which is similar to the basal-like/quasi-mesenchy-
mal/squamous subtype, showed increased expres-
sion levels for fibroblast markers and enrichment 
of tumors with poor differentiation.

Unsupervised HC with normal genes also revealed 
two clusters depending on the expression levels of 
overall normal genes [Supplemental Figure 4(a)]. 
The first cluster (normal S1) showed an absence 
of expression of normal genes, but tumors belong-
ing to the other cluster (normal S2) expressed 
normal genes. Gene ontology analysis revealed 
that expressed normal genes in normal S2 were 
involved in proteolysis and digestion [Supplemental 

Figure 4(b)]. In addition, 13 of 16 tumor S1-1 
samples were classified as normal S2, consistent 
with TME analysis. Tumor S1-1 showed transcrip-
tomic similarity with the exocrine-like or ADEX 
subtype; it is controversial whether the exocrine-
like/ADEX subtype is a result of normal tissue con-
tamination or is a bona fide tumor subtype. Although 
tumor S1-1 had low tumor cellularity, there were 
PDAC tumor-specific genes present such as 
PROM1 (a well-known cancer stem cell marker40), 
the expression levels of which were significantly 
upregulated in tumor S1-1 (Supplemental Table 
3). This suggests that tumor S1-1 is one of the 
PDAC tumor types rather than the result of simple 
contamination by normal tissue.

Figure 3. Identification of PRKCI as a poor survival predictor in PDAC. (a) Workflow for identifying poor prognostic markers in both 
SMC (Samsung Medical Center, this study cohort) and the TCGA PAAD cohort. (b–d) Kaplan–Meier curves showing the overall (b) and 
disease-free (c) survival differences between patients with relatively high and relatively low PRKCI expression levels in the SMC (b, 
c) and the TCGA (d) dataset. (e, f) PRKCI expression levels in tumor and normal tissues in the SMC (e) (p-value, paired t test) and the 
TCGA (f) dataset (p-value, unpaired t test).
DEG, differentially expressed genes; FC, log2-fold change; FDR, false discovery rate; HZ, hazard ratio; OS, overall survival; PDAC, pancreatic ductal 
adenocarcinoma; PRKC1, protein kinase C iota type.
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Identification of poor prognosis-related genes
As PDAC remains one of the most fatal malig-
nancies and displays low tumor purity, the identi-
fication of tumor-specific prognostic markers and 
therapeutic targets is important for PDAC patient 
treatment. To discover tumor-specific genes that 
predict prognosis of PDAC, we performed Cox 
regression survival analysis using gene expression 
levels [Figure 3(a)]. Univariate Cox regression 
analysis with OS was applied to the 5012 tumor-
specific genes. This analysis revealed 164 genes 
that met the criteria (HR > 1, p-value < 0.05). Of 
these 164 genes, 82 were identified as worse prog-
nosis-related genes via multivariate Cox regres-
sion analysis with the prognostic factors (tumor 
stage and differentiation). The same procedure 
was performed with TCGA PAAD data to iden-
tify the prognostic genes that can be validated in 
an independent dataset. As a result, only PRKCI 
overlapped with the TCGA PAAD dataset. 
PDAC patients with higher expression levels of 
PRKCI showed worse OS and worse PFS [Figure 
3(b)–(d)]. A significant upregulation of PRKCI in 
tumors compared with normal controls was con-
firmed [Figure 3(e) and (f)].

Response to palliative first-line chemotherapy
Among 83 patients, 29 received palliative first-line 
chemotherapy due to disease progression [Figure 
4(a)]. Twenty patients were treated with gemcit-
abine monotherapy and five were treated with 
gemcitabine-based combination therapy (2, gem-
citabine/nab-paclitaxel; 2, gemcitabine/erlotinib; 
1, gemcitabine/capecitabine). FOLFIRINOX 
treatment was performed for another three 
patients. As a result, one, 16, and 10 patients 
achieved partial response (PR), stable disease 
(SD), and progressive disease (PD), respectively, 
and two patients were not evaluable [Figure 4(b)]. 
The overall clinical benefit ratio (PR + SD) was 
58.6% [95% confidence interval (CI), 3.3–30.7].

When we examined genomic correlates of clinical 
benefit of chemotherapy, none of the genomic 
alterations of core pathways were associated with 
clinical benefit of chemotherapy [Figure 4(b)]. 
Therefore, we conducted GSEA to explore 
whether there are distinct molecular gene sets 
among patients with clinical benefit of chemo-
therapy. We found ATP-binding cassette (ABC) 
transporter-associated genes were upregulated in 
patients who did not have clinical benefit of 
chemotherapy [Figure 4(c) and (d)].

Discussion
Using whole-exome and transcriptome sequenc-
ing, we performed integrative molecular charac-
terization of 83 patients with PDAC receiving 
surgery and/or chemotherapy. The genomic land-
scape of PDAC, including four major driving 
mutations (KRAS, TP53, CDKN2A, and 
SMAD4), was comparable with the previous 
APGI and TCGA datasets9,10 and we also found 
that a substantial proportion of patients harbored 
germline and somatic mutations in their DDR 
systems. In addition, we identified factors that 
affect clinical outcomes, such as concomitant 
mutational status of KRAS and LRP1B, the 
expression level of PRKCI, and the overexpres-
sion of ABC transporter proteins.

KRAS, which plays an essential role in the signal-
ing pathways that regulate cell growth and differ-
entiation, is the most frequently mutated oncogene 
in PDAC. However, the association between 
KRAS mutational status and clinical outcome 
after surgery has not been clearly established. One 
recent study showed that KRAS G12D-mutant 
tumors were associated with worse DFS after sur-
gery, compared with KRAS wild-type tumors.41 
That study also showed that multiple alterations 
(⩾3) among the four major driver mutations 
(KRAS, CDKN2A, SMAD4, and TP53) are asso-
ciated with worse DFS. Our study did not find a 
significant association between KRAS mutational 
status and clinical outcomes after surgery. Our 
study population had a relatively lower proportion 
of head cancer (49% versus 72~79%) and a rela-
tively higher proportion of T1-2 disease (81.9% 
versus 8–26%). The previous study also included a 
majority of white ethnicity and included only 21% 
of Asian populations. It should be noted that our 
study included a significantly higher proportion of 
patients who received adjuvant concurrent chem-
oradiotherapy according to the institutional proto-
col (73.8% versus 22–40%), even though the 
proportion of node-positive disease is similar or 
slightly lower (58.8 % versus 67–77%). These dif-
ferences in baseline tumor characteristics and 
adjuvant treatment strategy may contribute to the 
discordance of the association between KRAS 
mutational status and disease-free survival after 
surgery.

Interestingly, we found that concomitant muta-
tion of KRAS and LRP1B is associated with worse 
PFS after surgery. LRP1B encodes an endocytic 
low-density lipoprotein (LDL)-family receptor 
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and the receptor binds to multiple extracellular 
ligands, including fibrinogen and apolipoprotein 
(apoE)-carrying lipoproteins.42 LRP1B is known 
as a functional tumor suppressor gene; inactivat-
ing mutations of LRP1B are frequently observed 
in diverse solid cancers, including melanoma, lung 
cancer, and gastric cancer.43–45 Owing to its large 
coding sequence (16 kbp), LRP1B is often missed 
as significantly mutated on gene analysis, whereas 
its mutation could still have a functional conse-
quence in tumorigenesis and heterogeneity.46 Our 
study identified nine patients (10.8%) harboring 

LRP1B mutations and found that LRP1B was sig-
nificantly downregulated in tumor tissues, com-
pared with normal tissues. We also conducted 
GSEA and found that proliferation/cell cycle-
associated gene sets were enriched in LRP1B and 
KRAS mutant samples, compared with tumors with 
only KRAS mutations [Supplemental Figure 2(c)]. 
Interestingly, a recent report found that down-
regulation of LRP1B in colon cancer promoted 
the growth and migration of cancer cells via 
aberrant activation of beta-catenin/T-cell factor 
signaling.47 These findings might indicate that 

Figure 4. Genomic and molecular correlates of clinical benefit of chemotherapy. (a) Swimmer plots illustrating overall survival 
from surgery for patients whose clinical response to palliative first-line chemotherapy was available (top panel) and patients who 
did not receive palliative first-line chemotherapy (bottom panel). (b) Genomic and molecular characteristics of 29 PDAC patients 
who received chemotherapy. From top to bottom, progression-free survival in months, tumor mutation burden (log10 scale), 
mutational signatures of the COSMIC v3 SBS, treated chemotherapy information and responses to the therapy, clinicopathological 
features, and genomic alterations in major oncogenic pathways of PDAC. (c) GSEA plot showing the upregulation of the KEGG_ABC_
TRANSPORTERS gene set in tumors derived from patients who achieved PD to chemotherapy compared with patients with clinical 
benefit of chemotherapy. (d) ssGSEA scores of the KEGG_ABC_TRANSPORTERS gene set were significantly higher in PD than in PR/
SD patients (p-value, Wilcoxon rank sum test).
APOBEC, apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; dMMR–MSI, deficient mismatch repair–microsatellite instability; DSBR, 
double-strand break repair; gemcitabine-combi, gemcitabine-based combination treatment; GSEA, gene set enrichment analysis; MD, moderately 
differentiated; NE, not evaluable; PDAC, pancreatic ductal adenocarcinoma; PD, progressive disease; PD, poorly differentiated; PR, partial response; 
S-1/CDDP, TS-1/cisplatin treatment; SBS, single base substitution; SD, stable disease; ssGSEA, single sample GSEA; WD, well differentiated.
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LRP1B loss of function may accelerates tumor cell 
proliferation in RAS-activated circumstances and 
promotes metastasis of tumor cells.

Our study also showed that ~10% of tumor sam-
ples harbored germline or somatic mutations in at 
least one of the DDR genes, including STK11 
(4.8%), ATM (3.6%), MLH1 (3.6%), BRCA2 
(2.4%), BRCA1 (1.2%), and PALB1 (1.2%), all 
of which are potential predictive biomarkers sen-
sitive to PARP inhibition.48 Of note, one patient 
was ultrahypermutated (267 mutations/Mb) and 
showed high MSI. For PDAC, the frequency of 
ultrahypermutation and high MSI is not well 
known and varies considerably between studies. 
A recent systematic review reported that high 
MSI in PDAC is rare but exists in 1–2% of cases. 
That study also showed that high MSI in PDAC 
is strongly associated with medullary and muci-
nous/colloid histology and is usually KRAS-TP53 
wild type.49,50 In the context of precision oncol-
ogy, our study also confirmed that MSI status 
should be determined as part of a first-line analy-
sis in PDAC with typical histology, despite its low 
prevalence, for all potential therapeutics, such as 
anti-programmed cell death protein 1 (PD1) 
immunotherapies.

Molecular subtypes guide preclinical and clinical 
therapeutic development and treatment in many 
cancer types. In pancreatic cancer, several tran-
scriptomic subtypes have been described.11,28,29 
In our transcriptomic analysis, tumors were clas-
sified into two clusters (S1 and S2), with tumor 
S1 displaying two distinct subclusters (S1-1 and 
S1-2). Our transcriptomic subtypes of S1 and S2 
resembled the Moffitt tumor subtypes. Subclusters 
of tumor S1-1 overlapped with the exocrine-like 
subtype described by Collisson et  al.,12 and the 
ADEX subtype described by Bailey et al., 11while 
tumor S1-2 mostly consisted of the classical sub-
type of Collisson et al.,12 and the progenitor sub-
type of Bailey et al.11 On the other hand, 88% of 
the basal-like, 96% of the quasi-mesenchymal, 
and 92% of the squamous subtypes were clus-
tered as tumor S2. It was previously shown that 
the squamous subtype was significantly associ-
ated with poorer prognosis than the ADEX, pro-
genitor, and immunogenic subtypes. However, 
the present study could not identify survival dif-
ferences between the tumor-specific, HC-based 
PDAC groups. Our study included patients who 
received surgical resection plus mainly adjuvant 
chemoradiotherapy and analyzed DFS after sur-
gery. In contrast, the previous study analyzed the 

OS according to the data from the Central Cancer 
Registry and treating clinicians.11 The difference 
in the survival endpoint may cause the discord-
ance between the current study and the previous 
report regarding the association between molecu-
lar subtypes and the survival outcomes between 
the current study and the previous study. In the 
context of precision medicine, more research is 
needed on the molecular subtypes of PDAC for 
optimization of current therapeutics, and the dis-
covery of novel therapeutic targets.

In this study, we identified high PRKCI expres-
sion levels as an overlapping, poor prognostic 
marker between our dataset and the TCGA data-
set. PRKCI (encoding for PKCι) is an oncogene 
that is frequently overexpressed and associated 
with poor outcomes in lung cancers.51,52 In 
KRAS-mutant lung adenocarcinoma, PKCι 
establishes and maintains an aggressive stem-like, 
tumor-initiating cell phenotype by activating a 
PKCι–ELF3–NOTCH3 signaling axis that drives 
transformed growth and tumor initiation.53 
Together with previous lung adenocarcinoma 
studies, our study supports the notion that phar-
macologic blockade of PKCι signaling can be a 
potential therapeutic option in KRAS-mutant 
PDAC.

Overexpression of ABC transporter proteins is 
responsible for drug efflux, which attenuates the 
efficacy of chemotherapy by protecting tumor 
cells against chemotherapeutic agents.54,55 In the 
precision oncology era, cytotoxic chemotherapy, 
such as gemcitabine, gemcitabine/nab-paclitaxel, 
and FOLFIRINOX, is still the mainstay of treat-
ment for metastatic pancreatic cancer.4,5 As a 
result, our results highlight that ABC transporters 
could be important therapeutic targets for over-
coming cytotoxic chemotherapy resistance in 
PDAC patients.

Conclusions
We performed integrative genomics analyses of 
PDAC patients who received surgery and/or 
chemotherapy, and reconfirmed genomic land-
scapes, major driver mutations, and DDR path-
way mutations associated with PDAC. We also 
discovered potential prognostic biomarkers and 
therapeutic targets, such as concomitant muta-
tions of KRAS and LRP1B, the expression level 
of PRKCI, and the overexpression of ABC trans-
porter proteins. In the future, understanding the 
molecular aberrations that determine patient 
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outcomes after surgery and chemotherapy has the 
potential to improve treatment outcomes of 
PDAC patients.
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