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A Tutorial on Analysis and Simulation of Boolean Gene Regulatory 
Network Models 

Yufei Xiao*,1,2 
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Abstract: Driven by the desire to understand genomic functions through the interactions among genes and gene products, 
the research in gene regulatory networks has become a heated area in genomic signal processing. Among the most studied 
mathematical models are Boolean networks and probabilistic Boolean networks, which are rule-based dynamic systems. 
This tutorial provides an introduction to the essential concepts of these two Boolean models, and presents the up-to-date 
analysis and simulation methods developed for them. In the Analysis section, we will show that Boolean models are 
Markov chains, based on which we present a Markovian steady-state analysis on attractors, and also reveal the 
relationship between probabilistic Boolean networks and dynamic Bayesian networks (another popular genetic network 
model), again via Markov analysis; we dedicate the last subsection to structural analysis, which opens a door to other 
topics such as network control. The Simulation section will start from the basic tasks of creating state transition diagrams 
and finding attractors, proceed to the simulation of network dynamics and obtaining the steady-state distributions, and 
finally come to an algorithm of generating artificial Boolean networks with prescribed attractors. The contents are 
arranged in a roughly logical order, such that the Markov chain analysis lays the basis for the most part of Analysis 
section, and also prepares the readers to the topics in Simulation section.  
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1. INTRODUCTION 

 In most living organisms, genome carries the hereditary 
information that governs their life, death, and reproduction. 
Central to genomic functions are the coordinated interactions 
between genes (both the protein-coding DNA sequences and 
regulatory non-coding DNA sequences), RNAs and proteins, 
forming the so called gene regulatory networks (or genetic 
regulatory networks). 
 The urgency of understanding gene regulations from 
systems level has increased tremendously ever since the 
early stage of genomics research. A driving force is that, if 
we can build good gene regulatory network models and 
apply intervention techniques to control the genes, we may 
find better treatment for diseases resulting from aberrant 
gene regulations, such as cancer. In the past decade, the 
invention of high throughput technologies has made it 
possible to harvest large quantities of data efficiently, which 
is turning the quantitative study of gene regulatory networks 
into a reality. Such study requires the application of signal 
processing techniques and fast computing algorithms to 
process the data and interpret the results. These needs in turn 
have fueled the development of genomic signal processing 
and the use of mathematical models to describe the complex 
interactions between genes. 
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 The roles of mathematical models for gene regulatory 
networks include:  
• Describing genetic regulations at a system level;  
• Enabling artificial simulation of network behavior;  
• Predicting new structures and relationships;  
• Making it possible to analyze or intervene in the 

network through signal processing methods.  
 Among various mathematical endeavors are two Boolean 
models, Boolean networks (BNs) [1] and probabilistic 
Boolean networks (PBNs) [2], in which each node (gene) 
takes on two possible values, ON or OFF (or 1 and 0), and 
the way genes interact with each other is formulated by 
standard logic functions. They constitute an important class 
of models for gene regulatory networks, in that they capture 
some fundamental characteristics of gene regulations, are 
conceptually simple, and their rule-based structures bear 
physical and biological meanings. Moreover, Boolean 
models can be physically implemented by electronic circuits, 
and demonstrate rich dynamics that can be studied using 
mathematical and signal processing theory (for instance, 
Markov chains [2, 3]). 
 In practice, Boolean models have been successfully 
applied to describe real gene regulatory relations (for 
instance, the drosophila segment polarity network [4]), and 
the attractors of BNs and PBNs have been associated with 
cellular phenotypes in the living organisms [5]. The 
association of network attractors and actual phenotypes has 
inspired the development of control strategy [6] to increase 
the possibility of reaching desirable attractors (“good” 
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phenotypes) and decrease the likelihood of undesirable 
attractors (“bad” phenotypes such as cancer). The effort of 
applying control theory to Boolean models is especially 
appealing in the medical community, as it holds potential to 
guide the effective intervention and treatment in cancer. 
 The author would like to bring the fundamentals of 
Boolean models to a wider audience in light of their 
theoretical value and pragmatic utility. This tutorial will 
introduce the basic concepts of Boolean networks and 
probabilistic Boolean networks, present the mathematical 
essentials, and discuss some analyses developed for the 
models and the common simulation issues. It is written for 
researchers in the genomic signal processing area, as well as 
researchers with general mathematics, statistics, engineering, 
or computer science backgrounds who are interested in this 
topic. It intends to provide a quick reference to the 
fundamentals of Boolean models, allowing the readers to 
apply those techniques to their own studies. Formal 
definitions and mathematical foundations will be laid out 
concisely, with some in-depth mathematical details left to 
the references. 

2. PRELIMINARIES 

 In Boolean models, each variable (known as a node) can 
take two possible values, 1 (ON) and 0 (OFF). A node can 
represent a gene, RNA sequence, or protein, and its value (1 
or 0) indicates its measured abundance (expressed or 
unexpressed; high or low). In this paper, we use “node” and 
“gene” interchangeably. 

 A state in Boolean models is a binary vector of all the 
gene values measured at the same time, and is also called the 
gene activity (or expression) profile (GAP). The state space 
of a Boolean model consists of all the possible states, and its 
size will be n

2  for a model with n  nodes. 

 Definition 1 [2, 7] A Boolean network is defined on a set 
of n  binary-valued nodes (genes) {0,1}},,,{= 1 !

in
xxxV ! , 

where each node 
i
x  has 

i
k  parent nodes (regulators) chosen 

from V , and its value at time t + 1  is determined by its 
parent nodes at t  through a Boolean function 

if ,  

}.,{1,},1,{)),(),...,(),((=1)( 21 nikitxtxtxftx i
i
ikiiii !! !+  (1) 

i
k  is called the connectivity of 

i
x , and 

if  is the regulatory 
function. Defining network function ),,(= 1 nff !f , we 
denote the Boolean network as !(V , f ) . Let the network 
state at time t  be ))(,),((=)( 1 txtxt

n
!x , the state transition 

x(t )! x(t + 1)  is governed by f , written as 
x(t + 1) = f (x(t )) .  

 In Boolean networks, genetic interactions and regulations 
are hard-wired with the assumption of biological 
determinism. However, any gene regulatory network is not a 
closed system and has interactions with its environment and 
other genetic networks, and it is also likely that genetic 
regulations are inherently stochastic; therefore, Boolean 
networks will have limitations in their modeling power.  
 

Probabilistic Boolean networks were introduced to address 
this issue [2, 7], such that they are composed of a family of 
Boolean networks, each of which is considered a context [8]. 
At any given time, gene regulations are governed by one 
component Boolean network, and network switchings are 
possible such that at a later time instant, genes can interact 
under a different context. In this sense, probabilistic Boolean 
networks are more flexible in modeling and interpreting 
biological data. 

 Definition 2 [2, 3, 7] A probabilistic Boolean network is 
defined on {0,1}},,,{= 1 !

in
xxxV ! , and consists of r  

Boolean networks 
 
!
1
(V , f

1
),!,!

r
(V , f

r
) , with associated 

network selection probabilities 
r
cc ,,

1
!  such that 

1=
1= j

r

j
c! . The network function of the j -th BN is 

),,(= )((1) n

jjj ff !f . At any time, genes are regulated by one 
of the BNs, and at the next time instant, there is a probability 
q  (switching probability) to change network; once a change 
is decided upon, we choose a BN randomly (from r  BNs) by 
the selection probabilities. Let p  be the rate of random gene 
perturbation (flipping a gene value from 0 to 1 or 1 to 0), the 
state transition of PBN at t  (assuming operation under ! j ) 
is probabilistic, namely [3],  

x(t +1) =
f
j
(x(t)), with probability (1! p)n ,

x(t)"# , with probability 1! (1! p)n ,

$
%
&

        (2) 

where !  is bit-wise modulo-2 addition, ),,(= 1 n
!!! !  is a 

random vector with pr
i

=1}={P ! , and x(t )! "  denotes a 
random perturbation on the state x(t )  (one or more genes 
are flipped). Let the set of network functions be 

},,{= 1 r
ffF ! , and we denote the PBN by G(V ,F, c, p)  (see 

Remark 1).  

 Alternatively, the PBN can be represented as 
G(V ,!," , p) , with },,{= 1 n

!!! !  and },,{= 1 n
!!! ! . 

In this representation, each node 
i
x  is regarded as being 

regulated by a set of l(i)  Boolean functions 
},,{= )(

)(

)(

1

i

il

i

i
!! !"  with the corresponding set of function 

selection probabilities },,{= )(

)(

)(

1

i

il

i

i
!!! !  ( 1=)(

)(

1=

i

j

il

j
!" ). 

The two representations are related such that any network 
function 

j
f  is a realization of the regulatory functions of n  

genes by choosing one function from the function set 
i

!  for 
each gene 

i
x , and we can write  

)}.(,{1,),,,(= )((1)

1
ilji

n

n
jjj !! !""f          (3) 

Moreover, if it is an independent PBN, namely 
}{Pr=},,{Pr )(

1=

)((1)

1

i

i
j

n

i

n

n
jj

!!! "! , c  and !  are related by  

.= )(

1=

i

i
j

n

i

j
c !"             (4) 
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 Remark 1 q  does not appear in the PBN representation, 
because according to the network switching scheme 
described, it can be shown that the probability of being in the 
!
j
 at any time is equal to 

j
c , regardless of q . However, if 

we modify the network switching scheme such that, once a 
network switch is decided upon, we randomly choose any 
network other than the current network, it will require the 
definition of r(r ! 1)  conditional selection probabilities, 

jkrjkc jkjk !" },,{1,,},|{Pr= !ff , and the derivation of 

}{Pr
j
f  (the probability of being in !

j
) is left as an exercise 

to the reader.  

 A Boolean model with finite number of nodes has a finite 
state space. From the definition of Boolean network, it 
follows that its state transitions are deterministic, that is, 
given a state, its successor state is unique. Naturally, if we 
represent the whole state space and the transitions among the 
sates of a BN graphically, we can have a state transition 
diagram. 

 Definition 3 The state transition diagram of an n -node 
Boolean network !(V , f )  is a directed graph D(S,E) . S  is 
a set of 2n  vertices, each representing a possible state of a 
Boolean network; E  is a set of n

2  edges, each pointing 
from a state to its successor state in state transition. If a state 
transits to itself, then the edge is a loop. The state transitions 
are computed by evaluating x(t + 1) = f (x(t ))  exactly n

2  
times, each time x(t )  being 

 
00!0, 00!1,!,11!1  

respectively.  

 Fig. (1) is an example of state transition diagram of a 
three-node BN. Like BNs, a PBN also has finite state space. 
Although state transitions in a PBN are not deterministic, 
they can be represented probabilistically. We will show how 
to construct the state transition diagram of a PBN in the 
Simulation section. 

 With the help of state transition diagram, such as the one 
in Fig. (1), we can easily visualize that in a BN, any state 
trajectory in time 

 
x(0)! x(1)! x(2)!!  must end up in 

a “trap”, and stay there forever unless a gene perturbation 
occurs. Similarly, if neither gene perturbation nor network 
switching has occurred, a time trajectory in a PBN will end 
up in a “trap” in one of the component BNs too; however, 
either gene perturbation or a network switch may cause it to 
escape from the trap. In spite of this, when gene perturbation 
and network switching are rare, a PBN is most likely to 
reach a “trap” before either occurs and will spend a 
reasonably long time there. 

 Definition 4 Starting from any initial state in a finite 
Boolean network, when free of gene perturbation, state 
transitions will allow the network to reach a finite set of 
states },,{ 1 m

aa !  and cycle among them in a fixed order 
forever. The set of states is called an attractor, denoted by 
A . If A  contains merely one state, it is a singleton attractor; 
otherwise, it is an attractor cycle. The set of states from 
which the network will eventually reach an attractor A  
constitutes the basin of attraction of A . A BN may have 
more than one attractor. 

 The attractors of a PBN are defined as the union of 
attractors of its component BNs. In particular, if a PBN is 
composed of r  BNs, and the k -th BN has 

k
m  attractors, 

k
kmkk
AAA ,,,

21
! , then the attractors of PBN are 

},,,{},,,{ 21
1

11211
r

rmrrm
AAAAAA !!! !! .  

 In a BN, different basins of attraction are depicted in the 
state transition diagram as disjoint subgraphs. In Fig. (1), 
D(S,E)  is composed of three disjoint subgraphs, 

),( 111 ESD , ),( 222 ESD , and ),( 333 ESD . 110 and 101 are 
singleton attractors, while 100 and 111 constitute a cycle. 
Their respective basins of attraction are 10}{000,010,1=1S , 

{101}=2S  and 00,111}{001,011,1=3S . 

 We are interested in the attractors of a Boolean model for 
at least two reasons: (1) Attractors represent the stable states 
of a dynamic system, thus they are tied to the long term 
behavior of Boolean models; (2) Earlier researchers 
demonstrated the association of cellular phenotype with 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). A state transition diagram D(S,E) . 
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attractors [5], thus giving a biological meaning to the 
attractors. Intuitively, when an attractor has a large basin of 
attraction, the corresponding phenotype is more likely than 
that of an attractor with much smaller basin of attraction. To 
develop intervention strategies that change the long term 
behavior of Boolean models, it is important to study the 
attractors. 

3. ANALYSES OF BOOLEAN MODELS 

 Although analysis and simulation are two parallel 
subjects with Boolean models, the former includes some 
essential results that lay a foundation for the latter. In this 
section, we visit Boolean model analysis first. 

 One of the central ideas with Boolean models is their 
connection with Markov chains (subsection 3.1). Because of 
this, Boolean models, under certain conditions, possess 
steady-state distributions. The steady-state probabilities of 
attractors, which indicate the long-run trend of network 
dynamics, can be found analytically via Markov chain 
analysis (subsection 3.2). Moreover, the relationship 
between PBNs and Bayesian networks (another class of gene 
regulatory network models) can be established in a similar 
manner (subsection 3.3). Lastly, a subsection will be 
dedicated to structural analysis, which opens a door to other 
topics beyond this tutorial (such as control of genetic 
networks). 

3.1. Markov Chain Analysis 

 As readers will find out soon, the transition probability 
matrix introduced below is not only a convenience in 
Markov chain analysis, but also finds itself useful in 
simulation, to be discussed in Section 4. 

3.1.1. Transition Probability Matrix 

 On a Boolean model of n  nodes, a transition probability 
matrix 

nnijtT
22

][=
!

 can be defined where 
ij
t  indicates the 

probability of transition from one state (which is equal to 
i ! 1  if we convert the binary vector to an integer) to another 
state (which corresponds to j ! 1 ). 

 In a Boolean network !(V , f ) , 
ij
t  can be computed by  

tij =
1, !s "{0,1}

n
such that dec(s) = i #1,dec(f(s)) = j #1,

0, otherwise,

$
%
&

   (5) 

where dec(!)  converts a binary vector to an integer, for 
instance, dec(00101) = 5 . Since BN is deterministic, T  
contains one 1 on each row, and all other elements are 0's. 

 In a PBN consisting of r  BNs 
 
!
1
(V , f

1
),!,!

r
(V , f

r
) , ij
t  

can be computed as follows [2, 3]. Note that p  (random 
gene perturbation rate) and !  are defined as in Definition 2, 
and 

k
c  is the selection probability of !

k
.  

tij =
k=1

r

!Pr {"k  is selected} #  

Pr{s! w,dec(s) = i "1,dec(w) = j "1 #k  is selected}  

=
k=1

r

!ck "[Pr{s# w by state transition,dec(s) = i $1,dec(w) = j $1 | fk}

+Pr{s! w by random gene perturbation, dec(s) = i "1,dec(w) = j "1 | fk}]

=
k=1

r

!ck "[(1# p)
n
Pr{s$ fk (s),dec(s) = i #1,dec(fk (s)) = j #1 | fk}

 

 
+Pr{s! s"# ,# $ (0,!,0),dec(s) = i %1,dec(s"# ) = j %1 | fk}]  

],)[(1= ][1}=))((dec1,=)(dec),({

1=

jij
k

i
k

n

k

r

k

ppc !""# +"$% 11
sfssfs &

      (6) 

where 1 's are indicator functions, p! =
n

l

"
#$

%
&'
p
l
(1( p)n( l , 

l =number of 1's in the random vector ),,(= 1 n
!!! ! , and l  

indicates the Hamming distance between s  and w . 

 When taking a closer look at Eq. (6), we find that T  is 
the sum of a fixed transition matrix T  and a perturbation 
matrix  !T ,  

,)(1=
1=

jj

r

j

n
TcpT !"            (7) 

 

!T = [!t
ij
], !t

ij
= n

n

nij

!
"#

$
%&
p
'
ij (1( p)

n('
ij
1
[i) j ],          (8) 

where 
jT  and 

j
c  are the transition probability matrix and the 

network selection probability of the j -th Boolean network, 
respectively; 

ij
!  is the Hamming distance between states s  

and w , with dec(s) = i ! 1  and dec(w) = j ! 1 . 

jT  is sparse with only n
2  non-zero entries (out of nn

22 !  

entries), where each is a state transition driven by the 
network function 

j
f  and involves n  computations.  

!T  
depends only on n  and p , and involves n  computations. 

Thus, the computational complexity for T  is O(n ! r ! 2n )  
[9]. 

3.1.2. Boolean Models are Markov Chains 

 Given the definition of T  matrix in Section 3.1.1, we 
can see that a Boolean model with n  genes is a 
homogeneous Markov chain of n

N 2=  states, with T  being 

the Markov matrix and it
ij

n

j
!" 1,=

2

1=
. A state x  (a binary 

vector of length n ) in Boolean model has one-to-one 
correspondence with the i -th state (1 ! i ! N ) in the 
associated Markov chain by dec(x) = i ! 1 . 

 What is the use of matrix T ? Let n
TW = , we can show 

that the (i, j) -th element of W  is equal to the probability of 
transition from the i -th state to the j -th state of the Markov 
chain in n  steps,  



A Tutorial on Analysis and Simulation Current Genomics, 2009, Vol. 10, No. 7    515 

w
ij
= Pr{x(t + n) = z,dec(z) = j !1 | x(t) =

y,dec(y) = i !1}.
 

 The proof is left as an exercise to the reader. 

 An N -state Markov chain possesses a stationary 
distribution (or invariant distribution) if there exists a 
probability distribution ),,(= 1 N

!!! !  such that  

! = !T .  

! = !T  implies nT
n
!,= "" . Thus in a Markov chain with 

stationary distribution ! , if we start from the i -th state with 
probability 

i
! , the chance of being in any state j  after an 

arbitrary number of steps is always 
j

! . 

 An N -state Markov chain possesses a steady-state 
distribution ),,(= 1

!!!

N
""" !  if starting from any initial 

distribution !  

,lim=
k

k

T!!
"#

$  

it means that regardless of the initial state, the probability of 
a Markov chain being in the i -th state in the long run is !

i
" . 

A Markov chain possessing a stationary distribution does not 
necessarily possess a steady-state distribution. 

 Why should it be of our concern if the Markov chain has 
a steady-state distribution or not? This is because we are 
interested in the Boolean model associated with the Markov 
chain, and would like to know how it behaves in the long-
run. As a reminder, the attractors of a Boolean model are 
often associated with cellular phenotype, and by finding out 
the steady-state probabilities of a given attractor, we can 
have a general picture of the likelihood of a certain 
phenotype. When a Boolean model possesses (namely, its 
Markov chain possesses) a steady-state distribution, we can 
find those probabilities by simulating the model for a long 
time, starting from an arbitrary initial state x(0) . In fact, this 
implies the equivalence of “space average” and “time 
average”, as is a common concept in stochastic processes. 

 When will a Markov chain possess a steady-state 
distribution? It turns out that an ergodic Markov chain will 
do. A Markov chain is said to be ergodic if it is irreducible 
and aperiodic [10]. 

 Definition 5 A Markov chain is irreducible if it is 
possible to go from every state to every state (not necessarily 
in one move).  

 Definition 6 In a Markov chain, a state has period d  if 
starting from this state, we can only return to it in n  steps 
and n  is a multiple of d . A state is periodic if it has some 
period > 1 . A Markov chain is aperiodic if none of its state 
is periodic.  

 A Boolean network possesses a stationary distribution, 
but not a steady-state distribution unless it has one singleton 
attractor and no other attractors. Here we show how to find a 
stationary distribution. Assume a BN has m  singleton 

attractors, 
m
aa ,,

1
! , or an attractor cycle },,{ 1 m

aa ! , where 

1=)(dec,1,=)(dec 11 !!
mm
ii aa ! , then !  with 

m
m
ii

1/===
1

!! !  and },,{0,= 1 mj
iij !!"  is a 

stationary distribution (the proof is left as an exercise to the 
reader). If a BN has a combination of singleton attractors and 
cycles, !  can be constructed such that the probabilities 
corresponding to the singleton attractors are equal, the 
probabilities corresponding to the states within each attractor 
cycle are equal, and 1=

1= i

N

i
!" . When there is only one 

attractor in the BN, the stationary distribution is unique. 

 When p,q > 0 , a PBN possesses steady-state 
distribution, because the Markov chain corresponding to the 
PBN is ergodic. Interested readers can find the proof in [3]. 
Now that PBN has a steady-state distribution, we can obtain 
such distribution in two ways: (2) solving the linear 
equations 1=0,=)(

1= i

N

i
IT !! "#  ( I  is the identity matrix), 

and interested readers can consult books on linear algebra; 
(2) using the empirical methods in Section 4.3. If we are 
interested in the steady-state probabilities of the attractors 
only, an analytic method exists, to be discussed next. 

3.2. Analytic Method for Computing the Steady-State 
Probabilities of Attractors 

 Recall from Section 2 that attractors are important to the 
long-term behavior of Boolean models because they are 
associated with cellular phenotypes; now we also know that 
PBNs possess steady-state distributions, which means that a 
PBN has a unique long-term trend independent of initial 
state. Therefore, we would naturally ask the question, how 
can we find the long-term probabilities of these attractors 
which are so important to us? 

 In the following, we will present a Markov chain based 
analytic method that answers this question, and more details, 
including proofs, can be found in [11]. 

3.2.1. Steady-State Distributions of Attractors in a BN with 
Perturbations 

 First consider a special case of PBN, Boolean network 
with perturbations (BNp), in which any gene has a 
probability p  of flipping its value. A BNp inherits all the 
attractors and corresponding basins of attraction from the 
original BN. Because of the random gene perturbations, 
BNps possess steady-state distributions (the proof is similar 
to that of PBN, and it is left as an exercise to the reader). 

 A BNp defined on },,{= 1 n
xxV !  with gene perturbation 

rate p  can be viewed as homogenous irreducible Markov 
chain 

t
X  with state space n{0,1} . Let n{0,1}, !yx  be any 

two states, then at any time t , }=|={Pr=)( 1 yXxXxy tt
P

+
 

is the probability of state transition from y  to x . 

 For 
t
X , there exists a unique steady-state distribution ! . 

Let the steady-state probability of state x  be ! (x) , and let 
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n
B {0,1}!  be a collection of states, then the steady-state 
probability of B  is )(=)( x

x
!! " #B

B . 

 Assume the BNp has attractors 
m
AA ,,

1
! , with 

corresponding basins of attraction (or simply referred to as 
basins) 

m
BB ,,

1
! . Since the attractors are subsets of the 

basins,  

).()|(=)(
kkkk
BBAA !!!            (9) 

 Therefore, we can compute the steady-state probability of 
any attractor 

k
A  by the following two steps: (1) the steady-

state probability of basin 
k
B , )(

k
B! , and (2) the conditional 

probability of attractor 
k
A  given its being in 

k
B , )|(

kk
BA! . 

(I). Obtaining the Steady-State Probability of Basin, )(
k
B!  

 Define a random variable ! (t )  which measures the time 
elapsed between the last perturbation and the current time t . 
! (t ) = 0  means a perturbation occurs at t . For any starting 
state h , let  

0},=)(,=,|{Prlim=)( 01 tBBBP
itkt

t
k

i
B

!hXXX ""
#

$%

&     (10) 

and define the conditional probability of being in state 
x !B  given that the system is inside a set B , prior to a 
perturbation,  

0}.=)(,=,|={Prlim:=)|( 011 tBB
tt

t

!" hXXxXx #
$$

%&

'   (11) 

 The following theorem represents the steady-state 
distribution of the basins as the solution of a group of linear 
equations, where the coefficients are )(

k
i
B
BP

! 's. The lemma 

that follows gives the formula for the coefficients. 

Theorem 1  

).()(=)(
1=

ik
i
B

m

i

k
BBPB !!

"

#          (12) 

Lemma 1  

),|()(=)(
i

i
B

k
B

k
i
B

BPBP yx
y

yx

!!

""

!

## $         (13) 

where )(x
y

!
P  is the probability that state transition goes from 

y  to x  in one step by gene perturbation.  

 Now the only unknown is )|(
i
By

!
" . When p  is small, 

the system spends majority of the time inside an attractor, 
and we can use the following approximation,  

,
||

1
)|( ][

i
A

i

i

A
B

!

"
# y1y$          (14) 

where ||
i
A  is the cardinality of 

i
A . Therefore,  

).(
||

1
)( x

y

yx

!

""

!

##$ P
A

BP

i
A

k
Bi

k
i
B

        (15) 

 

(II). Obtaining the Steady-State Probability of Attractor, 
)(
k
A!  

Lemma 2 For basin 
k
B , initial state h , and fixed value 

j ! 0 ,  

t!"
limPr{Xt# j = x |Xt# j $Bk ,X0 = h,% (t) = j} =

1

& (Bk ) i=1

m

'
y$B

i

'Py
(
(x)&

(
(y | Bi )& (Bi ).

      (16) 

Lemma 3 If ),(
k
Ax!  is the number of iterations of f  

needed to reach the attractor 
k
A  from the state x , then for 

any 
k
A!x , b < 1 ,  

.=)(1
),(

),(=

k
Aj

k
Aj

bbb
x

x

!

!

"#
$

        (17) 

 Applying the two lemmas and letting npb )(1= ! , we 
can obtain the steady-state probability of attractor 

k
A .  

Theorem 2  

).())(1|()(=)(
),(

1=

i
k
An

i

i
B

k
B

m

i

k BpBPA !!!
"

#
#
$

%

&
&
'

(
)**

++
,,,

x

y

yx

yx   (18) 

 When p  is small, using the approximation in Eq. (14), 
we have  

).())(1(
||

1
)(

),(

1=

i
k
An

i
B

k
Bi

m

i

k BpP
A

A !!
"

#
#
$

%

&
&
'

(
)* +

,,
---

x

y

yx

x       (19) 

3.2.2. Steady-State Distributions of Attractors in a PBN 

 In a PBN, we represent the pair ),( fx  as the state of a 
homogeneous Markov chain, ),(

tt
FX , and the transition 

probabilities are defined as  

}=,=|=,={Pr=),( 11, gFyXfFxXfxgy tttt
P

++
      (20) 

 Assume the PBN is composed of r  BNs 

 
!
1
(V , f

1
),!,!

r
(V , f

r
) . Within BN !

k
, the attractors and 

basins are denoted 
ki
A  and 

ki
B , 

 
i = 1,!,m

k
. The 

computation of the steady-state probabilities are now split 
into three steps: (1) steady-state probabilities ),(

kki
B f!  of 

the basins, (2) conditional probabilities ),|,(
kkikki

BA ff! , 
and (3) approximation to the marginal steady-state 
probabilities )(

ki
A!  (since different BNs may have the same 

attractor). 

 The computations in steps (1) and (2) are similar to that 
of BNp, with ),(

kki
B f  in place of 

k
B  whenever applicable, 

and there is one extra summation !
r

k 1=

 for the r  component 

BNs. Interested readers can find details in [11]. 
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 From steps (1) and (2), we can obtain ),(
kki

A f! . The last 
step sums up ),(

lki
A f!  over l  whenever the l -th BN has 

ki
A  as an attractor,  

).,(=)(
1=

lki

r

l

ki
AA f!! "          (21) 

 Since ),(
lki

A f!  is unknown when k ! l , we use the 
following approximation when p  is small,  

.
||

||
),|,(

lj

ljki

lljlki
A

AA
AA

!
"ff#         (22) 

Thus,  

),,(
||

||
),(),|,(),(
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llj

lj

ljki
l
m

j
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l
m
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lki A
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AAAA fffff !!!!
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            (23) 

and  

).,(
||

||
)(

1=1=

llj

lj

ljki
l
m

j

r

l

ki A
A

AA
A f!!

"
# $$         (24) 

3.3. Relationship Between PBNs and Bayesian Networks 

 Bayesian networks (BaN) are graphic models that 
describe the conditional probabilistic dependencies between 
variables, and have been used to model genetic regulatory 
networks [12]. An advantage of BaNs is that they involve 
model selection to optimally explain the observed data [2]; 
BaNs can use either continuous or discrete variables, which 
is more flexible for modeling. In comparison, Boolean 
models have explicit regulatory rules that carry biological 
information, which can be more appealing to biologist than 
the statistic representation of BaNs. Although Boolean 
models use binary-quantized variables which sets a 
limitation on the data usage, they are computational less 
complex than BaNs when learning the network structure 
from data (see Section 3.3 of [2] for a more detailed 
discussion and references). Since network structure learning 
is out of scope of this article, interested readers can refer to 
[12] for Bayesian learning, [13] for Boolean network 
learning, and [8, 14] for PBN learning. 

 While BNs are deterministic, PBNs and BaNs are related 
by their probabilistic nature; like PBNs, dynamic BaNs can 
be considered as Markov chains too. In the following 
analysis, we will show that equivalence between PBNs and 
BaNs can be established under certain conditions [15]. In 
this analysis, the random gene perturbation rate p  in PBN is 
assumed to be 0. 

 A BaN with n  random variables 
n
XX ,,

1
!  (not 

necessarily binary) is represented by Ba(H ,!) , where H  is 
a directed acyclic graph whose vertices correspond to the n  
variables and !  is a set of conditional probability 
distributions induced by graph H . Letting ),,(= 1 n

XX !X , 

i
x  be a realization of the random variable 

i
X , and )(Pa

i
X  

be the parents of 
i
X , the unique joint probability distribution 

over the n  variables is given by  

)}.(Pa|{Pr=},,{Pr
1=

1 ii

n

i

n
Xxxx !!  

 A dynamic Bayesian network (DBN) is a temporal 
extension of BaN, and consists of two parts: (1) an initial 
BaN ),(= 000 !HBa  that defines the joint distribution of the 
variables (0),(0),1 n

xx ! , and (2) a transition BaN 

),(= 111 !HBa  that defines the transition probabilities 
1)}(|)({Pr !tt XX , !t . Let x  represent a realization of X , 

and the joint distribution of 
 
X(0),!,X(T )  can be expressed 

by  

1)}(|)({Pr(0)}{Pr=)}(,(0),{Pr
1=

!" ttT

T

t

xxxxx !  

))}.((Pa|)({Pr(0))}(Pa|(0){Pr=
1=1=1=

tXtxXx jj

n

j

T

t

ii

n

i

!!! "  (25) 

 In a PBN G(V ,F, c) , where {0,1}},,,{= 1 !
in
xxxV !  

and },,{= 1 r
ffF ! , the joint probability distribution of states 

over the time period [0,T ]  can be expressed as  

)}.(1)({Pr(0)}{Pr=)}(,(0),{Pr
1=

ttT

T

t

xxxxx !"#!  

 For an independent PBN,  

)}.(1)({Pr(0)}{Pr=)}(,(0),{Pr
1=1=

txtN
i

n

i

T

t

!"## xxxx !       (26) 

3.3.1. An Independent PBN as a Binary-Valued DBN 

 Let the independent PBN be G(V ,!," )  (the alternative 
representation, see what follows Definition 2). First, since a 
BaN can represent arbitrary joint distribution, the 
distribution of the initial state of PBN, }{Pr 0x

, can be 
represented by some 

0
Ba . Second, to construct ),( 111 !HBa  

from the PBN, we let set V
i

j !
)(

X  denote the regulators of 

gene 
i
x  in function )(i

j
! ,  

.=)(Pa )()(

1=

i

j

il

jix X!          (27) 

 We construct graph 
1
H  such that there are two layers of 

nodes, the first layer has nodes 1)(,1),(1 !! tXtX
n

! , the 
second layer has nodes )(,),(1 tXtX

n
! , and there exists a 

directed edge from 1)( !tX
k

 to )(tX
i

 if )}(,{1, ilj !!"  in 
the PBN such that )(i

jkx X! . Thus in 
1
H , ))((Pa tX

i
 

corresponds to the set of all possible regulators of 
i
x  in the 

PBN. 

 Let 
i
D  be the joint distribution of the variables in 

)(Pa
i
x , and recall that }isused{Pr= )()( i

j

i

j
!" , then  
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Pr{Xi = 1} =
j=1

l (i )

!Pr{Xi = 1 |" j

(i )
 is used} #$ j

(i )       (28) 
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{0,1}
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j

i
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D !" #
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{0,1}
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j
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j

il

j

i

i
X

D )* xx
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and we have  

.)(=}=))((Pa|1=)({Pr )()(
)(

1=

i

j

i

j

il

j

ii tXtX !" zz #       (31) 

 Eq. (31) defines 
1

!  (induced by 
1
H ) for each node, thus 

any independent PBN G(V ,!," )  can be expressed as a 
binary DBN ),( 10 BaBa . 

 Remark 2 Strictly speaking, the input variables for )(i

j
!  

are a subset of )(Pa
i
x , so the notations in Eqs. (29-31) are 

not accurate when we use the same vector x  (or z ) for )(i

j
!  

and for 
i
D  (or ))((Pa tX

i
). We should understand that those 

notations are only used as a convenience.  

3.3.2. A Binary-Valued DBN as an Independent PBN 

 Assume DBN ),( 10 BaBa  defined on ),,(= 1 n
XX !X  is 

given, and 
i
X 's are binary-valued random variables. Now 

we demonstrate how to construct a PBN. Define the set of 
nodes },,{= 1 n

xxV !  in PBN corresponding to 
n
XX ,,

1
! , 

and let the distribution of PBN initial state 
(0)),(0),(= 10 n

xx !x  match 
0

!  in ),( 000 !HBa . 

 In ),( 111 !HBa , assume ))((Pa tX
i

 contains 
i
k  variables 

i
iki
XX ,,

1
! . For each 

i
X , we enumerate each conditional 

probability regarding )(tX
i

 in 
1

!  as a triplet  

),,(
jjj
pz y , with {0,1}!

j
z , i

k

i
jkjjj yyy {0,1}= 21 !!y , 

}=))((Pa|=)({Pr= jijij tXztXp y  and there are 1

2
+
i
k  

such triplets. The triplets are arranged such that the first i
k

2  
of them have 1=

j
z , and 

j
p 's are in ascending order. For 

every i
k

j 2! , define a sequence of symbols 

i
jkjjj xxx ~~~

=
~

21
!x , where we choose the variable 

jdx  for 

symbol 
jdx
~  if 1=jdy , and choose 

jdx  (the negation of 

variable 
jdx ) for symbol 

jdx
~  if 0=jdy . 

 Letting 12=)( +i
k

il , we define the set of )(il  Boolean 
functions for gene 

i
x  in the PBN as 

},,,{= )(

)(

)(

1)(

)(

1

i

il

i

il

i

i
!!! "# ! , where  

 
!

m

(i )
= !x

m
" !x

m+1
""" !x

l (i )#1
, for 1 $ m $ l(i) #1       (32) 

is a disjunction of conjunctions, and )(

)(

i

il
!  is a zero function. 

Define the corresponding function selection probabilities, 
1

)(

1 = pi
! , 1)(<1for= 1

)(
!"!

!
ilmpp mm

i

m# , and 

1)(

)(

)( 1=
!

! il

i

il p" , it can be verified that  

)()(

1=

)()(
)(
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)(=)(=}=))((Pa|1=)({Pr i

jj
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m

il
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jii tXtX !"!" yyy ##  
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 Therefore, a binary DBN can be represented as a PBN 
G(V ,!," ) , where },,{= 1 n

!!! ! , },,{= 1 n
!!! ! , and 

),,(= )(

)(

)(

1

i

il

i

i
!!! ! . It should be noted that the mapping 

from a binary DBN to an independent PBN is not unique, 
and the above representation is one solution. 

 Summarizing subsections 3.3.1 and 3.3.2, we have the 
following theorem [15]. 

 Theorem 3 Independent PBNs G(V ,!," )  and binary-
valued DBNs ),( 10 BaBa  whose initial and transition BNs 

0
Ba  and 

1
Ba  are assumed to have only within and between 

consecutive slice connections, respectively, can represent the 
same joint distribution over their common variables.  

3.4. Structural Analysis 

 Boolean models, like any other networks, have two 
issues of interest: Is the model robust? Is the model 
controllable? From the standpoint of system stability, we 
require the model be robust, namely, resistent to small 
changes in the network; from the standpoint of network 
intervention, we desire that the network be controllable, such 
that it will respond to certain perturbation. There needs to be 
a balance of the two properties. These two questions 
encourage researchers to do the following, (1) Find structural 
properties of the network that are related to robustness and 
controllability; (2) Seek ways to analyze the effect of 
perturbations and to design control techniques. 

 In 3.4.1, (1) is addressed. We review some structural 
measures of Boolean models that quantify the propagation of 
expression level change from one gene to others (or vice 
versa). In 3.4.2, (2) is partly addressed, where we review 
structural perturbations, and present a methodology that 
analyzes the perturbation on Boolean functions. Since the 
control techniques are out of the scope of this paper, 
interested readers can find more information in the review 
articles [16, 17]. 

3.4.1. Quantitative Measures of the Structure 

 In gene regulatory networks, the interactions among 
genes are reflected by two facts: the connections among 
genes, and the Boolean functions defined upon the 
connection. No matter it is the robustness or the 
controllability issue we are interested in, it all boils down to 
one central question: how a change in the expression level of 
one gene leads to changes in other genes in the network and 
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vice versa. Here, we introduce three measures of the 
structural properties that are related to the question: 
canalization, influence and sensitivity. 

 When a gene is regulated by several parent genes through 
function f , some parent genes can be more important in 
determining its value than others. An extreme case is 
canalizing function, in which one variable (canalizing 
variable) can determine the function output regardless of 
other variables.  

 Definition 7 [18] A Boolean function {0,1}{0,1}: !
nf  

is said to be canalizing if there exists an 
 
i !{1,!,n}  and 

u, v !{0,1}  such that for all {0,1},,1 !
n
xx ! , if ux

i
=  then 

vxxf n =),,( 1 !
.  

 In gene regulatory networks, canalizing variables are also 
referred to as the master genes. Canalization is commonly 
observed in real organisms, and it plays an important role in 
the stability of genetic regulation, as discussed in [19, 20]. 
Mathematically, researchers have shown that canalization is 
associated with the stability of Boolean networks. For more 
theoretical work, see [21-23]. 

 Other than canalization, the degree of gene-gene 
interaction can be described in more general terms, and we 
define two quantitative measures, influence and sensitivity, 
as follows. 

 Consider a Boolean function f  with input variables 

n
xx ,,

1
! . Letting ),,(= 1 n

xx !x , we define the influence of 
a gene on the function f .  

 Definition 8 [2] The influence of a variable 
j
x  on the 

Boolean function f  is the expectation of the partial 
derivative with respect to the distribution D(x) ,  
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)(

Pr=
)(
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,

-
-
.

/

)

)       (34) 

 Note that the partial derivative of f  with respect to 
i
x  is  

|,)()(=|
)( )( j

j

ff
x

f
xx

x
!

"

"          (35) 

in which ),,,1,(= 1

)(

nj

j
xxx !! !x  (with 

j
x  toggled).  

 In a BN, since each node 
i
x  has one regulatory function 

if , so the influence of node 
j
x  (assuming it regulates 

i
x ) on 

i
x  is )(=)( ijij fIxI . In a PBN, let the set of regulating 

functions for 
i
x  is )(

)(

)(

1 ,, i

il

i !! ! , with function selection 

probabilities )(

)(

)(

1 ,, i

il

i
!! ! , the influence of gene 

j
x  on 

i
x  

will be  

.)(=)( )()(
)(

1=

i

k

i

kj

il

k

ij IxI !" #$          (36) 

 

 Thus for a Boolean model with n  genes, an influence 
matrix !  of dimension n ! n  can be constructed, where its 
i, j  element being )(= jiij xI! . We can define influence of 
gene 

i
x  to be the collective influence of 

i
x  on all other 

genes,  

.=)(
1=

ij

n

j

i
xr !"           (37) 

 Related to influence, we define the sensitivity of a 
function,  

.|)()(|=)( )(

1=

j
n

j

fffs xx
x

!"         (38) 

 Then the average sensitivity of f  with respect to 
distribution D  is  

).(=|])()([|=)]([=)(
1=

)(

1=

fIffEfsEfs j

n

j

j

D

n

j

D !! " xx
x

  (39) 

 The meaning of average sensitivity is that, on average, 
how much the function f  changes between the Hamming 
distance one neighbors (i.e., the input vectors differ by one 
bit). For PBNs, the average sensitivity of gene 

i
x  is (cf. Eq. 

(37))  

.=)(=)(
1=1=

ji

n

j

ij

n

j

i xIxs !""          (40) 

 Biologically, the influence of a gene indicates its overall 
impact on other genes. A gene with high influence has the 
potential to regulate the system dynamics and its 
perturbation has significant downstream effect. The 
sensitivity of a gene measures its stability or autonomy. Low 
sensitivity means that other genes have little effect on it, and 
the “house-keeping” genes usually have this property [2]. It 
is shown that such quantitative measures (or variants) can 
help guide the control of genetic networks [24] and aid in the 
steady-state analysis [25]. 

3.4.2. Structural Perturbation Analysis 

 There are two types of perturbation on Boolean models: 
perturbation on network states and perturbation on network 
structure. The former refers to a sudden (forced or 
spontaneous) change in the current state from x  to x' , 
which causes the system dynamics to be disturbed 
temporarily. Such disturbance is transient in nature, because 
the network nodes and connections are intact, and the 
underlying gene regulation principles do not change. 
Therefore, the network attractors and the basins of attraction 
remain the same. However, if the perturbed Boolean model 
has multiple attractors, state perturbations may cause 
convergence to a different attractor than the original one, and 
may change the steady-state distribution of the network. This 
type of perturbation has been studied extensively (e.g. [26]), 
and finds its use in network control (e.g. [6]). 
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 Perturbation on network structure refers to any change in 
the “wiring” or functions of the network. For instance, we 
may remove or add a gene to the network, change 
connections among genes, change the Boolean functions, or 
even change the synchronous Boolean network to an 
asynchronous model (where not all the genes are updated at 
the same time). Structural perturbation is more complex and 
less studied, compared to state perturbation. When network 
structure is perturbed, the network attractors and basins of 
attraction will be impacted, therefore the long-term 
consequence is more difficult to gauge than that of state 
perturbation. 

 The reasons for studying structural perturbation are: (1) 
modeling of gene regulatory networks is subject to 
uncertainty, and it is desirable to study the effect of small 
difference in network models on the network dynamic 
behavior; (2) it is likely that gene regulations, like other 
biological functions, have intrinsic stochasticity, and it is of 
interest to predict the consequence of any perturbation in 
regulation; (3) changing the network structure can alter the 
network steady-state distribution, thus structural perturbation 
can be an alternative way (with respect to state perturbation) 
of network control [25, 27, 28]. 

 In [8], the authors developed theories to predict the 
impact of function perturbations on network dynamics and 
attractors, and main results are presented below. For more 
applications, see [28]. For further analysis in terms of 
steady-state distribution and application in network 
intervention, see [25]. 

 Problem formulation. Given a Boolean network 
!(V , f ) , },,{= 1 n

xxV ! , ),,(= 1 nff !f , if one or more 
functions have one or more flips on their truth table outputs, 
we would like to predict the effect on state transitions and 
attractors. 

 Assume gene 
i
x  has 

i
k  regulators 

i
ikii
xxx ,,,

21
! , then 

the truth table of 
if  has i

k

2  rows, as is shown below. The 

input vector on row j  will be denoted i
ki

j {0,1}!a , for 

instance, 000=
1

!
i
a . If we flip the output on row j , then 

we call it a one-bit function perturbation on 
if , and denote it 

)( j

if . 

Row label  
 
x
i1
x
i2
!x

ik
i

   fi (!)   

 1     00!0    0   

2     00!1    1   

 !     !     !   

2

k
i   

  11!1    0   

 Any state transition s! w  contains n  mappings, 
ii wf !s: . We define ),,,(=)(In 21

i
ikiii
sss !s , which is a 

sub-vector of s  that corresponds to the regulators of 
i
x . 

 The following proposition and corollaries state the basic 
effects of one-bit function perturbation on the state 

transitions and attractors. Proofs and extensions to two-bit 
perturbations can be found in [28]. 

 Proposition 1 A state transition s! w  is affected by 
one-bit perturbation )( j

ii ff !  if and only if i

ji
as =)(In . If 

the state transition is affected, the new state transition will be 
)(i

ws! , where )(i
w  is defined to be the same as w  except 

the i -th digit is flipped.  

 Corollary 1 If 
i
x  has 

i
k  regulators, then the one-bit 

perturbation )( j

ii ff !  will result in i
kn!

2  changed state 
transitions in the state transition diagram. This is equivalent 
to i

kn!

2  altered edges in the state transition diagram.  

 Corollary 2 (Invariant singleton attractor) Suppose 
state s  is a singleton attractor. It will no longer be a 
singleton attractor following the one-bit perturbation 

)( j

ii ff !  if and only if i

ji
as =)(In .  

 Corollary 3 (Emerging singleton attractor) A non-
singleton-attractor state s  becomes a singleton attractor as a 
result of the one-bit perturbation )( j

ii ff !  if and only if the 
following are true: (1) i

ji
as =)(In , and (2) absent the 

perturbation, )(i
ss! .  

 We use the following toy example to demonstrate the 
above results. From these results, more applications can be 
derived, such as controlling the network steady-state 
distribution through function perturbation, or identifying 
functional perturbation by observing phenotype changes 
[28]. 

Example 1 Consider a BN with 3=n  genes,  

),(=1)( 31 txtx +           (41) 

0,=1)(2 +tx           (42) 

),()()()(=1)( 21213 txtxtxtxtx ++         (43) 

where the truth table of 
3
f  is shown below and the state 

transition diagram is shown in Fig. (2). 

 

Row label 
1
x  

2
x  )(3 !f  

1 0 0 0 

2 0 1 1 

3 1 0 1 

4 1 1 0 

 If a one-bit perturbation forces 
3
f  to become (3)

3f , since 

2=
3
k , 2 state transitions will be affected. By Proposition 1, 
states 100 and 101 no longer transit to 001 and 101 but to 
000 and 100 respectively. Because of that, attractor cycle 
{001, 100} will be affected. Moreover, Corollary 2 predicts 
that the singleton attractor 000 is robust to the perturbation 
while 101 is not. The predictions are confirmed by the new 
state transition diagram shown in Fig. (3).  



A Tutorial on Analysis and Simulation Current Genomics, 2009, Vol. 10, No. 7    521 

 

 

 
 

 

 

 
 

 
Fig. (2). State transition diagram of the original BN, Example 1. 

 

 

 
 

 

 

 
 

 

 
Fig. (3). State transition diagram of the perturbed BN, Example 1. 
 
 Finally, the author would like to remind the readers that 
other works on (various types of) structural perturbation are 
available. For instance, in [29], the authors added a 
redundant node to Boolean network, such that the bolstered 
network is more resistent to a one-bit function perturbation 
(as defined above). In [30], the effect of asynchronous 
update of a drosophila segment polarity network model is 
examined in terms of the phenotypes (steady-states). In [25], 
the authors derived analytical results of how function 
perturbations affects network steady-state distributions and 
applied them to structural intervention. In [31], the author 
modeled gene knockdown and broken regulatory pathway in 
Boolean networks, and analyzed the effects. 

4. SIMULATION ISSUES WITH BOOLEAN MODELS 

 Recall from Section 2 that a Boolean model of n  genes 
has a finite state space, and a BN has deterministic dynamic 

behavior which can be fully captured by the state transition 
diagram. A PBN is probabilistic in nature, therefore its state 
transition is also probabilistic. For both BNs and PBNs, 
attractors are characteristic of their long-term behavior. 
Given the above knowledge, if we would like to know 
anything about a Boolean model, we should find out its state 
transition diagram and attractors first. This is to be discussed 
in Section 4.1. 

 For Boolean models, the most commonly encountered 
simulation issues include: (1) how to generate the time 
sequence data of a network, !! ),(,(1),(0), txxx ; (2) how 
to find the network steady-state distribution if it exists; and 
(3) how to produce artificial Boolean models with prescribed 
attractors to facilitate other studies. Among them, (1) is a 
basic practice that can be utilized in (2) and (3), and we will 
deal with them in Sections 4.2, 4.3 and 4.4 respectively. 
Note that the techniques in 4.1 is crucial to all the three 
issues. 

4.1. Generating State Transition Diagram and Finding 
Attractors 

 To obtain the state transition diagram of a BN, we first 
compile a state transition table. Assuming n  nodes in the 
network, 

n
xx ,,

1
! , we evaluate the current state )(tx  to be 

000! , 100! , ! , 011! , and 111!  in turn, compute 
their respective 1)( +tx 's, and tabulate the results. The states 
can also be represented by integers instead of binary vectors. 
Table 1 is an example when 3=n . In practice, we only store 
the second row (“next states”) for computational purpose, 
because by default the current states are always arranged 
such that they correspond to integers 1,20,1,2, !

n
! . 

 To obtain the state transition diagram of a BN, we draw 
n
2  vertices, each representing a possible state, and connect 
two vertices by a directed edge if one state transits to the 
other based on the state transition table. If a state transits to 
itself, the edge points to itself. Fig. (4) is the state transition 
diagram based on Table 1. 

 Similarly for a PBN, when gene perturbation rate 0=p , 
we can draw its state transition diagram by combining the 
state transition diagrams of its component BNs. Now each 
edge has a probability attached to it, representing the 
possibility of one state transiting to the other. For example, if 
a PBN is composed of two BNs, where the first BN has state 
transitions shown in Table 1, and the second BN has state 

 
 
 
 
 
 
 
Fig. (4). State transition diagram of a Boolean network. 
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transitions shown in Table 2, and their selection probabilities 
are 

1
c  and 

12
1= cc !  respectively, then when 0=p , the 

PBN's state transition diagram is shown in Fig. (5). When 
0>p , a state transition can either be driven by some 

network function or by random gene perturbations, and we 
may refer to its state transition matrix T  when constructing 
the state transition diagram. It should be noted that the sum 
of probabilities of all the edges exiting a vertex should 
always be 1. 

 The following is a simple algorithm for finding the 
attractors of BN based on the state transition table (using 
integer representation of the states). 

 Algorithm 1 (Finding attractors) 

1. Generate an array a  of size n
2 , and initialize all 

i
a 's to 

0. 
i
a  corresponds to state 1!i . 

2. Search for singleton attractors. For each state i  between 
0 and 12 !

n , look up the 1)( +i -th entry in the state 
transition table for its next state j . If ij = , then j  is a 
singleton attractor, set 1:=

1+j
a . 

3. Search for attractor cycles. For each state i  between 0 to 
12 !

n , if 0=
1+i

a , look up the state transition table 
repeatedly for the successor states of i , such that 

!kji !!  until a singleton attractor or an attractor cycle 
is reached. If an attractor cycle is reached, save the cycle 
states and set the corresponding elements in a  to 1.  

4.2. Simulating a Dynamic System 

 A common practice with a Boolean model defined on 
},,{= 1 n

xxV !  is to generate time sequence data 

!(2),(1),(0), xxx . A direct method is to start from an initial 
state (0)x , and plug in the Boolean functions repeatedly to 
find the subsequent states (for BNs and PBNs), sometimes 
taking into consideration network switches and gene 
perturbations (for PBNs). 

 An alternative way, which is more efficient when 
simulation time is long ( t ! 2n ), is to utilize the information 
of state transition diagram (encoded in the state transition 
table) or transition probability matrix T . For BN, it entails 
converting the current state )(tx  to an integer, and looking 
up the state transition table or matrix T  for the next state 

1)( +tx . For PBN, one can start from a randomly chosen 
initial state and a randomly chosen initial network (from r  
BNs), and follow either of the two protocols below. Note 
that we follow the notations in Definition 2 and use p , q  to 
denote the random gene perturbation rate and network 
switching probability, respectively. Network selection 
probabilities are denoted by 

r
cc ,,

1
! .  

• Table-lookup and real-time computation based 
method. Construct r  state transition tables for the r  
component BNs respectively (letting gene 
perturbation rate 0=p ). At any time t , if at the k -th 
network, generate n  independent [0,1]  uniformly 
distributed random numbers 

n
pp ,,

1
! . If pp

i
< , flip 

)(tx
i

 to get 1)( +tx
i

; if ipp
i

!,>  (no gene 
perturbation), convert )(tx  to integer and look up the 
k -th state transition table to find 1)( +tx . Finally, 
generate a [0,1]  uniformly distributed random 
number 

s
q  and compare to q  to decide if the system 

will switch network at 1+t ; if switch will occur, 

Table 1. Example of a State Transition Table for a BN 

 Current states   000   001   010   011   100   101   110   111  

 Next states   000   000   100   000   010   010   110   010  

 
Table 2. State Transition Table for the Second BN in a PBN 

 Current states   000   001   010   011   100   101   110   111  

 Next states   001   001   101   001   010   010   110   010  

 
 
 
 
 
 
 
Fig. (5). Example of state transition diagram of a probabilistic Boolean network when gene perturbation rate 0=p . 
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choose from the r  networks according to the 
selection probabilities.  

• T  matrix based method. Compute the transition 
probability matrix T . If 1=))((dec !itx , generate a 
[0,1]  uniformly distributed random number 

t
p . If 

il

j

ltil

j

l
tpt !! "

#

1=

1

1=
<  (

il
t  is the ),( li  element of T ), 

then convert 1!j  to a n -bit vector s  
( 1=)(dec !js ) and the next state is sx =1)( +t .  

 One other issue of simulating a PBN is the choice of 
parameters p  and q . As stated in Section 2, network 
switching probability q  does not affect the probability of 
being at any constituent BN, and in theory we can choose 
any value for q ; however, we prefer to choose small q  
because in a biological system, switching network 
corresponds to the change of context (reflecting a change of 
regulatory paradigm, either caused by environment change 
or internal signals), which should not occur very often. 
Moreover, if q  is large, or even 1=q , then network 
switching is frequent, and a short time sequence of data 

)(,1),(),( 211 ttt xxx !+  are more likely to come from several 
BNs instead of from one single BN. This may pose a 
difficulty if we try to identify the underlying PBN and its 
component BNs from the sequence data [32]. On the other 
hand, if q  is too small, and the number of BNs in the PBN is 
large, it will take too long a time to obtain the steady-state 
distribution by simulation method. Usually p  should be 
small to reflect the rarity of random gene perturbation, and 
we let qp << . Also, small p  is helpful if the generated 
sequence data will be used as artificial time-series data for 
the identification the underlying PBN and its component 
BNs. However, if p  is too small, it will take longer to obtain 
the steady-state distribution. Usually, we can choose 

 
q = 0.01 ! 0.2  and 

 
p = 0.01% ! 0.5% . 

4.3. Obtaining the Steady-State Distributions 

4.3.1. Power Method 

 As discussed in Section 3.1, a PBN possesses a steady-
state distribution when 0>, pq  [3]. By definition, this 
distribution !

"  is the solution to linear equations T!"" =  
with constraint 1=

ii
!" , is unique and can be estimated by 

iteration, given the transition probability matrix T  (assuming 
n  genes, and n

N 2= ).  

Algorithm 2 (Finding steady-state distribution) 

1. Set !
"  and generate an initial distribution 

),,(= (0)(0)

1

(0)

N
!!! ! ; Let 0:=k .  

2. DO  

Compute T
kk
!

+ )(1)( := "" ; 

! := "
(k+1)

# "
(k ) ; 

k  := 1+k ; 

UNTIL ( !
"" < )  

3. )(:= k
!!

" .  

 Note that ||.|| can be any norm, such as ||.||∞. 

 When the number of BNs in a PBN is large and some 
BNs have small selection probabilities, an approximation 
method for constructing T  is proposed in [33]. In the 
approximation, T̂  is computed instead of T , which ignores 
0
r  BNs whose selection probabilities 

0
1

,,
krk
cc !  are less 

than a threshold value ! ,  

,
~

'=ˆ TTT +           (44) 

!
!
"

#
$
$
%

&
'(' ))

*
ki

r

i

jj

r

krkjj

n cTcpT
0

1=
0

,1,1,=

1/)(1='
!

       (45) 

where 
jT  ( rj !!1 ) and T~  are defined as in Eqs. (7) and 

(8). If T̂  is used in place of T , and the solution for T̂= !!  
is !

"̂ , the expected relative error in steady-state distribution 
is shown to be bounded by )(!O  [33]  

E

!̂ " # !̂ "
T

$

! "

$

%

&

'
'

(

)

*
*
< (2 + 2n)

i=1

r
0

+c
ki
< 2(n +1)r

0
,.       (46) 

 The following is an alternative method of obtaining 
steady-state distribution. If we are interested in the attractors 
only, knowing that the majority of the steady-state 
probability mass is on attractors if p  is small, we may apply 
the Markov chain based analytic method in Section 3.2. 

4.3.2. Monte Carlo Simulation Method [34] 

 This method requires generation of a long time sequence 
of data, )(,(1),(0), Txxx ! , such that the frequencies of all 
the possible n

2  states approach the steady-state distribution. 
In a given n -gene PBN with gene perturbation rate p , the 
smaller p  is and the larger n  is, the longer it takes to 
converge to the steady-state distribution. In general, we need 
to simulate at least 1

210
!

"" p
n  steps. 

 To estimate when the PBN has converged to its steady-
state distribution, we can use the Kolmogorov-Smirnov test. 
The basic idea of Kolmogorov-Smirnov test is to measure 
the closeness of an empirical probability distribution to the 
theoretical distribution. Since the latter (steady-state 
distribution) is unknown in this case, we will test the 
closeness of two empirical distributions. 

 To get two quasi-i.i.d (independently and identically 
distributed) samples in PBN, we select two  
samples )1)((,),(),( 111 !"+!+ Mtmtt xxx !  and 

)1)((,),(),( 222 !"+!+ Mtmtt xxx !  (
21

< tt  and 
!"# mtt

12
, Mm <<0 ! ), and the Kolmogorov-Smirnov 

statistic is defined as  
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.))(())((max
1

= 2]0,[00

1

0=

1]0,[00

1

0=

!+"!+ ##
""

mtmt
M

K

M

m

M

m

x1x1
ss

s
!!

   (47) 

 In the definition, the maximum is over the state space 
n{0,1} , and )(]0,[00 x1

s!
 is an indicator function whose output 

equals 1 if and only if },0,{00 sx !!! , n{0,1}!s , and the 
output equals 0 otherwise. 

4.4. Generating Artificial BNs with Prescribed Attractors 
[35] 

 In a simulation study of Boolean models, it is often 
necessary to create artificial networks with certain 
properties. Of special interest is the problem of generating 
artificial BNs with a given set of attractors, since attractors 
are hypothesized to correspond to cellular phenotypes and 
play an important role in the long term behavior of Boolean 
models. 

 First, note that the state transition diagram can be 
partitioned into level sets, where level set 

jl  consists of all 
states that transit to one of the attractors in exactly j  steps, 
and the attractors belong to the level set 

0
l . 

 Problem formulation [35] Given a set of n  nodes 
},,{= 1 n

xxV ! , a family of n  subsets VPP
n
!,,

1
!  with 

KPk
i
!! ||<0 , a set A  of d  states (binary vectors of n  

bits), and integers l, L  satisfying 0 < l < L , we will 
construct a BN defined on V , which satisfies the following 
constraints: the set of regulators of node 

i
x  is 

i
P  

( },,{= 1 n
PPP !  is called the regulator set of V ), the 

attractors are 
m
AA ,,

1
!  such that AAj

m

j =
1=

! , and the BN 

has between l  and L  level sets. 

 Specifically, if we are interested in constructing a BN 
with only singleton attractors, its state transition diagram 
will be a d -forest (containing d  single-rooted trees) if the 
BN has d  singleton attractors. The following theorem gives 
the number of all possible state transition diagrams that only 
contain singleton attractors (the proof can be found in [35]).  

 Theorem 4 The cardinality of the collection of all forests 
on N  vertices is 11)( !

+
N

N .  

 Since n
N 2=  and the number of all possible state 

transition diagrams are N
N , when n  is large, the ratio 

NN
NN /1)( 1!

+  is asymptotically n
e/2 , thus a brute force 

search has a low success rate. 

 Assuming only singleton attractors are allowed, the 
following algorithm is for solving the search problem 
formulated above. A second algorithm is also given in [35], 
but shown to be less efficient. 

Algorithm 3 (Generating artificial Boolean network)  

1. Randomly generate or give in advance a set A  of d  
states (as singleton attractors).  

2. Randomly generate a predictor set P , where each 
i
P  has 

k  to K  nodes. If Step 2 has been repeated more than a pre-
specified number of times, go back to Step 1. 

3. Check if the attractor set A  is compatible with P , i.e. 
only the attractors (each transits to itself) of the state 
transition diagram are checked for compatibility against P . 
If not compatible, go back to Step 2. 

4. Fill in the entries of the truth tables that correspond to the 
attractors generated in Step 1. Using the predictor set P  and 
randomly fill in the remaining entries of the truth table. If 
Step 4 has been repeated more than a pre-specified number 
of times go back to Step 2. 

5. Search for cycles of any length in the state transition 
diagram D  based on the truth table generated in Step 4. If a 
cycle is found go back to Step 4, otherwise continue to Step 
6. 

6. If D  has less than l  or more than L  level sets go back 
to Step 4. 
7. Save the generated BN and terminate the algorithm.  

5. CLOSING WORDS 

 This paper has presented the following analysis and 
simulation issues of Boolean networks and probabilistic 
Boolean networks, which are models for gene regulatory 
networks.  
• Analysis. An important aspect of Boolean models is 

that they can be viewed as homogeneous Markov 
chains; for a PBN, when the network switching 
probability q > 0  and gene perturbation rate p > 0 , 
it possesses a steady-state distribution. Markov 
analysis serves as a basis for finding the steady-state 
probabilities of attractors and for proving the 
equivalence of PBN and dynamic Bayesian networks. 
Finally, a structural analysis is provided, where 
quantitative measures of gene-to-gene relationships 
are introduced, and the effect of perturbation on 
Boolean functions are analyzed. 

• Simulation. Central to the simulation of Boolean 
models is the use of state transition diagram and 
transition probability matrix. In network simulation, 
different methods are presented and simple guidelines 
of parameter selection are provided. To test the 
convergence of a simulated PBN to its steady-state 
distribution, we can employ Kolmogorov-Smirnov 
statistic. Lastly, an algorithm for generating artificial 
BNs with prescribed attractors is presented.  

 To find more references on Boolean models, and obtain a 
MATLAB toolbox for BN/PBN, readers can go to the 
following website, http://personal.systemsbiology.net/ilya/ 
PBN/PBN.htm. Another online source of papers is 
http://gsp.tamu.edu/Publications/journal-publications. 
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