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Abstract

Background-: Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC
metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter
cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis
may help in identifying new candidate molecules for HCC-targeted therapy.

Methods-: Hep3B (a nonmetastatic HCC cell line) and MHCC97H (a highly metastatic HCC cell line)
were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were
profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and
functional clustering analyses were performed to determine the activities of the identified proteins and the
signaling pathways closely related to HCC metastasis.

Results-: In both cell lines, a total of 247 phosphotyrosine (pTyr) proteins containing 281 pTyr sites were
identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not
been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in
cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions
were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such
as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K
and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical
regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the
pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a
nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data
confirmed that FER might play a critical role in the invasion and metastasis of HCC.

Conclusion-: The identification of pTyr proteins and signaling pathways associated with HCC metastasis
could provide useful information for selecting new molecular intervention targets. Moreover, FER might
serve as a novel drug target in future HCC therapy.
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Background

Hepatocellular carcinoma (HCC) is one of the most
malignant solid tumors and ranks fourth in terms of mor-
tality and fifth in terms of morbidity among various
human cancers worldwide [1]. The short-term prognosis
of this condition has dramatically improved due to early
diagnosis and surgical resection, transplantation, and
local ablation therapy. However, long-term survival is still
poor due to frequent intrahepatic metastasis and distant
metastasis. Therefore, determining the mechanism of
HCC metastasis is a major challenge and impeding the
progression of this tumor at an early stage is essential for
improving the prognosis of HCC.

Protein tyrosine phosphorylation is an important post-
translational modification that plays a critical role in sig-
nal transduction associated with cell proliferation,
survival, apoptosis, mobility, adhesion, etc. Tyrosine-
phosphorylated proteins (also known as phosphotyrosine
proteins, pTyr) include a wide range of signal molecules,
such as receptor tyrosine kinases, adapter proteins, and
scaffold proteins, which are known to be involved in the
cancer metastatic process [2-7]. Aberrant expression and
activity of pTyr proteins in the cell signaling pathway have
been reported in various human cancers [5,6,8-11]. In
recent years, several kinase inhibitors have been intro-
duced for molecular target therapy in clinical oncology.
These act by interfering with the activity of specific signal-
ing pathways [9,10,12]. Therefore, exploring and analyz-
ing the expression profiles of pTyr proteins in HCC cells
by a high-throughput method would be extremely useful
for obtaining insights into the mechanisms of HCC
metastasis and recurrence. Such studies would also help in
identifying new drug targets for HCC therapy.

In the post-genome era, proteomics techniques based on
LC-MS/MS enable us to study the complete range of signal
proteins present in a set of cells or tissues under specific
conditions [13-15]. In this study, pTyr proteins were iden-
tified, and a comparative study was performed between a
nonmetastatic HCC cell line (Hep3B) and an HCC cell
line with high metastatic potential (MHCC97H). Several
biological processes and signaling pathways were found
to be strongly correlated with HCC metastasis. Among the
differentially expressed pTyr proteins, FER, a nonreceptor
tyrosine kinase, appears to be an important protein
involved in HCC metastasis.

Methods
Cell culture
The Hep3B cell line (nonmetastatic human HCC cells)
was obtained from Cornell University, USA, and grown in
MEM medium supplemented with 10% fetal bovine
serum (PAA) in a 5.0% CO, incubator at 37°C. The
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MHCC97H cell line (highly metastatic human HCC cells)
was established in the Liver Cancer Institute, Zhongshan
Hospital, Fudan University [16]. These cells were sus-
tained in DMEM medium supplemented with 10% fetal
bovine serum (PAA) in a 5.0% CO, incubator at 37°C.
The two cell lines have an integrated HBV DNA genome
and exhibit positive alpha-fetoprotein (AFP) expression.
These cell lines are commonly used as model cell lines in
HCC studies [17-20].

Immunoprecipitation of pTyr proteins

Cells that had grown to approximately 90% confluency
were subcultured. The subcultured cells were grown to
approximately 80% confluency and starved in serum-free
medium for 12 h to reduce the phosphorylation back-
ground resulting from the culture conditions. The cells
were placed in a 10-cm dish, washed twice with chilled
PBS, and lysed by incubation in 1 ml modified RIPA lysis
buffer (150 mM NaCl, 50 mM Tris-HCI (pH 7.4), 1% NP-
40, 0.25% sodium deoxycholate, and 1 mM EDTA supple-
mented with 1 mM sodium orthovanadate, 10 mM
sodium fluoride, 10 mM glycerophosphate, and 5 mM
sodium pyrophosphate) for 30 min on ice. The cell lysate
was cleared by centrifugation at 15,000 rpm for 30 min at
4°C, and the protein concentration was determined by
the DC Protein Assay kit (Bio-Rad).

Anti-pTyr specific immuoprecipitation was performed
with two different anti-pTyr antibodies. The phosphotyro-
sine monoclonal antibody pTyr-100 (Cell Signaling Tech-
nology) and/or 4G10 (Upstate) was noncovalently
conjugated to Protein A-agarose (Sigma) at a concentra-
tion of 1 mg/ml beads by overnight incubation at 4°C
with gentle shaking. After coupling, the antibody resin
was washed twice with PBS and then three times with
modified RIPA buffer (5 bead volumes of buffer for each
wash). To confirm that efficient coupling had been
achieved, an aliquot of the antibody resin was boiled in
SDS-PAGE sample buffer for 5 min, and the yield of the
released antibody was determined by running it along
side a purified antibody standard on SDS-PAGE. The gels
were stained with Coomassie blue. The immobilized anti-
body (400 pl, 400 pg) was added in the form of a 1:1
slurry in modified RIPA buffer to 50 mg cell lysate (1 mg/
ml) that had been precleared with 800 pl Protein A-agar-
ose at 4°C for 6 h. The mixture was incubated overnight
at 4°C with gentle shaking. The immunocomplex beads
were then harvested by centrifugation at 3,000 rpm and
4°C for 5 min and washed three times with 10 bead vol-
umes of modified RIPA buffer. Finally, pTyr-containing
proteins were eluted three times with 500 pl of elution
buffer (8 M urea, 50 mM NH,HCO,, and 20 mM ethyl-
amine) for 5 min each at 96°C, and the eluates were com-
bined.
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Desalting and tryptic digestion of pTyr-containing proteins
The pTyr-containing proteins were reduced and alkylated
by the ProteoPrep™ Reduction and Alkylation Kit (Sigma)
according to the manufacturer's instructions. Briefly, the
protein sample was reduced by incubation with 5 mM rib-
utylphosphine (TBP) at room temperature for 30 min.
The protein solution was then alkylated by adding 15 mM
iodoacetamide and incubating in the dark for 1 h at room
temperature. The excess iodoacetamide in the reaction
mixture was quenched by additional incubation with 5
mM TBP for 15 min at room temperature. Subsequently,
the protein mixture was desalted on a PD-10 desalting col-
umn, as recommended by the manufacturer (GE Health-
care), and the buffer was exchanged with a 50 mM
NH,HCOj solution. Trypsin (modified sequencing grade;
Promega, Madison, WI) digestion was performed ata 1:50
trypsin-to-protein ratio (w/w) for 16 h at 37°C. The tryp-
tic peptides were then dried in a Speed Vac.

Immobilized metal affinity chromatography (IMAC)
Phosphopeptides from trypic digestion were further
enriched with the Magnetic Phosphopeptide Enrichment
Kit (Clontech), according to the manufacturer's instruc-
tions but with a slight modification. First, the tryptic pep-
tides were reconstituted in an appropriate volume of the
binding/washing buffer and incubated with the washed
and equilibrated beads for 30 min at room temperature by
gentle shaking. The supernatant was then removed from
the beads by a magnetic separator. The beads containing
the phosphopeptides were washed three times with the
wash buffer. Finally, the phosphopeptides were eluted
three times using a total of 100 pl of elution buffer. The
eluates were then filtered through an 0.22-um filter and
dried in a Speed Vac.

Nanoflow LC-MS/MS protein identification and database
searches

The pTyr peptides enriched by IMAC were analyzed using
an LTQ mass spectrometer (Thermo Electron Corp., San
Jose, CA) equipped with a nanoelectrospray ion source.
The m/z ratios of the peptides and their fragmented ions
were recorded by the mass spectrometer. The peak lists for
the MS2 and MS3 spectra were generated from the raw
data by Bioworks version 3.3 (Thermo Electron) using the
following parameters: the mass range was 600-3500,
intensity threshold was 1000, and minimum ion count
was 10. The generated peak lists were searched by the
Sequent program (included in Bioworks) against the non-
redundant human protein database of the human Inter-
national Protein Index (IPI) (ipi. HUMAN.3.3.fasta). The
MS/MS spectra were searched with a precursor ion mass
tolerance of 2 Da and fragment ion mass tolerance of 1
Da. Full tryptic specificity was applied, two missed cleav-
ages were allowed, and static modification was set for the
alkylation of Cys with iodoacetamide (+57). To search the
MS/MS data, dynamic modifications were set for oxidized
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Met (+16) and phosphorylated Ser, Thr, and Tyr (+80).
Neutral losses of water and ammonia from the b and y
ions were considered in the correlation analysis. To iden-
tify phosphopeptides on the basis of the MS/MS or MS/
MS/MS spectra, the sequences must meet the following fil-
ter criteria: cross-correlation value (Xcorr) > 1.5, 2.0, and
2.5 for singly, doubly, and triply charged ions, respec-
tively; uniqueness scores of matches (deltaCn) > 0.1; and
peptide mass tolerance of 5 ppm.

Bioinformatics analysis of pTyr proteins

For functional annotation and protein-protein interaction
(PPI) analysis, the identified pTyr proteins were submit-
ted to the Human Protein Reference Database (HPRD).
This database contains extensive information on human
proteins, including domain architecture, protein func-
tions, PPIs, posttranslational modifications (PTMs),
enzyme-substrate relationships, subcellular localization,
tissue expression, and disease association of genes [21-
23]. This allows the identified pTyr proteins to be classi-
fied into subclasses based on their biological processes
and molecular functions. The expression of these proteins
was also evaluated under normal and liver cancer condi-
tions using the records in the HPRD. Based on the PPI
information available in the HPRD, a PPI network was
generated using the Cytoscape version 2.6.1 software
[24,25]. This is an open-source bioinformatics software
platform for visualizing molecular interaction networks
and biological pathways. It allows these networks to be
integrated with annotations, gene expression profiles, and
other state data. Cytoscape contains some web plug-ins
for downloading/linking a network from/to several data-
bases such as pathwayCommons, IntAct, and NCBI Entrez
Gene. Moreover, this software contains several plug-ins
that allow computational analyses and functional enrich-
ment, such as clusterMaker, BubbleRouter, and BinGO. In
this study, functional clustering and signaling pathway
analyses of proteins were carried out by running the
BinGO, pathwayCommons, and BubbleRouter programs
in Cytoscape. BinGO is a tool for determining the Gene
Ontology (GO) categories that are statistically overrepre-
sented in a set of genes or a subgraph of a biological net-
work [26]. It returns the correct p-value after using two
different methods to account for multiple testing. In this
study, the result was evaluated by the p-value from the
Hypergeometric test, and the correct p-value was calcu-
lated using the Benjamini & Hochberg False Discovery
Rate (FDR) correction.

RNAi and transfection

A 21-nt long double-stranded siRNA for FER was designed
on the basis of reported data. It was derived from the
human FER cDNA (accession no. J03358) 5'-AAA GAA
ATT TAT GGC CCT GAG-3' (nt 84-104) [27] and was syn-
thesized by Jikai Biotechnical Company (Shanghai,
China). The selected siRNA sequences were submitted for
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a BLAST search against the human genome sequence to
confirm the specificity of the siRNA. An unrelated silenc-
ing sequence was selected and synthesized as a negative
control.

For siRNA transfection, 3 x 105 MHCC97H cells were
seeded in a 6-well plate 1 day prior to transfection. Trans-
fection was performed with the Lipofectamine 2000 Plus
transfection agent (Invitrogen) according to the manufac-
turer's instructions. First, 200 pmol siRNA was diluted in
250 pl Opti-MEM (Gibco-Invitrogen) and mixed with 40
pl Plus transfection agent. This was left for 20 min at RT.
Next, Lipofectamine 2000 was diluted in 250 pl Opti-
MEM and left for 5 min at RT. The two solutions were then
mixed and left at RT for 20 min. After aspirating the
medium, the cells were washed twice with PBS and added
to 1.5 ml of new Opti-MEM and transfection mixture.
After transfection for 4-6 h, the medium was exchanged
with the standard cell medium. The experiments with FER
RNAI were initiated 48 h after transfection.

Cell invasion assay in vitro

The MHCC97H cell invasion assay was performed in a 24-
well plate according to a previously described protocol
but with slight modifications [28]. Briefly, 100 pl of
Matrigel (1 mg/ml) was added to the upper chamber of a
24-well transwell plate, and the plate was incubated at
37°C for at least 4-5 h to induce gelling. The upper cham-
ber that was coated with Matrigel was washed three times
using warm serum-free medium, and 200 pl of cell sus-
pension containing 1 x 105 cells was placed in the cham-
ber. Simultaneously, the lower chamber of the transwell
plate was filled with 600 pl of the cell supernatant from
3T3 cells supplemented with 10% FBS. After cell invasion
for 30 h at 37°C, the noninvaded cells at the top of the
transwell plate were scraped off with a cotton swab. All
invaded cells were stained with the Giemsa staining solu-
tion and counted under a microscope. The mean value of
three independent experiments was used for the t-test to
calculate the statistical significance.

TMA construction and immunohistochemical staining

A tissue microarray (TMA) was assembled using 100 HCC
cases, consisting of 50 cases each of HCC with or without
metastasis studied over a follow-up period of 2~5 years.
For each case, 2 core samples of hepatoma tissue were
acquired from a donor paraffin block provided by the
Pathology Diagnosis Department of Zhongshan Hospital.
Serial tissue sections (4 um thick) were cut from the TMAs
for immunohistochemical analysis.

For immunohistochemical staining, the slides were depar-
affinized in xylene and rehydrated through a graded series
of ethanol concentrations. Intrinsic peroxidase was
blocked by using 3% hydrogen peroxide for 15 min. A
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solution of 5% BSA in PBST (PBS + 0.125% Tween 20)
was used to block nonspecific antibody binding, and anti-
FER antibodies (Sigma-ATLAS) were used at the concen-
tration recommended by the manufacturer. The slides
were kept overnight at 4°C. After washing three times
with PBST for 5 min, the slides were incubated with the
secondary antibody for 30 min at room temperature. Fol-
lowing three additional washes in TBST, the slides were
developed by DAB staining. The sections were scanned at
low magnification. The immunostaining score was esti-
mated on a scale of 0 to 3 based on the percentage and
intensity of the stained tumor cells, using the criterion
given on the ATLAS web http://www.proteinatlas.org.
Whether the stain was distributed on the membrane or in
the cytoplasm was also recorded and assessed at high
magnification. The immunoreactivity was scored semi-
quantitatively by counting the area and density of stained
cells using the Image-Pro Plus 5.0 software. Manual cor-
rection was then performed to normalize the score. Statis-
tical analysis was performed with the SPSS13.0 software
using the nonparametric Mann-Whitney U test.

Results

pTyr protein capture and the expression profiles of Hep3B
and MHCC97H cells

To optimize the enrichment of pTyr proteins, two differ-
ent antibodies against pTyr proteins were tested for their
ability to immunoprecipitate pTyr-containing proteins
from the samples. The results showed that 4G10 and pTyr-
100 had different protein immunoblotting profiles (Fig-
ure 1). The data illustrate the similarities and differences
in the pTyr proteins recognized by both antibodies. They
also support the use of multiple antibodies to improve the
detection of pTyr proteins. In subsequent experiments, a
combination of two antibodies was chosen, which was
expected to increase the types and quantities of captured
pTyr proteins. Figure 1 show that the pTyr proteins in the
two cell lines differed in terms of distribution and quanti-
ties, suggesting that different pTyr proteins may be
involved in HCC metastasis depending on their metastatic
potentials.

Enrichment and identification of phosphopeptides

After anti-pTyr immunoprecipitation, tryptic digestion,
and IMAC enrichment, the eluted phosphopeptides were
analyzed by LC-MS/MS using an LTQ instrument as
shown in Figure 2. As described in Materials and Methods,
MS/MS spectra were used to search the human IPI 3.3
database with the SEQUENT (version 3.5) software to
identify the amino acid sequence and phosphorylation
sites. The MS/MS spectra of CAV1, STAT3, CTTN, and FER
are shown in Figure 3. In total, 83 pTyr proteins contain-
ing 92 pTyr sites were identified in Hep3B cells. The
expression of 39 of these has not been reported previously
in liver or liver cancer tissues. Similarly, 164 pTyr proteins
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Comparison of pTyr proteins profile detected using
pTyr-100 and 4G10 antibodies in two HCC cell lines
with differently metastatic potential. Protein extracts
from two HCC cell lines were separated by SDS-PAGE (20
ug protein per lane) and analyzed by Western blot with anti-
pTyr antibodies, 4G 10 and pTyr100.

containing 189 pTyr sites were identified in MHCC97H
cells, and the expression of 81 of these was recorded in
liver or liver cancer tissues. Among the identified pTyr pro-
teins, 72 pTyr proteins from Hep3B cells and 153 pTyr
proteins from MHCC97H cells were differentially
expressed. All of the identified pTyr proteins and sites in
the two cell lines are listed in Table S1 - S3 in additional
file 1. A few phosphoserine/threonine-containing pep-
tides were recovered because their original protein was
tyrosine phosphorylated.

Functional annotation of pTyr proteins

To understand the functions of the pTyr proteins identi-
fied in this study, these proteins were submitted to the
HPRD database, functionally annotated based on the GO
terms, and classified according to their molecular func-
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tions (outlined in Tables 1 &2; for detailed information,
see Table S4 in the additional file 2). A comparative study
on the classification of pTyr proteins in these two cell lines
revealed that the differential distribution in biological
processes mainly involved protein, nucleic acid, and
enzyme/energy metabolism. In terms of the functions at
the molecular level, these proteins acted as translation reg-
ulators, enzymes, kinases/proteinases, calcium-binding
proteins, cytoskeletal-associated proteins, and adhesion
molecules. However, there were obvious differences
between the Hep3B and MHCC97H cell lines.

Protein interaction analysis

A computer-deduced biological PPI network map can rep-
resent and indicate the interaction network that exists in a
set of proteins. In this, the node molecules represent pro-
teins, while the edges indicate the interactions between
proteins. The PPI network can either create PPIs between
proteins submitted from MS/MS identification data (root
proteins) or it can predict new PPIs between the submit-
ted protein and other proteins from previously published
literature. At present, this is believed to be a promising
strategy for extrapolating new functions and interactions
of biomolecules. To analyze the functional implications
of the protein cohorts identified in this study, pTyr pro-
teins that were differentially expressed in Hep3B and
MHCC97H cells were subjected to PPI analysis. The 72
proteins that were only expressed in the Hep3B cell line
generated a network containing 235 nodes and 224 edges.
Similarly, the 153 proteins that were only expressed in the
MHCC97H cell line generated a network containing 542
nodes and 596 edges (Figure 4A, 4B upper box). To view
the interactions between the root proteins in each net-
work, two simple networks (the Hep3B and MHCC97H
networks) that only contained root proteins and linker
proteins (interactional proteins found in protein data-
bases, and it bridges two other proteins in the PPI net-
work) were elaborated (Figure 4).

In the two simple networks, linker proteins, including
CEBPB, EP300, MAPK1l, MAPK3, MYC, PRKCBI,
RPS6KA1, and SMARCA4, were shared. These were
involved in some important signaling pathways such as
the TNF-alpha-NF-kB signaling pathway, androgen-recep-
tor signaling pathway, MAPK cascade, apoptosis path-
ways, Wnt-signaling pathways, cell cycle-G1 to S control,
etc. These pathways play important roles in cell growth,
differentiation, cell-cycle control, and apoptosis. The
results suggested that the common pTyr proteins involved
in these pathways may be associated with HCC pathogen-
esis.

Moreover, comparison of these two simple networks
revealed that FER (a nonreceptor tyrosine kinase) was
probably a protein of biological importance in HCC cell
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pY peptides enrichment
with IMAC

MS/MS spactrum

Peptides

Scheme of enrichment and identification of pTyr proteins. Cells were firstly lysed in modified RIPA buffer. pTyr pro-
teins and their interacting partners were then immunoprecipitated by anti-pTyr antibodies. Eluted proteins were further
digested into peptides and used to IMAC for second phosphopeptides enrichment. The sample was lastly analyzed by LC-MS/

MS.

metastasis. It existed as only a dual function protein (root
and linker-like protein) in these two simple networks. It
linked four root proteins--CTNND1, CITN, STAT3, and
CAV1 (see highlighted diamond node and red edge in Fig-
ure 4B), in the MHCC97H network; however, it was
absent in the Hep3B network. Interestingly, one each of
these four proteins played a key role in cytoskeletal regu-
lation, cell adhesion, signal regulation, and transporta-
tion. Thus, based on the results, it is reasonable to
suppose that FER is an important pTyr protein and was
therefore selected for sequential functional validation.

Functional clustering analysis

To fully predict the coherent function, all node proteins
from the PPI networks of the MHCC97H and Hep3B cells
were clustered according their GO attributes in biological
process and signaling pathways.

Biological process clustering analysis showed that in rela-
tion to tumorigenesis and metastasis, identified pTyr pro-
teins were abnormally overrepresented in the two PPI
networks, especially in the MHCC97H cells (Figure 5).
These were mainly involved in cell division, differentia-
tion, development, proliferation, phosphorylation, cell
communication, blood vessel morphogenesis, DNA met-
abolic processes, antiapoptosis functions, intracellular
protein transport, cell migration, cell adhesion, and cellu-
lar localization. More importantly, biological processes
related to cancer metastasis, including cell motility, migra-
tion, antiapoptosis functions, cell localization, and cell
communication, differed significantly between the two
HCC cell lines (p < 1.00E-05).

On the other hand, pathway cluster analysis suggested
that there was considerable overall alteration in signal
transduction during HCC cell metastasis (p = 8.23E-10 to
p = 4.20E-25). The maximum difference between the two
cell lines was observed in the transmembrane receptor
tyrosine kinase signaling pathway, cell surface receptor-
linked signal transduction pathway, and protein kinase

cascade (Figure 6). In particular, the difference was prom-
inent in the epidermal growth factor receptor (EGFR) sig-
naling pathway, cytokine- and chemokine-mediated
signaling pathway, and JAK-STAT and phosphoinoside 3-
kinase (PI3K) cascades. It should be noted that the JNK
cascade has a negative relationship with HCC metastasis
in signaling pathway clustering (overrepresented in the
Hep3B cell line rather than in the MHCC97H cell line).
Surprisingly, the regulatory pattern of protein amino acid
phosphorylation in the two cell lines was completely
reversed. In MHCC97H cells, autophosphorylation was
upregulated, while in Hep3B cells, dephosphorylation
was upregulated (details of pathway clustering were out-
lined in Table S5a, S5b in the additional file 3).

Verification of the pTyr proteins

FER, CAV1, and CTNND1 were closely connected proteins
in the MHCC97H network but were absent in the Hep3B
network. These proteins were selected and tested for their
expression in the two cell lines by using western blot
assays. As shown in Figure 7, the total amount of these
three proteins or the phosphorylated forms of these three
proteins generally increased in the MHCC97H and Hep3B
cell lines in response to their metastatic potential. This
was consistent with the MS/MS results. These proteins
were weakly expressed in Hep3B cells, and their amounts
were below the detection limit of the MS assay.

The functions of FER were further verified by cell invasion
experiments. FER expression in MHCC97H cells was
knocked-down by treatment with a specific siRNA. The
results showed that the invasive ability of treated
MHCC97H cells was significantly weaker than that of the
control cells, and only a few cells could pass though the
matrigel-coated filter (Figure 8). This indicated that FER
played a role in cell invasion in vitro. TMA analysis was
performed to determine the expression level of FER in
HCC tissues. The TMA was constructed from a total of 100
HCC cases, consisting of 50 liver cancer tissues each from
patients with and without distant lung metastasis after
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liver cancer exairesis. TMA analysis showed that tumor tis-
sue cells with distant pulmonary metastasis had higher
FER expression levels than those without distant metasta-
sis (p < 0.001, Figure 9). This was similar to the expression
pattern observed in the cell lines.

Discussion

Bioinformatics analysis based on computer calculations
and the application of biological software is a very effec-
tive and essential supplement in proteomics research. It is
a powerful tool that has been extensively used for MS/MS
data analysis, such as PPI studies, functional clustering,
pathway mapping, and prediction of protein function and
structure [11,28-34]. In this study, we examined the
expression profiles of pTyr proteins in two HCC cell lines
(MHCC97H and Hep3B) that have different metastatic
potentials. For this purpose, we used an LC-MS/MS-based
proteomics technique. We also compared and analyzed

the interactions and functions of these proteins by PPI
and functional clustering analyses based on their GO
attributes that were determined by biological process clus-
tering and signaling pathway analysis. The results revealed
that some cell functions related to cancer metastasis were
significantly upregulated in HCC metastasis, especially
those involved in cell motility, migration, localization,
communication, antiapoptosis processes, and protein
autophosphorylation. These alterations have been partly
reported in previous studies on cancer metastasis [35-38].
High motility and migration are prerequisites for the suc-
cessful metastasis of tumor cells and their transfer to the
target site, penetration into the basement membrane and
blood vessels, and movement from poorly oxygenated
sites to rich oxygenated sites [3,39]. Antiapoptosis is a piv-
otal mechanism by which cancer cells are protected from
elimination by means of various steps of a metastatic
process [40]. At present, there are large amounts of data
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Table I: Functional classification of identified pTyr proteins
based on biological process in Hep3B and MHCC97H cell

GO-ID: biological process MHCC97H Hep3B
Signaling 26% 26%
protein metabolism 11% 4%
nucleic acid metabolism 19% 12%
enzyme/energy metabolism 14% 9%
transport 7% 7%

cell growth and maintenance 5% 6%
novel protein 2% 6%
others 5% 14%
unclassified 1% 16%

that highlight the importance of this process in cancer
metastasis (reviewed in [40-43]). Protein amino acid
autophosphorylation is a specific attribute of tyrosine
kinase, and its upregulation in the highly metastatic
MHCC97H cells confirmed that alteration of tyrosine
phosphorylation was in fact involved in HCC metastasis.
Western blot analysis of the pTyr protein profile also con-
firmed these results. More importantly, we found that
alteration in cell communication was the most obvious
cellular event in HCC metastasis. Since cell communica-
tion driven by signal transduction controls all cell behav-
ior and activity, aberrations in signal transduction could
be a crucial factor leading to HCC metastasis and could
also trigger changes in cancer cell behavior. Therefore, it is
very important to explore the events that occur during the
activation and regulation of the signaling pathway in
HCC metastasis. For this purpose, a pathway clustering
analysis was performed for the node proteins of the PPI
networks in Hep3B and MHCC97H cell lines. The results

Table 2: Functional classification of identified pTyr proteins
based on molecule function in Hep3B and MHCC97H cell

GO-ID: molecular function MHCC97H Hep3B

transcription associated protein 1% 10%
Translation regulatory protein 5% 1%
Receptor 4% 3%
Integral membrane protein 4% 4%
DNA binding protein 1% 2%
RNA binding protein 4% 3%
enzyme 17% 9%
cargo protein 4% 4%
Cytoskeletal associated protein 2% 5%
Calcium binding protein 1% 4%
kinase/proteinase 14% 1%
Ubiquitin proteasome system protein 1% 2%
Adhesion molecule --- 4%
adapter molecule 1% 2%
channel protein 2% 2%
others 7% 6%
Unclassified 8% 12%
unknown 9% 16%

http://www.biomedcentral.com/1471-2407/9/366

revealed that EGFR signal transduction, cytokine- and
chemokine-mediated signaling, and the PI3K and JAK-
STAT cascades were closely related with HCC metastasis
since these processes were significantly upregulated. These
analytical results were similar to those obtained for liver
metastasis of breast cancer [11,29]. EGFR is an Erb-family
transmembrane receptor tyrosine kinase. This receptor is
shared by multiple ligands, including EGF, TGF, EGFF-like
factor, and amphiregulin [44]. EGFR-mediated signaling
has been implicated in a variety of human cancers and is
a key regulator of the cell proliferation, migration, metas-
tasis, angiogenesis, and antiapoptosis processes [45,46].
Recently, some studies have reported that EGFR inhibitors
are effective first-line therapeutic agents in the treatment
of some metastatic cancers [47,48]. EGFR is a potential
therapeutic target in HCC treatment [49,50]. The JAK-
STAT cascade, which is another example, is a critical sign-
aling pathway that plays an important role in cell prolifer-
ation, differentiation, survival, motility, and apoptosis
[51]. Recently, it was reported that sustained activation of
the JAK-STAT cascade was involved in hepatocarcinogene-
sis and metastasis [52,53]. The data showed that increas-
ing activity of the JAK-STAT cascade was associated with
aberrant methylation silencing of the suppressor of
cytokine signaling (SOCS), which is a negative regulator
of the JAK-STAT pathway [54]. However, another study
also suggested that constitutive activation of STAT3 was
closely related to HCC metastasis and was the main factor
leading to the upregulation of the JAK-STAT cascade [55].
Consistent with these results, our MS/MS results also indi-
cated STAT3 activation. Unexpectedly, the JNK cascade
was found to be negatively associated with HCC metasta-
sis, thereby deviating from its canonical functions. This
indicates that the role of this cascade in HCC metastasis
should be re-evaluated. Negative regulation of the JNK
cascade was recently reported in prostate and ovarian can-
cers [56,57]. Researchers showed that JNKK1, an upstream
kinase of JNK, could persistently phosphorylate JNK and
activate the stress-activated protein kinase signaling path-
way (SAPK) to induce cell apoptosis and decrease tumor
metastasis. Moreover, the SAPK pathway also showed a
negative correlation with HCC metastasis in this study.
Therefore, these two pathways might play synergetic roles
in HCC metastasis. In other words, cluster analysis of sig-
naling pathways may provide some important informa-
tion for predicting the functions of the pTyr proteins
involved in HCC metastasis. These results have been
obtained by bioinformatics studies and need to be veri-
fied experimentally prior to practical application.

In our study, FER, a nonreceptor tyrosine kinase, was
shown to be significantly involved in the HCC metastatic
process. FER was initially discovered in 1988 during stud-
ies on the proto-oncogene protein Fes/Fps [58]. Since
then, its involvement has been reported in growth factors/
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Figure 4
Simple PPI network for pTyr proteins (root proteins) identified by MS/MS spectrometry with their linker pro-

teins in Hep3B and MHCC97H cell. Small box represents every complete PPl network for all nodes in two HCC cell lines.
A: Hep3B-network B: MHCC97H-network. Pink ellipase node denoted linker proteins, blue and yellow ellipase node repre-

sented respectively root proteins in Hep3B and MHCC97H.
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the statistical difference are shown.

cytokine-mediated signaling as well as in the integrin/E-
cadherin-mediated signaling pathways. It also plays a crit-
ical role in cytoskeletal regulation, cell adhesion, migra-
tion, and proliferation [59-61]. In this study, we
examined the total and phosphorylated forms of FER;
these were found to be overexpressed in the MHCC97H
cell line but not in the Hep3B cell line. Similar expression
patterns were observed for CTNND1 and CAV1, which are
related to FER, and the results were also validated by west-
ern blotting and MS/MS analyses. FER and CTNND1 were
shown to be involved in cadherin and integrin-mediated
cell adhesion. Under normal circumstances, FER could
indirectly sustain CTNNB1 dephosphorylation to ensure

cadherin-mediated adhesion stability. When FER is over-
expressed and phosphorylated, it can directly induce
CTNNB1 and CTNND1 phosphorylation, resulting in the
loss of cadherin-mediated adhesion [61,62]. This suggests
that increasing metastasis may be associated with
CTNNBI1 in some cancers. Moreover, CTNND1 had been
implicated in the metastasis and pathogenesis of several
human cancers [63]. It was shown that overexpression
and phosphorylation of CTNND1 in the cytoplasm could
promote cadherin-deficient tumor metastasis by regulat-
ing the activity of the small GTPase [64,65]. CAV1 is an
important marker protein of caveolae and regulates signal
transduction as a scaffolding protein. Recently, CAV1 was
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FER, CTNNDI, CAVI and their phosphorylated ver-
sion expression in two HCC cell lines. First, equal pro-
tein lysates from two HCC cells lines were subjected to SDS-
PAGE electrophoresis and subsequent Western blotting
using anti-FER, CTNND [, CAV1 and actin antibodies (lower
panel). Then in parallel experiment, equal protein lysates
from two cell lines were immunoprecipitated using anti-pTyr
4G10 and pTyr100 antibodies, followed by reacting with FER,
CTNNDI and CAVI antibodies in Western blot assay
(upper panel). This represents three independent experi-
ments.

found to be an independent predictor of decreased sur-
vival in breast and rectal cancers and was significantly
associated with the presence of distant metastasis in colon
cancer patients [66]. CAV1 could also sustain cadherin-
mediated adhesion stability. It functioned by modulating
the level and/or subcellular distribution of cadherin and
CTNND1 by inhibiting Src kinase activity [67]. Neverthe-
less, FER was identified as a Src substrate and is involved

http://www.biomedcentral.com/1471-2407/9/366

in tumor transformation [59]. In this study, these three
proteins displayed similar expression patterns in the two
cell lines studied and also interacted directly in the
MHHCC97H network. Therefore, we hypothesize that
FER may be a key regulator in the adhesion event involv-
ing these three proteins and may participate in HCC
metastasis. We also examined the influence of FER on cell
invasion activity in vitro. The data illustrated that the
knock-down of FER by RNAi significantly reduced
MHCC97H cell invasion activity, suggesting that FER
could positively contribute to HCC metastasis. To verify
this, we further examined FER expression in HCC tumor
tissues from patients with diverse distant metastasis out-
comes after tumor excision. The results showed that FER
overexpression frequently occurred in tumor cells with
distant pulmonary metastasis, indicating that FER is
strongly associated with HCC distant pulmonary metasta-
sis.

Once it is confirmed that FER is a potential regulator in
HCC metastasis, the next step is to understand the mech-
anism by which it regulates HCC cell metastasis. To date,
there are few reports on the functional regulation of FER
in cancer, and the main focus has been on cell adhesion.
FER was shown to play a key role in the coordinate regu-
lation of E-cadherin-mediated cell-cell adhesion and
integrin-mediated focal adhesion. It could move between
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Figure 8

Invasion activity reduction of MHCC97H cell by FER knockdown. A: Matrigel invasion assay of MHCC97H cell. Image
was viewed at X200 and migrated cells were stained with purple, representing three independent experiments. B: Western

blot assay of FER expression after siRNA in MHCC97H cell, representing three independent experiments. In comparison anal-
ysis, data was shown as Mean * SD and statistics significance was calculated from the Student's test among every groups. Two

asterisk denotes p < 0.01.
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Expression of FER in HCC tissue. A: immunohistochemical staining of paraffin-embeded human HCC tissues showing dif-
ferent FER expression pattern in various samples (up panel is viewed at X200 and low panel is viewed at x50). B: comparison of
FER staining in metastasis and non-metastatis HCC tissue (data was shown as the Mean * SD).

the two adhesion pathways to trigger adhesion transition
[59,61]. In a study on FER function using the Trojan pep-
tide, researchers showed that FER that had dissociated
from the cadherin complex could translocate to the
integrin complex where it reduced p130CAS phosphoryla-
tion and interrupted integrin-mediated focal adhesion by
affecting the phosphorylation of p130CAS binding part-
ners, including PTP-PEST, PTP1B, FAK, and Crk [62]. FER
was also reported to be an upstream tyrosine kinase for
CTTN (cortactin) as well as Src and Fyn [68,69]. Phospho-
rylation of CTTN by FER is very critical for its recruitment
to the cadherin and integrin complex [70]. CITN mainly
participates in cytoskeletal regulation and plays a pivotal
role in tumor metastasis [71,72]. Recently, CTTN was
shown to be an essential regulator of matrix metallopro-
teinase secretion and extracellular matrix degradation
[73]. In another study, it was shown that phosphorylation
of tyrosine residues in CTTN was strongly associated with
the potential to induce metastasis in nude mice [74].
Whether CTTN phosphorylation by FER also has the same
effects in HCC metastasis needs to be confirmed in future
studies.

The results of this study suggested that FER is involved in
HCC distant metastasis, and we have discussed the main
mechanism and signaling pathways associated with FER
functional regulation. The results from bioinformatics
analysis also imply that FER is altered in MHCC97H cells
in comparison with Hep3B cells. As a new functional mol-
ecule, the effect of FER on HCC metastasis remains
unknown. It is possible that FER can alter the metastatic

potential of HCC cells by one or several of the mecha-
nisms mentioned here. Further studies are required to
explore the exact role of FER in HCC cell invasion and
metastasis. These would be both exciting and challenging.

Conclusion

The tyrosine phosphorylation data presented in this study
is a useful resource for studying HCC metastasis and is an
effective supplement for the PTyr database reported. Many
of the identified pTyr proteins, including protein kinases
and proteinases, could be useful for selecting intervention
targets in future studies. The presence of multiple mole-
cules and signaling pathways that are overrepresented in
HCC cells with high metastatic potential suggests that
HCC metastasis is a complex process and that the biolog-
ical strategies for HCC metastasis treatment should be cus-
tomized. In this study, FER was shown to be an important
protein in HCC metastasis. We hope to obtain more evi-
dence for the role of FER and its mechanism of action in
HCC metastasis. This molecule may be a new drug target
in future HCC therapy.
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