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A B S T R A C T

DNA repair can prevent mutations and cancer development, but it can also restore damaged tumor cells after
chemo and radiation therapy. We performed RNA sequencing on 95 human pathological thyroid biosamples
including 17 follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papillary cancers and 1 poorly
differentiated cancer. The gene expression profiles are annotated here with the clinical and histological diagnoses
and, for papillary cancers, with BRAF gene V600E mutation status. DNA repair molecular pathway analysis
showed strongly upregulated pathway activation levels for most of the differential pathways in the papillary
cancer and moderately upregulated pattern in the follicular cancer, when compared to the follicular adenomas.
This was observed for the BRCA1, ATM, p53, excision repair, and mismatch repair pathways. This finding was
validated using independent thyroid tumor expression dataset PRJEB11591. We also analyzed gene expression
patterns linked with the radioiodine resistant thyroid tumors (n ¼ 13) and identified 871 differential genes that
according to Gene Ontology analysis formed two functional groups: (i) response to topologically incorrect protein
and (ii) aldo-keto reductase (NADP) activity. We also found RNA sequencing reads for two hybrid transcripts: one
in-frame fusion for well-known NCOA4-RET translocation, and another frameshift fusion of ALK oncogene with a
new partner ARHGAP12. The latter could probably support increased expression of truncated ALK downstream
from 4th exon out of 28. Both fusions were found in papillary thyroid cancers of follicular histologic subtype with
node metastases, one of them (NCOA4-RET) for the radioactive iodine resistant tumor. The differences in DNA
repair activation patterns may help to improve therapy of different thyroid cancer types under investigation and
the data communicated may serve for finding additional markers of radioiodine resistance.
1. Introduction

About 300 000 new cases of thyroid cancer are recorded globally each
year [1]. Thyroid cancer is also the fifth most common cancer in women
[1, 2], and it can move to the fourth place during the next decade [3].
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Thyroid cancer is a common term for several heterogenous malignancies
of thyroid gland, and its clinical manifestation, treatment and prognosis
are generally defined by specific tumor subtypes. There are three main
types of cells from which thyroid cancers are derived: follicular thyroid
cells, Hurthle cells, and parafollicular C cells [4]. The most common
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Figure 1. Differential expression of previously reported marker genes in different thyroid tumor types. Genes SERPINA1, TACSTD2, LAMB3 were reported as the
markers upregulated in PC; genes ACVRL1, PLVAP, TFF3 and CPQ were reported as the markers upregulated in FA. Each box shows gene expression distribution in
each group, the ends of the box are the upper and lower quartiles, median in shown by horizontal line inside the boxes, whiskers extend from the upper and lower
hinges of the boxes towards the highest and lowest values, respectively, at most 1.5 * interquartile range of box. A black point corresponds to a tissue sample.
Expression counts were processed as reads per million (RPM).
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subtypes of thyroid cancer are follicular thyroid cell-derived tumors,
including papillary thyroid cancer (PC), follicular thyroid cancer (FC),
and poorly differentiated thyroid cancer [5]. In addition, a small pro-
portion of thyroid malignancies belongs to parafollicular C cell-derived
medullary thyroid cancer (MC) [6]. Molecular characterization of thy-
roid cancer subtypes can partially solve the problem of understanding
specific carcinogenesis mechanisms and selecting appropriate
treatments.

In addition, resistance of recurrent thyroid cancers to radioactive
iodine treatment, confirmed by observations, poses another challenge for
early diagnostics of tumors prone not to respond to the standard therapy
regimens [7]. Such diagnostics could be used to individually tune treat-
ments, e.g. by adjusting dosage of therapeutic agents and timeline of
treatment [8]. Two decades ago, a connection between thyroid cancer
radioactive iodine resistance and activity of sodium iodide symporter
gene SLC5A5 was discovered [9]. Also, BRAF and TERT mutations were
found as the predictors of radio iodine refractory thyroid cancer, espe-
cially in duet [10, 11, 12]. However, it is clear that the problem has not
been solved yet as there are no effective instruments in clinics to predict
thyroid cancer resistance to radiation therapy [13].
2

DNA damage is one of the major causes that trigger the development
of tumors [14, 15]. However, it also is an important focus in chemo and
radiation therapy [16, 17, 18]. DNA repair mechanisms restore damaged
DNA and may have a dual effect on the tumor: they prevent new somatic
mutations and may restrict tumor development, but they also restore
tumor cells with damaged DNA after chemo and radiation therapy [19].
Thus, when planning the chemo and/or radiation therapy, the possibility
of DNA repair must be taken into account [20]. Low activities of DNA
repair genes can make tumor cells more sensitive to the therapy, but at
the same time not-repaired damaged tumor cells can form more new
clones of treatment resistant cells [21, 22]. High activities of certain DNA
repair genes, however, can counteract therapy of tumors [22, 23].
Therefore, the selection of relevant therapy should ideally be based on
the state of DNA repair in an individual tumor. Recently, defects in DNA
repair were shown to play an important role in the clonal evolution of
thyroid cancer [24]. Currently, the thyroid cancer subtypes need more
detailed characterization in terms of molecular aspects of DNA repair.
This is probably due to the apparent shortage of publicly available gene
expression data associated with histological diagnoses of thyroid tumors
[25, 26, 27].
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Figure 2. Differential expression of gene SLC5A5 in radioactive iodine resistant,
sensitive and all other thyroid tumors. Expression – DESeq2 normalized read
counts. Gene expression values for radioactive iodine resistant tumors (radio-
resistance), sensitive (radiosensitivity) thyroid tumors and tumors with undefined
radioactive iodine therapy status profiled in this study are boxed. Gene
expression is plotted in the log10-trasformed scale. Each box shows gene
expression distribution in each group, the ends of the box are the upper and
lower quartiles, median in shown by horizontal line inside the boxes, whiskers
extend from the upper and lower hinges of the boxes towards the highest and
lowest values, respectively, at most 1.5 * interquartile range of box. A black
point corresponds to a tissue sample. Drawn using ggplot package in R.
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RNA sequencing is currently a method of choice for generating cancer
gene expression data [28]. The Genomic Data Commons portal at Na-
tional Cancer Institute (GDC) [29] provides limited access to 502 RNA
sequencing profiles of thyroid cancer samples (accessed at June 30,
2020). Nevertheless, GDC dataset can be used for only a limited number
of applications because it contains data for only papillary histotype of
thyroid cancer (PC) and does not provide immediate open access to raw
reads, thus complicating data analysis and limiting its usefulness.

Therefore, more open-access collections of clinically annotated pro-
files are needed for different types of malignant and benign thyroid
Figure 3. BRAF V600E mutation status in PC samples. A – plot for principle compone
– hierarchical clustering based on Euclidian distance in gene space in relation to BRA
“ward.d2”. Expression counts were normalized with DESeq2.

3

tumors and their histotypes, that would be compatible with the reference
data for healthy thyroid tissues.

Here we present the subtype-specific characteristic of DNA repair
pathway activation in human thyroid tumors. We performed RNA
sequencing on 95 human pathological thyroid biosamples including 17
follicular adenomas, 23 follicular cancers, 3 medullar cancers, 51 papil-
lary cancers and 1 poorly differentiated cancer. The gene expression
profiles were annotated with the clinical and histological diagnoses and,
for papillary cancers, with BRAF gene V600E mutation status. Gene
expression data were obtained using the same equipment, reagents, and
protocols as for the previously published ANTE database, including six
profiles for healthy thyroid tissues [30]. DNA repair molecular pathway
analysis showed strongly upregulated pathway activation levels for most
of the differential pathways in the papillary cancer and moderately
upregulated pattern in the follicular cancer, when compared to the
follicular adenomas. This was observed in the BRCA1, ATM, p53, exci-
sion repair, and mismatch repair pathways. However, the G2/M check-
point pathway followed the opposite trend. We also analyzed gene
expression patterns linked with the radioiodine resistant thyroid tumors
(n ¼ 13) and identified 871 differential genes that according to Gene
Ontology analysis formed two functional groups: (i) response to topo-
logically incorrect protein and (ii) aldo-keto reductase (NADP) activity.
We also found RNA sequencing reads for two hybrid transcripts: one
in-frame fusion for well-known NCOA4-RET translocation, and another
frameshift fusion of ALK oncogene with a new partner ARHGAP12. The
latter could probably support increased expression of truncated ALK
downstream from 4th exon out of 28. The differences in DNA repair
activation patterns may help to improve therapy of different thyroid
cancer types under investigation and the data communicated may serve
for finding additional markers of radioiodine resistance.

2. Results

2.1. Expression of known molecular mRNA markers of thyroid cancer

Overall, 51 papillary thyroid cancer (PC), 23 follicular thyroid
cancer (FC), 3 medullary thyroid cancer (MC), 1 poorly differentiated
thyroid cancer (PDC), and 17 follicular thyroid adenoma (FA) samples
were investigated. Clinical annotations and quality control metrics of
tumor specimens investigated are summarized in the Supplementary
files 1 and 2.
nt analysis in normalized gene expression space for all PC profiles investigated. B
F V600E mutation status. Drawn using ggplot package in R, clustering algorithm
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Table 1. Alterations of pathway activation levels for 38 DNA repair pathways in differential comparisons of follicular adenoma (FA), follicular cancer (FC), and papillary
cancer (PC) tissues.

Pathway ID Pathway name PC vs FC1,2 FC þ PC vs FA2,3 PC vs FA2,4

p1 ATM Pathway ↑, 2.8e-02 ↑5, 4.1e-02 ↑, 3.6e-03

p2 ATM Pathway Cell Survival ↑, 1.5e-02 ↑5, 6.8e-02 ↑5, 8.7e-03

p3 ATM Pathway G2-Mitosis progression ↑, 1.4e-02 ↓, 9.8e-01 ↑, 3.3e-01

p4 Biocarta atm signaling pathway ↑5, 8.3e-01 ↑, 4.0e-01 ↑, 4.7e-01

p5 Biocarta cell cycle G2M checkpoint pathway ↓, 2.8e-02 ↓5, 4.1e-02 ↓5, 8.1e-04

p6 BRCA1 Pathway ↑, 1.0eþ00 ↑5, 4.2e-02 ↑5, 2.8e-02

p7 BRCA1 Pathway Chromatin Remodeling ↑5, 1.5e-01 ↑, 1.3e-01 ↑, 9.8e-02

p8 BRCA1 Pathway Homologous Recombination Repair ↓, 1.1e-01 ↑, 8.5e-02 ↑, 1.9e-01

p9 BRCA1 Pathway Mismatch Repair ↓, 9.8e-02 ↑, 1.7e-01 ↑, 4.1e-01

p10 DNA Repair Mechanisms Pathway ↑, 5.6e-01 ↑, 8.5e-02 ↑, 6.4e-02

p11 KEGG Base excision repair pathway ↑, 2.8e-02 ↑, 8.5e-02 ↑, 2.0e-02

p12 KEGG Fanconi anemia pathway ↓, 1.7e-02 ↑, 8.7e-01 ↓, 4.8e-01

p13 KEGG Homologous recombination pathway ↑, 2.5e-01 ↑, 8.5e-02 ↑, 3.4e-02

p14 KEGG Mismatch repair pathway ↓, 1.0eþ00 ↑, 1.4e-01 ↑, 1.9e-01

p15 KEGG Non homologous end joining pathway ↑, 1.0eþ00 ↑, 1.4e-01 ↑, 1.9e-01

p16 KEGG Nucleotide excision repair pathway ↓, 5.6e-01 ↑, 1.0e-01 ↑, 1.6e-01

p17 Mismatch Repair in Eukaryotes Pathway ↓, 7.7e-01 ↑, 8.5e-02 ↑, 9.8e-02

p18 NCI ATM pathway ↑, 2.5e-01 ↑5, 4.1e-02 ↑5, 1.5e-02

p19 NCI ATM Pathway (G1 S transition checkpoint) ↑, 6.5e-01 ↑5, 4.1e-02 ↑5, 1.6e-02

p20 NCI ATR signaling pathway ↓, 2.1e-01 ↑, 1.4e-01 ↑, 2.7e-01

p21 NCI ATR signaling Pathway (Pathway negative regulation of transcription during mitosis via CHEK1) ↓, 2.1e-01 ↑, 1.7e-01 ↑, 3.2e-01

p22 NCI ATR signaling Pathway (regulation of double strand break repair via homologous recombination) ↓5, 1.8e-01 ↑, 1.2e-01 ↑, 2.2e-01

p23 NCI ATR signaling Pathway (response to G2 M transition DNA damage checkpoint signal) ↓, 2.1e-01 ↑, 1.8e-01 ↑, 3.4e-01

p24 NCI DNA PK pathway in nonhomologous end joining Pathway (double strand break repair via nonhomologous end joining) ↑, 5.6e-01 ↑, 1.4e-01 ↑, 1.4e-01

p25 NCI DNA PK pathway in nonhomologous end joining Pathway (V D J recombination) ↑, 1.0eþ00 ↑, 1.7e-01 ↑, 2.2e-01

p26 NCI Fanconi anemia pathway ↓5, 1.5e-01 ↑, 1.1e-01 ↑, 2.2e-01

p27 NCI Fanconi anemia Pathway (regulation of double strand break repair via homologous recombination) ↓5, 1.5e-01 ↑, 1.0e-01 ↑, 2.0e-01

p28 NCI Fanconi anemia Pathway (Sister Chromatid Exchange Process) ↓, 2.1e-01 ↑, 1.7e-01 ↑, 3.1e-01

p29 NHEJ mechanisms of DSBs repair effect ↓5, 2.8e-01 ↑, 1.4e-01 ↑, 2.6e-01

p30 Nucleotide excision repair effect ↑, 1.1e-01 ↑, 5.0e-02 ↑, 1.1e-02

p31 p53 Signaling Pathway ↑, 2.0e-03 ↑, 4.1e-02 ↑, 8.1e-04

p32 p53 Signaling Pathway DNA Repair ↑, 5.3e-01 ↑, 1.4e-01 ↑, 9.8e-02

p33 p53 Signaling Pathway Gene Expression DNA Replication and Repair via TP53 ↑, 7.2e-02 ↑, 9.1e-02 ↑, 3.4e-02

p34 reactome Fanconi Anemia pathway ↑, 7.7e-01 ↑, 1.1e-01 ↑, 9.8e-02

p35 Reactome Formation of transcription coupled NER TC NER repair complex pathway ↑, 1.0eþ00 ↑, 1.7e-01 ↑, 2.2e-01

p36 Reactome Mismatch repair MMR directed by MSH2, MSH3, MutSbeta pathway ↑, 1.3e-01 ↑, 8.5e-02 ↑, 3.4e-02

p37 Reactome Mismatch repair MMR directed by MSH2, MSH6, MutSalpha pathway ↑, 9.8e-02 ↑, 6.1e-02 ↑, 1.6e-02

p38 Reactome Repair synthesis for gap filling by DNA polymerase in TC NER pathway ↑, 5.0e-01 ↑5, 1.0e-01 ↑5, 7.4e-02

1 Comparison of papillary cancer versus follicular cancer tissues.
2 q-value (FDR-adjusted p-value) for Wilcoxon test is given for every molecular pathway PAL in every comparison. Sign “↑”means that the first comparative group has

higher mean PAL than the second, sign “↓” denotes the opposite situation.
3 Comparison of follicular and papillary cancer tissues versus follicular adenoma.
4 Comparison of papillary cancer versus follicular adenoma tissues.
5 The coefficient of quartile variation (CQV) is higher for compared groups together than for each separate group.
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To initially characterize molecular data presented here we analyzed
expression levels of several mRNA molecules previously reported to be
differentially regulated in thyroid tumors. For example, SERPINA1 [30],
LAMB3 [31], and TACSTD2 [32] genes are known to be overexpressed in
PC, which was also the case in our dataset (Figure 1, Supplementary file
3). On the other hand, in line with the overall mediocre concordance
between FC expression biomarkers reported in the previous studies, we
did not observe any differences between FA and FC samples for two out of
four marker genes proposed in a recent meta-analysis paper [25]: CPQ
and TFF3. However, the other two other marker genes ACVRL1 and
PLVAP demonstrated upregulated trends in FA versus other tumors
(Figure 1, Supplementary file 3).

We also compared expression of sodium iodide symporter gene
SLC5A5 in the biosamples from tumors, which were resistant to
4

radioactive iodine therapy, with all other thyroid tumors profiled in this
study. In line with the previous data [33, 34, 35], in our dataset SLC5A5
was statistically significantly downregulated (p ¼ 3.44*10�3) in radio-
active iodine-resistant tumor samples (Figure 2).

Thyroid hormone biosynthesis requires active hydrogen peroxide
production which may also be responsible for the high level of
oxidative DNA damage. The NADPH oxidase/dual oxidase family
members are the only known oxidoreductases whose primary function
is production of reactive oxygen species, and their increased expres-
sion levels were previously shown in thyroid cancer [36]. We
compared expressions of NOX1, NOX3, NOX4, NOX5, DUOX1, and
DUOX2 genes in our experimental FA, FC, and PC samples and found
no significant differences between the above thyroid tumor types (data
not shown).



Figure 4. Boxplot representation of PAL values for the differential pathways corresponding to comparisons from Table 1. Pathway name abbreviations: p1 - ATM
Pathway, p2 - ATM Pathway Cell Survival, p3 - ATM Pathway G2-Mitosis progression, p5 - Biocarta cell cycle G2M checkpoint pathway, p6 - BRCA1 Pathway, p11 -
KEGG Base excision repair pathway, p12 - KEGG Mismatch repair pathway, p13 - KEGG Nucleotide excision repair pathway, p18 - NCI ATM pathway, p19 - NCI ATM
Pathway (G1 S transition checkpoint), p30 - Nucleotide excision repair effect, p31 - p53 Signaling Pathway, p33 - p53 Signaling Pathway Gene Expression DNA
Replication and Repair via TP53, p36 - Reactome Mismatch repair MMR directed by MSH2, MSH3, MutS beta pathway, p37 - Reactome Mismatch repair MMR
directed by MSH2, MSH6, MutS alpha pathway.
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2.2. BRAF (V600E) mutation status

In PC patients, BRAF (V600E) mutation status is an important
diagnostic and prognostic biomarker for tumor aggressiveness and
relapse [37]. We therefore screened all PC specimens for this muta-
tion and identified 15 mutant and 27 wild-type cases (Supplementary
file 1). Notably, neither PCA nor Euclidean distance-based hierar-
chical clustering identified any specific pattern associated with
mutated or wild-type status BRAF V600E in the tumor samples
(Figure 3). We found no differentially expressed genes with q < 0.1
by Wilcoxon test for the groups of BRAF (V600E) mutation positive
and negative PCs.
5

2.3. Activities of DNA repair pathways in different types of thyroid tumors

We then attempted to evaluate the differences in the activities of DNA
repair pathways between the normal thyroid samples, benign tumors,
and thyroid cancer subtypes.

Pathway activation level (PAL) is an integral parameter that charac-
terizes activation of a molecular pathway using high-throughput gene
expression data [38, 39]. It utilizes aggregation of logarithmic
fold-change expression levels (case compared with control samples) for
the gene products involved in a certain molecular pathway, using func-
tional flags indicating specific activator or repressor roles of a gene
product in the molecular pathway [38]. Positive PAL value indicates
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Figure 5. Heatmap of pathway activation levels for 15 differential DNA repair pathways in all thyroid tumor samples investigated.

U. Vladimirova et al. Heliyon 7 (2021) e06408
upregulation of the molecular pathway, negative value – its down-
regulation, whereas zero means unaffected level compared with the
controls [38].

For our assay, we selected 38 DNA repair pathways, which were
obtained by manual curation of Reactome [40], NCI Pathway Interaction
[41], Kyoto Encyclopedia of Genes and Genomes [42], Biocarta [43], and
Qiagen [44] databases, and which include at least ten gene products. For
these pathways, we then calculated PAL values for the tumor samples
while taking six healthy thyroid tissue gene expression profiles from
ANTE database [45] as the controls. Then we compared PAL values for
the selected DNA repair pathways between the normal samples, benign
tumors, and the thyroid cancer subtypes. In total, we performed nine
comparisons to assess differential PAL activation trends: malignant and
benign (PC þ FC þ FA) were compared with the normal samples (i);
follicular adenoma (FA) was compared with the normal samples (ii); FC
and PC were compared with normal samples (iii); FC and PC were
compared with FA (iv); FC was compared with PC (v), FA was compared
with FC (vi); PC was compared with FA (vii), PC was compared with the
normal samples (viii); and FC was compared with the normal samples
(ix).

We found statistically significantly differentially regulated DNA
repair pathways in only three out of these nine comparisons (Table 1,
Supplementary File 4). In particular, six pathways were differential in the
comparison (iv) FC þ PC vs FA; four pathways were differential in the
comparison (v) FC vs PC; twelve pathways were differential in the
comparison (vii) PC vs FA (Table 1).

The boxplot presentations of PAL values for all differential pathway
comparisons are shown in Figure 4. We also assessed variation of each
group under comparison separately and together, both on pathway
(Table 1, Supplementary file 4) and gene levels (Supplementary file 5).
We calculated the following statistical characteristics: mean, standard
deviation, interquartile range (IQR), Range (the difference between
maximum and minimum), ratio of IQR and Range, the coefficient of
quartile variation (CQV), confidence interval (CI) for CQV (Supplemen-
tary file 4). At the level of pathway activation, CQV was calculated for
6

(PAL-minimal (PAL)) because PAL can take negative values [46]. We
marked the pathways, for which CQV of two compared groups together
was higher than CQV of each separate group (Table 1, Supplementary file
4), there were six such differential pathways (Table 1): ATM Pathway,
ATM Pathway Cell Survival, BRCA1 Pathway, NCI ATM pathway, NCI ATM
Pathway (G1 S transition checkpoint), Biocarta cell cycle G2M checkpoint
pathway.

We then applied the same comparison parameters for individual DNA
repair pathway member genes to identify genes which contribute to
differential regulation of the pathways (Supplementary file 5). For
example, Biocarta cell cycle G2M checkpoint pathway had seven differ-
entially expressed genes for PC vs FA comparison (ATR, CCNB1,
CDKN2D, MDM2, PI4KA, RASGRF1, SFN), Supplementary file 5. Most of
differential genes were up-regulated in PC (Supplementary file 5) which
resulted in up-regulation of most of the pathways. However, Biocarta cell
cycle G2M checkpoint pathway was down-regulated in PC because most of
the differential genes have negative activator/repressor role coefficients
(ARR) for this pathway [42, 43, 47].

In total, 15 individual DNA repair pathways were differential in at
least one comparison. Among them, five pathways were differential
simultaneously in two comparisons, and three – in three comparisons
(Table 1).

While PAL values were positive for certain pathways in PC and FC, the
PAL differences between the tumors and normal thyroid samples were
not significant. To test that we calculated PAL level for each normal
sample (Supplementary file 6). PAL level for a normal sample can be
interpreted as an activation level of a pathway in a normal sample when
compared to the average of all normal samples. This is needed to test the
significance of the differences when comparing the group of normal
samples with other groups. Lack of significance between normal samples
and tumors is linked with a high heterogeneity of PAL values in normal
samples (Supplementary file 4).

Thus, no pathway activation changes distinctive for all tumor types
versus normal samples have been found. There were also no differentially
regulated patterns between all benign and malignant thyroid neoplasms.

mailto:Image of Figure 5|tif


Figure 6. Radar-charts of 15 differential DNA repair pathway activation profile for (A) follicular adenoma, ANTE normal samples used for PAL calculation, (B)
follicular adenoma, GTEx normal samples used for PAL calculation, (C) follicular adenoma, TCGA normal samples used for PAL calculation, (D) follicular cancer, ANTE
normal samples used for PAL calculation, (E) follicular cancer, CTEx normal samples used for PAL calculation, (F) follicular cancer, TCGA normal samples used for PAL
calculation, (G) papillary cancer, ANTE normal samples used for PAL calculation, (H) papillary cancer, GTEx normal samples used for PAL calculation, (I) papillary
cancer, TCGA normal samples used for PAL calculation. Positive pathway activation values (PALs) are shown in the outer white area, negative values –in the inner red
circle area.
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We conclude, therefore, that we could not identify marker DNA repair
pathway alterations for thyroid tumorigenesis in general, but several
DNA repair pathways were characteristic for follicular and papillary
neoplasms.

We then assessed clustering of thyroid tumors according to the PAL
values of fifteen DNA repair pathways found to be significantly differ-
ential in the previous comparisons (Figure 5). We observed a trend with
either PC-, or FC and FA-enriched clusters (Figure 5). Unlike the other
cancer types, the PC samples had mostly positive PAL values for the DNA
repair pathways, which suggested their overall stronger activation.
However, there were also two pathways related to passing through G2
phase of the cell cycle, that were downregulated in most of the thyroid
7

cancer specimens including PC: ATM Pathway G2-Mitosis progression and
Biocarta cell cycle g2 m checkpoint pathway.

To further characterize tumor type-specific pathway activation pro-
files, we used average PAL values to build radar-charts for the 15 dif-
ferential DNA repair pathways for the FA, FC, and PC tumor types
(Figure 6 A,D,G). We did not consider medullar thyroid cancer and
poorly differentiated thyroid cancer because these tumor types did not
have enough samples to enable statistically robust investigation. For
most of the pathways, this analysis revealed downregulated activation
pattern in FA, strongly enhanced pattern in PC, and intermediate pattern
in FC (Figure 6, A,D,G). However, the observed activation patterns did
not relate to the two pathways associated with passing through the G2
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Figure 7. Principal component analysis of gene expression profiles for experimental thyroid tumor samples, and normal thyroid tissue samples from ANTE, GTEx and
TCGA databases.
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phase of the cell cycle. The ATM Pathway G2-Mitosis progression pathway
was strongly downregulated in all the tumor types investigated. The
Biocarta cell cycle g2 m checkpoint pathway showed another trend: it was
upregulated in FA and to a lesser extent in FC, and downregulated in PC
(Figure 6, A,D,G).

We repeated the above comparative analysis with greater amount of
control samples by using normal thyroid RNA sequencing profiles from
public databases GTEx (446 samples) and TCGA (58 samples) which
showed, however, strong platform-specific bias (Figure 7). Unlike for the
ANTE dataset, different equipment, reagents and protocols for RNA
isolation, ribosomal RNA depletion, library preparation and sequencing
were used for the GTEx and TCGA data. This led to significant changes of
the absolute pathway activation levels when calculated using GTEx and
TCGA norms (Supplementary File 4). However, the intratumoral com-
parisons resulted in the same conclusions as before, and we obtained the
same 15 differential pathways using both types of new normal datasets
(Table 1, Supplementary File 4). Although pathway activation level
(PAL) values depended on the normal dataset used, the trends of PAL
expression in thyroid tumor types was consistent regardless of the normal
set used: minimal overall activation of DNA repair pathways in FA
samples (Figure 6 A, B, C), medium in FC samples (Figure 6 D,E,F), and
maximal in PC samples (Figure 6 G,H,I).

We then reconstructed the joint molecular networks by combining the
differential DNA repair pathways for each of the above three compari-
sons (Table 1): PC vs FC, PCþ FC vs FA, and PC vs FA (Figures 3, 4, and 5,
Supplementary file 5). For example, the joined network for the com-
parison “FC vs PC” included p53 signaling pathway, KEGG Base excision
8

repair pathway, biocarta cell cycle g2 m checkpoint pathway, KEGG Fanconi
anemia pathway and ATM pathway with its branches responsible for cell
survival (i) and passing through G2 stage during cell cycle progression (ii)
(Figure 8).

Overall, in PC compared with FC, we detected upregulated ATM, p53
and base excision repair pathways and downregulated KEGG Fanconi ane-
mia and cell cycle g2-m checkpoint pathways (Table 1). P53 signaling
pathway is involved in many mechanisms of DNA repair [48, 49, 50].
ATM-related pathways participate in double strand DNA breaks repair
[46]. Fanconi anemia pathway coordinate a complex mechanism that
enlists elements of three classic DNA repair types: homologous recom-
bination, nucleotide excision repair, and mutagenic translesion synthesis
in response to genotoxic insults [16, 47]. Thus, we can highlight that PC
compared with FC has more active double strand DNA breaks repair and
base excision repair pathways, and also more intensively involves ho-
mologous recombination, nucleotide excision repair, and mutagenic
translesion synthesis mechanisms.

Furthermore, when comparing PC þ FC versus FA, in addition to the
upregulated ATM and p53 pathways we also detected upregulated BRCA1
pathway and NCI ATM pathway with its branch G1 S transition checkpoint.
In turn, the Cell cycle G2M checkpoint pathwaywas downregulated in PCþ
FC compared with FA (Figure 9, Table 1). G1 S transition checkpoint
branch of NCI ATM pathwaywas upregulated, unlike the G2M checkpoint
pathway. The BRCA1 pathway is responsible for the regulation of DNA
damage-induced cell cycle checkpoints and controls multiple DNA repair
processes, including homologous recombination, non-homologous end-
joining, and single-strand annealing [51, 52]. Thus, we conclude that PC
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Figure 8. Reconstructed differential DNA repair molecular network for the comparison of Papillary cancer (PC) vs Follicular cancer (FC). Node Fold Change for each
node was calculated as the sum of fold changes for the genes which were included in the node. Fold change for each gene was calculated by taking logarithm base 2 of
ratio of geometric means of gene expression in compared groups. Green nodes represent genes that are up-regulated in PC (down-regulated in FC); red nodes - genes
that are down-regulated in PC (up-regulated in FC). Arrow color indicates type of interaction. Shape of a node reflects source molecular pathway(s). Asterisks (*)
indicate nodes which include differential genes (PC vs FC) with q-value <0.05; double asterisks (**) - nodes which include differential genes with q < 0.01. ATM
pathway represented here also includes its differentially regulated branches that can be considered as separate pathways: ATM Pathway Cell Survival and ATM Pathway
G2-Mitosis progression.
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þ FC have higher activation levels of double strand DNA breaks repair, if
compared with FA.

Finally, in the comparison of PC vs FAwe observed the greatest number
of differential pathways. The previously mentioned pathways (ATM
pathwaywith its branchCell Survival, p53 pathway, BRCA1pathway, Biocarta
cell cycle G2M checkpoint pathway, KEGG Base excision repair pathway) fol-
lowed the same regulation trends, but there were also several new path-
ways. These were KEGG Homologous recombination pathway, Nucleotide
excision repair effect pathway, Reactome Mismatch repair MMR directed by
MSH2, MSH6, MutSalpha pathway, Reactome Mismatch repair MMR directed
by MSH2, MSH3, MutS beta pathway, and specific branch of p53 pathway
Gene ExpressionDNAReplicationandRepair via TP53 (Figure 10, Table1).All
the pathways were upregulated in PC comparedwith FA except for the cell
cycle G2M checkpoint pathway, which was downregulated. We, therefore,
9

conclude that PC, if comparedwith FA, hadmore active double strand DNA
breaks repair, nucleotide excision and mismatch repair mechanisms, but
less active G2M checkpoint transition pathway.

We then analyzed gene compositions of the reconstructed
comparison-specific DNA repair networks and found statistically signif-
icantly differential genes (according to Wilcoxon test) that may represent
the key regulated pathway nodes. We adjusted Wilcoxon p-value by
Benjamini-Hochberg false discovery rate test and obtained the differen-
tial gene set with q-value less than 0.05 for each reconstructed pathway:
totally 68, 73, and 91 genes for the three comparisons, respectively
(Supplementary file 5). The gene compositions in these three lists were
highly redundant and totally represented 96 individual genes. Top-10 of
these differential genes sorted by the fold change value are shown on
Table 2.
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Figure 9. Reconstructed differential DNA repair molecular network for the comparison of Follicular and Papillary cancers (FC þ PC) vs Follicular adenoma (FA). Node
Fold Change for each node was calculated as the sum of fold changes of the genes which were included in the node. Fold change for each gene was calculated by taking
logarithm base 2 of ratio of geometric means of gene expression in compared groups. Green nodes represent genes that are up-regulated in FC þ PC (down-regulated in
FA); red nodes – genes that are down-regulated in FC þ PC (up-regulated in FA). Arrow color indicates type of interaction. Shape of a node reflects source molecular
pathway(s). Asterisks (*) indicate nodes which include differential genes (FC þ PC vs FA) with q-value <0.05; double asterisks (**) - nodes which include differential
genes with q < 0.01. NCI ATM pathway represented here also includes its differentially regulated branch that can be considered as separate pathway - G1 S tran-
sition checkpoint.
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In some cases, the transcriptional activity of genes can be unrelated to
the corresponding protein levels due to specific translation regulation
mechanisms. To investigate whether transcriptional changes reflect DNA
repair effector protein concentrations in cancer tissues we used published
datasets to assess correlation of expression at the transcriptomic and
proteomic levels for four DNA repair effector genes: ATM, BRCA1,
H2AFX, and TP53 in different cancers. We found that transcription and
protein concentration were statistically significantly positively correlated
in most of the cases, which can support adequacy of the transcriptome-
based approach to DNA repair pathway analyzes (Figure 11).

2.4. DNA repair pathway activities in thyroid tumors and in adjacent
pathologically normal tissues

We explored previously published thyroid tumor gene expression
dataset PRJEB11591 [53,54] to validate the activation trend revealed for
the activities of DNA repair pathways in three types of thyroid tumors.
The literature dataset contained RNA sequencing data for 25 FAs, 30
10
minimally invasive FCs, 48 follicular variants of PC (FVs), 77 classical
papillary thyroid carcinomas (PCs) and 81 adjacent pathologically
normal thyroid tissues. The adjacent normal samples corresponded to 18
FAs, 19 FCs, 11 FVs and 33 PCs. As before, we performed differential
pathway analyses (for 38 DNA repair pathways) and obtained the sta-
tistically significant q-value in at least one comparison for 36 out of 38
DNA repair pathways investigated (Supplementary file 7). We used 81
adjacent normal samples as the controls to calculate PAL of DNA repair
pathways.

Using these data we confirmed the previously revealed tendency that
the majority of differential DNA repair pathways have minimal activation
signature in FA, medium in FC and maximal in PC (Figure 12). FV
(follicular variant of PC) had intermediate pathway activation values
between FC and PC (Figure 12). DNA repair pathway activation levels in
adjacent pathologically normal tissues were very similar to the levels
observed in the corresponding tumors (R Pearson ¼ 0.8492, p-value <

2.2e-16, Figure 12). This finding may reflect tumor influence on gene
expression in adjacent pathologically normal tissue.
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Figure 10. Reconstructed differential DNA repair molecular network for the comparison of Papillary cancer (PC) vs Follicular adenoma (FA). Node Fold Change for
each node was calculated as the sum of fold changes of the genes which were included in the node. Fold change for each gene was calculated by taking logarithm base
2 of ratio of geometric means of gene expression in compared groups. Green nodes represent genes that are up-regulated in PC (down-regulated in FA); red nodes –
genes that are down-regulated in PC (up-regulated in FA). Arrow color indicates type of interaction. Shape of a node reflects source molecular pathway(s). Asterisks (*)
indicate nodes which include differential genes (PC vs FA) with q-value <0.05; double asterisks (**) - nodes which include differential genes with q < 0.01. ATM
pathway, NCI ATM pathway, and p53 signaling pathway represented here also include their differentially regulated branches that can be considered as separate
pathways: Cell Survival, G1 S transition checkpoint, and Gene Expression DNA Replication and Repair via TP53, accordingly.
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2.5. APOBEC activity in thyroid tumors

Mutational signature of thyroid cancer specimens suggests involve-
ment of DNA-modifying APOBEC family enzymes [37]. APOBEC family
cytidine deaminases convert cytidine to uracil, coupled to activity of the
base excision repair and DNA replication processes [37, 38, 39]. We
explored expression of APOBEC family genes in experimental samples
under investigation for thyroid tumor type-specific patterns (Figure 13).
Four genes showed tumor type-specific differential expression, which
11
was increased in PC compared to FA and FC: APOBEC3C, APOBEC3F,
APOBEC3G, and APOBEC4 (Figure 13A). Furthermore, we also explored
APOBEC family gene signature which was the sum of logarithmic
expression levels of all family members under study: AICDA, APOBEC2,
APOBEC3A, APOBEC3A_B, APOBEC3B, APOBEC3C, APOBEC3D, APO-
BEC3F, APOBEC3G, APOBEC3H, APOBEC4. The APOBEC signature was
also differential for the comparisons of FA vs PC, and FC vs PC
(Figure 13B). The direction of expression changes of APOBEC family gene
signature and separate genes (APOBEC3C, APOBEC3F, APOBEC3G, and
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Table 2. Top 10 differential DNA repair genes for thyroid tumor comparisons.

Gene ID PC vs FC 1,2 FC þ PC vs FA2,3 PC vs FA2,4 Gene product function according to GeneCards database [62]

SFN 1.42 1.62 2.06 Cell cycle checkpoint protein, regulates mitotic translation by
binding with translation initiation factors

RAC2 1.40 0.37 0.80 Metabolizes small guanosine triphosphate (GTP) and thus regulates
secretion, phagocytosis, cell polarization, motility, etc

RASGRF1 1.35 1.27 1.68 Stimulates dissociation of GDP from RAS proteins

IGF2 1.18 0.56 0.93 Insulin growth factor involved in growth and development

IRF9 1.00 - - Transcription factor mediating interferon signaling by IFN-alpha and IFN-beta

JUN 0.90 - - Transcription factor that recognizes and binds to the enhancer heptamer
motif 50-TGA[CG]TCA-30

POLD4 0.89 - - Enhances the activity of DNA polymerase delta and takes part in replication
fork repair and stabilization

ADGRB1 -0.87 - - Adhesion G Protein-Coupled Receptor B1 enhances the engulfment of apoptotic cells.
Activates the Rho pathway in a G-protein-dependent manner

MAP3K11 0.86 0.42 0.69 Preferentially activates MAPK8/JNK kinase, and functions as a positive regulator
of JNK signaling pathway

MAP3K14 0.80 - - Binds to TRAF2 and stimulates NF-kappaB activity

ATR - 0.68 0.86 Serine/threonine kinase and DNA damage sensor, activating cell cycle checkpoint signaling
upon DNA stress, phosphorylates and activates several proteins involved in the inhibition
of DNA replication and mitosis; promotes DNA repair, recombination, and apoptosis.

CCNB1 - 0.53 0.71 Regulates mitosis by complexing with p34 to form the maturation-promoting factor necessary
for proper control of the G2/M transition phase of the cell cycle.

CDKN2D - 0.40 0.64 Cyclin-dependent kinase inhibitor which forms a stable complex with
CDK4 or CDK6, and prevent their activation, thereby regulating cell cycle G1 phase progression.

MDM2 - 0.39 0.64 Nuclear-localized E3 ubiquitin ligase which can promote carcinogenesis by
targeting for proteasomal degradation tumor suppressor proteins including P53.

PI4KA - 0.37 - Phosphatidylinositol 4-kinase which catalyzes the first step in the biosynthesis
of phosphatidylinositol 4-bisphosphate.

H2AFX - - 0.69 Variant histone that is phosphorylated as a reaction on DNA double-strand breaks,
and replaces conventional H2A histone in nucleosomes

1 Comparison of PC versus FC tissues.
2 Gene fold change (log base 2). Sign “-” means that the gene is not included in top-10 of the most up- or downregulated differential genes.
3 Comparison of FC þ PC versus FA tissues.
4 Comparison of PC versus FA tissues.
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APOBEC4) coincides with direction of expression changes in DNA repair
pathways (expression is higher in PC than in FC and FA).

2.6. Gene expression pattern specific for radioactive iodine resistant tumors

We then attempted to identify the radioiodine resistance (RAIR)-
specific gene expression patterns using our experimental RNA
sequencing dataset. To this end, we compared 13 RAIR samples with 62
thyroid cancer samples: 18 follicular cancers and 44 papillary cancers.
We did not consider 17 samples of follicular adenoma and 3 samples of
medullar cancer in this comparison. We found no statistically significant
differences for all 38 DNA repair pathways, thus, we investigated
expression on gene level. We selected 217 differentially regulated genes
using Wilcoxon statistical test with Benjamini-Hochberg FDR-adjusted p-
value<0.05. However, well known RAIR biomarker gene SLC5A5 was
not included in the list because it did not pass the FDR criterion. We,
therefore, modified the candidate gene search criterion so that it would
be maximally strict and at the same time would allow SLC5A5 (p ¼
0.00344) to be selected. Thus, we marked as differential all the genes
with Wilcoxon test p-value less than 0.0035.

As a result, we identified 871 differential genes (Supplementary File
8) and then characterized partly their functional impacts using Gene
Ontology (GO) analysis. Only 550 of these genes had functional GO
annotation, and five statistically significantly enriched GO terms were
identified in total (Figure 14). ClueGo [55] software analysis showed that
these terms belong to two functional groups.

The first group deals with response to topologically incorrect (mis-
folded and unfolded) proteins. Unfolded protein response (UPR) is a
cellular process related to the endoplasmic reticulum (ER) stress [56].
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The information about the protein folding status is sensed in the ER
lumen and transmitted to the cytoplasm and the nucleus. UPR signaling
pathway includes transcriptional induction of UPR genes, global atten-
uation of translation, and ER-associated protein degradation. If the pro-
tein folding defect is not corrected, cells undergo apoptosis [57]. We
found no previous references in the scientific literature to the association
between the response to unfolded proteins and radioiodine resistance in
thyroid cancer. However, induction of UPR was reported to promote
radiosensibilization in radioresistant colorectal cancer cells [58].

The second functional group included only one GO term: aldo-keto
reductase (NADP) activity. The aldo-keto reductase (AKR) superfamily
comprises several enzymes that catalyze redox transformations involved
in biosynthesis, intermediary metabolism, and detoxification [59]. We
found no publications linking AKRs with radioiodine resistance of thy-
roid cancer. However, it was previously reported that small interfering
RNA specific to AKR1C3 gene could significantly enhance sensitivity to
radiation therapy in non-small cell lung cancer cells [53]. In contrast,
overexpression of AKR1C3 also increased radioresistance of prostate and
esophageal cancer cells [54, 60]. Meanwhile, increased aldehyde
reductase expression mediates acquired radioresistance of laryngeal
cancer via p53-related mechanism [61].

In addition, five differential genes out of 871 identified belonged to
the DNA repair pathways (Table 3). One of them (GTF2H2C) is involved
in nucleotide excision repair and RNA transcription [62]. For the other
four genes, a link to radiation therapy was previously mentioned in the
literature.

RFC5 gene product is part of the Rad17-RFC complex, which is one of
the mechanisms of cellular recognition of a radiation insult [63]. The
complex can dock on fractured DNA or near the site of damaged DNA and



Figure 11. Correlation of expression at transcriptome and proteome levels for ATM, BRCA1, H2AFX, and TP53 genes in six human cancer types.
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initiate downstream signaling, including activation of ATM and ATR
kinases [63]. Then the ATM and ATR signaling pathways activate
downstream effectors and thus regulate cell cycle arrest, DNA repair, and
apoptosis [63, 64, 65, 66, 67].

Cdc42 belongs to the Rho subfamily of GTPases, which plays a key
role in the initiation and progression of cancer by transmitting oncogenic
signals from the cell surface receptors and from activated guanine
nucleotide exchange factors (GEF) signaling [62]. Alternatively, Cdc42
can be activated by the PI3K signaling through activation of
PIP3-regulated GEFs, such as P-Rex, Vav, Sos, and SWAP70 [68].
Recently, Rac1 inhibition has been shown to sensitize pancreatic and
breast cancer cells to radiation therapy, therefore, Rac and, similarly,
Cdc42 may be regarded as the putative targets for chemosensitization of
radiotherapy [69, 70, 71].

RBX1 contributes to the G1 phase-specific degradation of Exonuclease
1 (EXO1), which is responsible for the protruding 30 single stranded DNA
formation during processing of double-strand breaks. RBX1 knockdown
decreases the degradation of EXO1 [72], and its depletion causes radi-
osensibilization of cervical cancer cells and deficiency in DNA
double-strand breaks repair [72]. RBX1 silencing significantly sensitizes
13
radioresistant glioblastoma and lung cancer cells to the radiation with
sensitivity enhancement ratios of 1.5 and 1.3, respectively [73].

Finally, the RPS27A gene was reported to be over-expressed in breast
fibroadenomas, colorectal, renal cancers, chronic myeloid leukemia and
acute leukemia [74, 75, 76]. Ubiquitin is encoded by four different genes
that are highly homologous in eukaryotes. UBA52 and RPS27A genes
code for a single copy of ubiquitin fused to the ribosomal proteins L40
and S27a, respectively. Knock-down of ubiquitin increased the radio-
sensitivity in H1299 cells, thus RPS27Amay contribute to radioresistance
of tumor cells [77].
2.7. Fusion gene transcripts

We screened RNA sequencing reads for the clinically relevant hybrid
transcripts with eleven oncogenes: ALK, ROS1, RET, NTRK1, NTRK2,
NTRK3, FGFR1, FGFR2, FGFR3, BCR, and ABL1. We found reads directly
supporting two fusion transcripts with genes ALK and RET. One was in-
frame fusion for well-known NCOA4-RET translocation [107]
(Figure 15A), and another one was frameshift fusion of ALK oncogene
with a previously unknown upstream partner ARHGAP12 (Figure 16A).
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Figure 12. Average PAL values for 36 differential DNA repair pathways. (A) calculated using PRJEB11591 dataset for follicular adenoma (FA), follicular cancer (FC),
follicular variant of papillary cancer (FV), classical variant of papillary cancer (PC) and their matched adjacent pathologically normal tissues: FA.N, FC.N, FV.N, PC.N,
respectively. Pathway name abbreviations: p1 - ATM Pathway, p2 - ATM Pathway Cell Survival, p3 - ATM Pathway G2-Mitosis progression, p4 - Biocarta atm signaling
pathway, p5 - Biocarta cell cycle G2M checkpoint pathway, p6 - BRCA1 Pathway, p7 - BRCA1 Pathway Chromatin Remodeling, p8 - BRCA1 Pathway Homologous
Recombination Repair, p9 - BRCA1 Pathway Mismatch Repair, p10 - DNA Repair Mechanisms Pathway, p11 - KEGG Base excision repair pathway, p12 - KEGG Fanconi
anemia pathway, p13 - KEGG Homologous recombination pathway, p14 - KEGG Mismatch repair pathway, p15 - KEGG Non homologous end joining pathway, p16 -
KEGG Nucleotide excision repair pathway, p17 - Mismatch Repair in Eukaryotes Pathway, p18 - NCI ATM pathway, p19 - NCI ATM Pathway (G1 S transition
checkpoint), p20 - NCI ATR signaling pathway, p21 - NCI ATR signaling Pathway (Pathway negative regulation of transcription during mitosis via CHEK1), p22 - NCI
ATR signaling Pathway (regulation of double strand break repair via homologous recombination), p23 - NCI ATR signaling Pathway (response to G2 M transition DNA
damage checkpoint signal), p24 - NCI DNA PK pathway in nonhomologous end joining Pathway (double strand break repair via nonhomologous end joining), p25 -
NCI DNA PK pathway in nonhomologous end joining Pathway (V D J recombination), p26 - NCI Fanconi anemia pathway, p27 - NCI Fanconi anemia Pathway
(regulation of double strand break repair via homologous recombination), p28 - NCI Fanconi anemia Pathway (Sister Chromatid Exchange Process), p29 - NHEJ
mechanisms of DSBs repair effect, p30 - Nucleotide excision repair effect, p31 - p53 Signaling Pathway, p33 - p53 Signaling Pathway Gene Expression DNA Replication
and Repair via TP53, p34 - reactome Fanconi Anemia pathway, p36 - Reactome Mismatch repair MMR directed by MSH2, MSH3, MutS beta pathway, p37 - Reactome
Mismatch repair MMR directed by MSH2, MSH6, MutS alpha pathway, p38 - Reactome Repair synthesis for gap filling by DNA polymerase in TC NER pathway. (B)
Average PAL for tumor tissues and the corresponding adjacent pathologically normal tissues. Each dot represents a "pathway – thyroid tumor type" case, totally 144
cases represented (36 pathways in four tumor types).
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Figure 13. (A) Boxplot representation of logarithmic expression of APOBEC genes in thyroid tumor types: FA (n ¼ 17), FC (n ¼ 23), PC (n ¼ 51). q-value of Kruskel-
Wallis test is shown. Asterisks (*) indicate differential pairs of cancer types with Wilcoxon–test p-value <0.05; double asterisks (**) - with p-value <0.01. (B) APOBEC
gene signature for three thyroid tumor types: FA (n ¼ 17), FC (n ¼ 23), PC (n ¼ 51). Double asterisks (**) denote pairs with p-value <0.01 by Wilcoxon–test.
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Seventh exon ofNCOA4was fused with the eleventh exon of RET. In turn,
third exon of ARHGAP12 was fused with the fourth exon of ALK. In both
cases, exon coverage also supported fusion status for the ALK
(Figure 16B) and RET (Figure 15B) genes as the relative coverage
downstream to the fusion site was higher than upstream (Figures 6B, 7B).

Both fusions were found in papillary thyroid cancers of follicular
histologic subtype with node metastases, one of them (NCOA4-RET) in
the radioactive iodine resistant tumor. We didn't detect any outstanding
DNA repair pathway activation features in the samples with fusion
transcripts (Figure 17).

3. Discussion

Here we present clinically annotated RNA sequencing data for 95
human thyroid tumor biosamples corresponding to 17 follicular ade-
nomas, 23 follicular, 51 papillary, 1 poorly differentiated, and 3medullar
thyroid cancers cases. These molecular data are fully compatible with the
previously published ANTE database, which includes RNA sequencing
profiles for healthy human tissues, including thyroid tissue [45]. The
gene expression dataset is assembled in a machine-readable format and
annotated by the available patients’ data, including type and histological
subtype of thyroid tumor, sex, age, diagnosis, and BRAF (V600E) muta-
tion status and gene fusion status. This dataset will hopefully be useful to
those interested in thyroid tumor biology, especially in the context of
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relevant data accumulation from different sources. The use of this ma-
terial in further analytic investigations can make it possible to identify
and validate thyroid tumor type-specific expression biomarkers.

These data allowed us to analyze characteristic features of DNA repair
pathway regulation in different thyroid tumor types. Follicular and
papillary cancers demonstrated higher activation level of DNA repair
pathways than the follicular adenomas. Our results suggest that papillary
cancers have more activated DNA repair pathways than follicular neo-
plasms, with the remarkable exception of a G2M transition checkpoint
pathway which showed an opposite trend. We found that most of DNA
repair pathways were minimally activated (among tumors) in follicular
adenomas. This trend was also confirmed for literature dataset
PRJEB11591. We hypothesize that lower DNA repair pathway activation
strengths in follicular adenomas compared to thyroid tumors can be
linked with relatively lower level of DNA replication defects. Alterna-
tively, this effect can be also connected with hypoxia which frequently
accompanies benign tumors and inhibits DNA repair pathways [78].

Thus, our results demonstrate that DNA repair activity is increased in
malignant compared to benign tumors. The same trend was also estab-
lished for the tumor-adjacent pathologically normal tissues. These two
evidences highlight the link between tumor progression and increased
level of DNA repair and are consistent with the previous literature data
on DNA repair in thyroid tumors [24, 79]. In agreement with that, the
increased level of DNA damage marker 8-oxo-dG had been previously
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Figure 14. Statistically significantly
enriched gene ontology (GO) molecular
processes (GO-terms) identified for 871 dif-
ferential genes between radioiodine resistant
cancers and other thyroid cancer samples.
Differential gene names are shown in red.
Circle size inversely reflects FDR-adjusted p-
value for a differential GO-term identified.
Filled part of a circle represents percentage
share of matched differential genes in gene
set of the respective GO-term. Links between
the terms are taken from the STRING
database.
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reported for thyroid tumors [80]. The same trend was also observed for
another reactive oxygen marker, cytoplasmic 4-HNE, which character-
izes lipid peroxidation level [80].

We also reconstructed DNA repair networks that were differential in
the FC versus PC, FC þ PC versus FA, and PC versus FA comparisons, and
Table 3. DNA repair genes linked with the radioiodine resistant thyroid cancer samp

Gene ID Gene function according to GeneCards database [62]

CDC42 CDC42 encodes a small GTPase of the Rho subfamily that regulates signaling
pathways controlling cell morphology, migration, endocytosis, and cell cycle progres

GTF2H2C Component of the core-TFIIH basal transcription factor involved in nucleotide
excision repair of DNA and, when complexed to CDK activating kinase, in RNA
transcription by RNA polymerase II.

RFC5 RFC5 encodes the smallest subunit of the factor C complex required for
DNA replication. This subunit interacts with the C-terminus of PCNA protein
and loads it onto DNA during S-phase of the cell cycle. RFC5 is a member of
the AAAþ (ATPases associated with various cellular activities) family and
forms a core complex with the other two subunits that possesses DNA-dependent
ATPase activity.

RBX1 RBX1 encodes a RING finger-like domain-containing protein that interacts
with cullin proteins and likely plays a role in ubiquitination processes
necessary for cell cycle progression and DNA repair.

RPS27A Ubiquitin has a major role in targeting cellular proteins for proteasomal degradation
is synthesized as a precursor protein consisting of either polyubiquitin chains or a
single ubiquitin fused to an unrelated protein. RPS27A encodes a fusion protein
consisting of ubiquitin at the N terminus and ribosomal protein S27a at the C termin
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identified statistically significantly differential nodes. It is of note that the
differential gene lists were very similar in these three comparisons. This
fact may suggest that molecular differences between the follicular and
papillary neoplasms are bigger than between the malignant and benign
tumors.
les.

Relevant DNA repair pathways

sion.
� p53 Signaling Pathway

� KEGG Nucleotide excision repair pathwayp2p
� Reactome Formation of transcription coupled NER TC NER
repair complex pathway

� Mismatch Repair in Eukaryotes Pathway,
� KEGG Mismatch repair pathway,
� KEGG Nucleotide excision repair pathway,
� NCI ATR signaling Pathway regulation of double strand break repair
via homologous recombination,
� NCI ATR signaling Pathway negative regulation of transcription during
mitosis via CHEK1,
� NCI ATR signaling Pathway response to G2 M transition DNA damage
checkpoint signal,
� Reactome Repair synthesis for gap filling by DNA polymerase in TC NER pathway,
� NCI ATR signaling pathway,
� NCI Fanconi anemia pathway
� NCI Fanconi anemia pathway (Sister Chromatid Exchange Process)
� NCI Fanconi anemia pathway (regulation of double strand break repair via
homologous recombination)

� KEGG Nucleotide excision repair pathway

,

us.

� reactome Fanconi Anemia pathway
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Figure 15. Schematic representation of NCOA4-RET fusion transcript identified. A, gene structures upstream and downstream of fusion site. B, RET gene exon
coverage by normalized RNA sequencing reads in RAIR4 sample.

Figure 16. Schematic representation of ARHGAP12-ALK fusion transcript identified. (A) gene structures upstream and downstream of fusion site. (B) ALK gene exon
coverage by normalized RNA sequencing reads in TC12 sample.
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In this study we identified statistically differential features of DNA
repair pathway activation between follicular and papillary thyroid can-
cers. Uncovering these differences may not only contribute to under-
standing of molecular mechanisms of thyroid tumors but also may help
further developing new molecular-based therapeutic approaches for
different types and subtypes of TCs. DNA repair has dual significance by
simultaneously slowing down tumor evolution but also by protecting
tumor cells from the treatment of replication targeting therapeutics.
Thus, controlled inhibition of DNA repair activities can be considered
personalized therapeutic option [81, 82]. On the other hand, we found no
differential DNA repair pathways between radioiodine resistant and
sensitive tumor samples. This may suggest that the molecular differences
between thyroid tumor types are more significant than differences be-
tween radioiodine resistant and sensitive tumors.

Another key point of this study deals with the expression patterns of
tumor-adjacent pathologically normal tissues learned from the literature
dataset PRJEB11591. We showed that activation levels of DNA repair
pathways strongly correlated between the tumor and adjacent normal
tissues (R Pearson ¼ 0.8492, p-value < 2.2e-16, Figure 12B). This
observation is consistent with some previous studies [83, 84] and sug-
gests that tumor-adjacent pathologically normal tissues can be strongly
affected by the tumor and must be considered with care when comparing
cancerous and healthy tissues.

Annotations for 23 molecular profiles published here include the
response data on radioactive iodine therapy, of them 10 were for the
treatment responders and 13 for the non-responders. This sampling is
modest in terms of robust biomarker discovery. However, these datasets
can be combined with the previously published or future data collections
e.g. using harmonization of gene expression profiles data formats [85].
Alternatively, advanced methods of reducing data dimensionality can be
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applied in order to make use of machine learning and other artificial
intelligence approaches to further analyze the data [86, 87, 88].

Finally, we identified fusion transcripts for ALK and RET oncogenes.
One of them represents a well-known NCOA4-RET translocation, and
another one is a new hybrid transcript of ALK oncogene with a previously
unknown upstream fusion partner ARHGAP12. The latter can probably
drive increased transcription of truncated ALK downstream from the
fusion site because its normalized expression is one-two orders of
magnitude higher in the normal tissues than for the ALK gene (UCSC
Genome Browser, https://genome.ucsc.edu). This was also the case for
our experimental dataset of thyroid tumor tissues, where mean normal-
ized ARHGAP12 expression was ~12-fold greater than the expression of
ALK.

We hope that the data communicated here could be used for funda-
mental cancer research applications and for revising lists of tumor spe-
cific gene expression biomarkers, including those that distinguish
between malignant and benign thyroid tumors and predict response to
iodine radiation therapy.

4. Materials and methods

4.1. Biosamples

Biosamples were obtained from patients diagnosed with primary
thyroid tumors who had undergone surgery at Endocrinology Research
Centre, Moscow. For all the biosamples, informed written consents to
participate in the study were collected from the patients or their legal
representatives. The study was conducted in accordance with the
Declaration of Helsinki ethical principles. The consent procedure and the
design of the study were approved by the local ethical committee of the

https://genome.ucsc.edu
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Figure 17. PAL distribution for 38 DNA repair pathways in experimental thyroid tumor samples. Color denotes samples with gene fusions. Pathway name abbre-
viations: p1 - ATM Pathway, p2 - ATM Pathway Cell Survival, p3 - ATM Pathway G2-Mitosis progression, p4 - Biocarta atm signaling pathway, p5 - Biocarta cell cycle
G2M checkpoint pathway, p6 - BRCA1 Pathway, p7 - BRCA1 Pathway Chromatin Remodeling, p8 - BRCA1 Pathway Homologous Recombination Repair, p9 - BRCA1
Pathway Mismatch Repair, p10 - DNA Repair Mechanisms Pathway, p11 - KEGG Base excision repair pathway, p12 - KEGG Fanconi anemia pathway, p13 - KEGG
Homologous recombination pathway, p14 - KEGG Mismatch repair pathway, p15 - KEGG Non homologous end joining pathway, p16 - KEGG Nucleotide excision
repair pathway, p17 - Mismatch Repair in Eukaryotes Pathway, p18 - NCI ATM pathway, p19 - NCI ATM Pathway (G1 S transition checkpoint), p20 - NCI ATR
signaling pathway, p21 - NCI ATR signaling Pathway (Pathway negative regulation of transcription during mitosis via CHEK1), p22 - NCI ATR signaling Pathway
(regulation of double strand break repair via homologous recombination), p23 - NCI ATR signaling Pathway (response to G2 M transition DNA damage checkpoint
signal), p24 - NCI DNA PK pathway in nonhomologous end joining Pathway (double strand break repair via nonhomologous end joining), p25 - NCI DNA PK pathway
in nonhomologous end joining Pathway (V D J recombination), p26 - NCI Fanconi anemia pathway, p27 - NCI Fanconi anemia Pathway (regulation of double strand
break repair via homologous recombination), p28 - NCI Fanconi anemia Pathway (Sister Chromatid Exchange Process), p29 - NHEJ mechanisms of DSBs repair effect,
p30 - Nucleotide excision repair effect, p31 - p53 Signaling Pathway, p32 - p53 Signaling Pathway DNA Repair, p33 - p53 Signaling Pathway Gene Expression DNA
Replication and Repair via TP53, p34 - reactome Fanconi Anemia pathway, p35 - Reactome Formation of transcription coupled NER TC NER repair complex pathway,
p36 - Reactome Mismatch repair MMR directed by MSH2, MSH3, MutS beta pathway, p37 - Reactome Mismatch repair MMR directed by MSH2, MSH6, MutS alpha
pathway, p38 - Reactome Repair synthesis for gap filling by DNA polymerase in TC NER pathway.
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Figure 18. Representative microphotographs of eosin-hematoxylin stained histology preparations of different thyroid tumor types. A – papillary thyroid cancer (TC),
magnification X200, sample ID: TC_65; B - Follicular thyroid cancer (FC), magnification X50, sample ID: TC_119; C – Follicular adenoma (FA), magnification X100,
sample ID: TC_22; D – medullary thyroid cancer (MC), magnification X50, sample ID: TC_17.
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Endocrinology Research Centre, Moscow, protocol number 19 (October
25, 2017, Chairman Dr. E.N. Andreeva). From the patients TC16, TC18,
TC19, TC26 and TC127, the consent was obtained for disclosure of sex,
histological tumor type, and molecular data including RNA sequencing
data but excluding whole-genome and/or whole-exome sequencing data;
from the patients TC11, TC12, TC17, TC37 and TC125 - for disclosure of
sex, histological tumor type, diagnosis, and molecular data including
RNA sequencing data but excluding whole-genome and/or whole-exome
sequencing data; for the rest of the patients - for disclosure of sex, age,
histological tumor type, diagnosis, and molecular data including RNA
sequencing data but excluding whole-genome and/or whole-exome
sequencing data.

Tissue specimens were formalin-fixed and embedded in paraffin.
Tumors were evaluated by a pathologist to determine histological type
and to estimate proportion of tumor cells. All the specimens used in this
study contained at least 60% of tumor cells.

Overall, 51 papillary thyroid cancer (PC), 23 follicular thyroid cancer
(FC), 3 medullary thyroid cancer (MC), 1 poorly differentiated thyroid
cancer (PDC), and 17 follicular thyroid adenoma (FA) samples were
investigated. There were 21 male and 74 female patients. The mean age
of patients was 47 years (range 11–88 years). Additionally, 6 healthy
thyroid tissue samples from ANTE database [45] were used to normalize
gene expression levels in molecular pathway analysis. Clinical annota-
tions of tumor specimens investigated are summarized in the Supple-
mentary file 1.
4.2. RNA sequencing

RNA libraries were generated, sequenced, and processed as described
in [45]. RNA extraction was performed with the RecoverAll™ Total
19
Nucleic Acid Isolation Kit (Invitrogen), following the manufacturer's
protocol. RNA Integrity Number (RIN) was measured using Agilent 2100
bioanalyzer. RNA concentration was measured with Agilent RNA 6000
Nano or Qubit RNA Assay Kits. Depletion of ribosomal RNA was per-
formed using RNA Hyper with RiboErase (KAPA Biosystem) Kit. Library
concentrations and quality were measured with Qubit ds DNA HS Assay
kit (Life Technologies) and Agilent Tapestation (Agilent). The samples
were sequenced using Illumina HiSeq 3000 equipment for single end
sequencing, 50 bp read length, for approximately 30 million raw reads
per sample. Data quality check was conducted using Illumina SAV.
De-multiplexing was performed using Illumina Bcl2fastq2 v 2.17 soft-
ware [45].
4.3. Processing of RNA sequencing data

RNA sequencing FASTQ files were processed with STAR aligner [89].
We used ‘GeneCounts’ mode with the Ensembl human transcriptome
annotation (Build version GRCh38 and transcript annotation
GRCh38.89). Complete HGNC dataset [90], version of July 13, 2017, was
used to convert Ensembl gene IDs to HGNC gene symbols.
4.4. Evaluation of BRAF (V600E) mutation status

Detection of BRAF (V600E) mutation was performed using allele-
specific PCR with dual-labeled probe as described in [91]. PCR cycling
conditions were pre-denaturation step 95�С – 2 min, followed by 50
cycles of denaturation (94�С, 10 s), annealing, and elongation (60�С, 15
s). Mutation status was considered positive if the mutant allele content
was 3% or more of the wild-type allele.

mailto:Image of Figure 18|tif


Figure 19. Quality control of RNA sequencing profiles. A - fastQC per base quality score for sample TC76. The plot was drawn using fastQC software. B - fastQC per
sequence quality score for sample TC76. The plot was drawn using fastQC software. C - plot for principal component analysis in normalized gene expression space
(lg(RPM)) for all RNA sequencing profiles investigated. The plot was drawn using graphics package in R language. D - hierarchical clustering of all RNA sequencing
profiles based on Euclidian distance in normalized gene expression space (lg(RPM)). The plot was drawn using pheatmap package in R, clustering algo-
rithm “ward.d2”.
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4.5. Histological characterization of samples

All samples were subjected to histological analysis, representative
microphotographs of preparations of the thyroid tumor types investi-
gated are shown in Figure 18.

Specific histology subtypes of the specimens are given in the Sup-
plementary file 1. For further analyses, we grouped specimens by major
tumor types: PC, FC, MC, and FA.

4.6. Quality control of mRNA sequencing profiles

Detailed annotation of RNA sequencing reads mapping statistic pro-
duced by STAR aligner [89] and quality control metrics produced by
NCBI MAGIC software [79] are shown in the Supplementary file 2.
Minimal number of reads uniquely mapped on mRNA sequences of
known genes was ~3,4*106 with the mean of ~9,2*106 (Supplementary
file 2). Average mapping rate, taking into account only uniquely mapped
reads, was 78%. Typical per base and per sequence quality scores visu-
alized by fastQC software [80] demonstrated high values for individual
base pairs and read sequences (Figure 19 A, B).
20
Principal component analysis (PCA) and hierarchical clustering
based on Euclidian distance in normalized counts (lg(RPM)) space
did not reveal any outliers (Figure 19 C, D). In comparison with
other FC and PC samples, three FC samples formed a distant cluster
(TC2, TC4, TC124; Figure 19C, circled). These three cluster members
had 150 differentially expressed genes with q-value<0.05 by Wil-
coxon test (Supplementary File 9). The gene contribution coefficients
for the first two principal components are given in Supplementary
File 9.

We performed sequencing of two technical replicates of samples TC63
and TC116, Spearman's correlation coefficient between gene expression
profiles was 0.95 for both cases. We also found that the replicates tightly
clustered on the dendrogram (Figure 20) which confirmed data consis-
tency of the RNA sequencing protocol used.

Overall, our data quality assay did not identify any significant internal
problems or internal bias in the RNA sequencing data presented. We did
not include the poorly differentiated thyroid cancer sample in our further
analysis because it cannot be used for group comparisons. We used reads
per million (RPM) normalization of expression data. We filtered low-
expressed values (less than one) to reduce data noise.
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Figure 20. Comparison of RNA sequencing gene expression profiles of two technical replicates: for TC-63 sample (A), and for TC-116 sample (B). Clustering
dendrogram of experimental tumor samples expression profiles (C), technical replicates are shown in color.
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4.7. Data records

Original gene expression data were deposited in Gene Expression
Omnibus database (GEO) under accession number GSE138042. Raw
fastq data are available in SRA archive under accession number
PRJNA588725. Description of clinically relevant (age, sex, diagnosis,
tumor histotype, BRAF (V600E)mutation status) and technical (RIN, date
of sequencing) information is given in the Supplementary file 1. Results
of RNA sequencing reads quality assay are given for mRNA in the Sup-
plementary file 2.

4.8. Structures of DNA repair pathways

The gene structures and molecular architectures of 38 DNA repair
pathways were obtained from the public databases Reactome [40], NCI
Pathway Interaction Database [41], Kyoto Encyclopedia of Genes and
Genomes [42], Biocarta [43], and Qiagen [44], and manually curated as
described in [81]. Only molecular pathways which include ten or more
genes [82] were considered in calculations of pathway activation level
(PAL) in order to increase statistical accuracy.

4.9. Alternative thyroid tissue datasets

We used published RNA sequencing gene expression profiles of
normal thyroid tissues from TCGA [83] and GTEx [84] project databases,
21
amounting to 58 and 446 profiles, correspondingly. Samples barcodes
are shown in Supplementary File 6. Raw gene counts were processed as
reads per million (RPM).

Alternatively, thyroid tumor and normal thyroid RNA sequencing
profiles from dataset PRJEB11591 [92,93] were used. The dataset in-
cludes data for 25 FA, 30 minimally invasive FC, 48 follicular variant of
PC (FV), 77 classical papillary thyroid carcinomas (PC) and 81 adjacent
normal thyroid tissues. FASTQ files were processed by STAR aligner [89]
to get raw gene counts that were processed as RPM.

The proteome datasets from CPTAC [94] and corresponding tran-
scriptome datasets from gdc-portal [29] were used to assess correlation
between expression on transcriptome and proteome level for key genes in
tumor and normal tissues. We totally used 102 paired RNA sequencing
and proteome profiles of breast, 53 - colon, 210 – lung, 108 – brain, 62 –

ovary, 151 – head and neck tissues.

4.10. Calculation of pathway activation level

Pathway activation level (PAL) characterizes cumulative changes in
expression levels of genes belonging to a certain molecular pathway [38,
39, 95]. PAL is calculated as follows:

PALp ¼
X
n

ARRnp*lgðCNRnÞ
,X

n

jARRnpj;
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where PALp is PAL for pathway p, CNRn is case-to-normal ratio, the
ratio of gene n expression level in a tumor sample under study to an
average level in the control group; ARR (activator/repressor role) is a
Boolean flag that depends on the function of gene n product in pathway
p. ARR value is �1 if gene product n inhibits pathway p; 1 if n activates
the pathway; 0 if n has ambiguous or unclear role in the pathway; 0.5 or
�0.5, if n is more a pathway activator or its inhibitor, respectively. For
convenience, in this article we use modified PAL ¼ PAL*100. PAL
values for all samples under investigation are given in Supplementary
File 6.
4.11. Gene ontology analysis and visualization of molecular pathways

Gene Ontology (GO) analysis was performed using ClueGO software
[55] with GO database from 28.04.2020. GO-analysis results and mo-
lecular pathways were visualized using Cytoscape 3.8.0 [96].
4.12. Identification of fusion transcripts

Fusion transcripts were initially screened using STAR-Fusion soft-
ware. Preliminary files containing fusion candidates for genes ALK,
ROS1, RET, NTRK1, NTRK2, NTRK3, FGFR1, FGFR2, FGFR3, BCR, ABL1
were generated and the corresponding RNA sequencing reads were
extracted. The output data were manually inspected using UCSC BLAT
and UCSC Browser (https://genome.ucsc.edu/) to interrogate fusion
candidates according to the following criteria: (i) does the read cover
exon junction of two different transcripts, (ii) if the junction point
exactly corresponds to exon termini of known genes with canonic splice
sites, (iii) if both transcripts are in the same orientation. The inputs with
three positive flags were considered as those supporting fusion
transcripts.
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