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The assessment of neuroplasticity after stroke through functional magnetic resonance imaging (fMRI) analysis is
a developing field where the objective is to better understand the neural process of recovery and to better target
rehabilitation interventions. The challenge in this population stems from the large amount of individual spatial
variability and the need to summarize entire brain maps by generating simple, yet discriminating features to
highlight differences in functional connectivity. Independent vector analysis (IVA) has been shown to provide su-
perior performance in preserving subject variability when compared with widely used methods such as group
independent component analysis. Hence, in this paper, graph-theoretical (GT) analysis is applied to IVA-gener-
ated components to effectively exploit the individual subjects' connectivity to produce discriminative features.
The analysis is performed on fMRI data collected from individuals with chronic stroke both before and after a
6-week arm and hand rehabilitation intervention. Resulting GT features are shown to capture connectivity
changes that are not evident through direct comparison of the group t-maps. The GT features revealed increased
small worldness across components and greater centrality in key motor networks as a result of the intervention,
suggesting improved efficiency in neural communication. Clinically, these results bring forth new possibilities as
a means to observe the neural processes underlying improvements in motor function.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The loss of hand function is often cited as the most devastating
consequence following a stroke (Barker and Brauer, 2005). Over
the past several decades, many novel rehabilitation approaches for
this functional loss have developed in parallel with advances in neu-
roscience (Cauraugh et al., 2010; French et al., 2007; Langhorne et al.,
2011; Thieme et al., 2013; Veerbeek et al., 2014; Waldner et al.,
2009). The most effective treatments generally involve high doses
of functionally meaningful tasks beginning in the early weeks post
stroke. However, while practice guidelines for effective treatment
are emerging, the lack of strong evidence regarding the content of
these treatment paradigms remains a critical concern. Findings that
certain treatments produce beneficial outcomes in some subjects,
while are ineffective or even detrimental in others (Cauraugh et al.,
2010; Coupar et al., 2010; Langhorne et al., 2009; Winter et al.,
and Innovation Partnership
Clinical Research Grant AHA

. This is an open access article under
2011), underscores a crucial need to characterize individual differ-
ences in treatment responsiveness.

Given the extent of brain reorganization due to a stroke lesion
(Westlake and Nagarajan, 2011; Westlake et al., 2012), it is essential
to consider the marked variability in brain networks as a primary con-
tributor to these differences. However, frequently used neuroimaging
analysis tools are unable to adequately capture and efficiently use the
statistical variability — within or across subjects with various lesion lo-
cations and reorganization patterns due to stroke. Hence, it is very im-
portant that the analysis approach is multivariate rather than mostly
univariate as in the frequently used general linear model (GLM) and
seed-based connectivity approaches. To this end, both data-driven and
multivariate independent components analysis (ICA) have surfaced as
effective alternatives. The commonly used group ICA (Calhoun et al.,
2001) has been successful for the analysis of data from multiple sub-
jects, but its ability to capture individual subject differences — which
is especially critical in group comparisons of subjects with stroke — is
limited. IVA of multiple datasets is a recent generalization of ICA that
has been shown to be superior in capturing subject variability andmak-
ing full use of the statistical information within and across multiple
datasets (Adali et al., 2014; Ma et al., 2013; Michael et al., 2014). More-
over, the addition of graph theoretical (GT) approaches to IVA compo-
nents creates a unique and powerful metric for interpreting brain
states after stroke.
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The aim of this study was to identify changes in intrinsic brain
networks as a result of a task-oriented unilateral intervention of the af-
fected upper extremity in subjects with stroke. We applied the GT
framework to generate neural connectivity metrics within canonical
cognitive and sensorimotor neural networks, as identified using IVA.
We hypothesized that following the intervention, subjects would dem-
onstrate increased sensorimotor network communication efficiency
(i.e., increased clustering and decreased path lengths) that would corre-
late with clinical tests of affected upper extremity function. Data related
to the behavioral effects as a result of the unilateral intervention in this
study are part of a larger study comparing two different interventions,
but these data have not yet been published or presented.

2. Methods

2.1. Study population

Ten volunteer subjects with a first ever monohemispheric stroke in
the distribution of the middle cerebral artery participated. Additional
inclusion criteria were as follows:

1. Score of 25–35/66 on the Upper Extremity Fugl–Meyer Assessment
Scale, indicating moderate to moderately severe impairment in arm
function.

2. 50–80 years of age.
3. Completion of all conventional rehabilitation.
4. Able to actively perform a range grasp (finger flexion) with at least

two fingers and the wrist maintained in a neutral position.

Subjects were excluded from the study for the following reasons:

1. Participation in an arm exercise programmore than 20min 3 times a
week (to avoid bias from training).

2. Medical history of (a) recent hospitalization for severe disease or sur-
gery, or (b) significant orthopedic or chronic pain conditions limiting
upper extremity exercise.

3. Neurological history of (a) untreated major post-stroke depression,
(b) dementia based on Folstein Mini-Mental Status Score or (c) se-
vere receptive or global aphasia that confounded testing and training
(unable to follow 2 point commands).

4. A non-stroke neuromuscular disorder restricting exercise (e.g.,
Parkinson's syndrome).

5. Independent ability to grasp, lift, transport and release a 6 inch diam-
eter foam ball.

6. Indwellingmetals, medical implants, or claustrophobia incompatible
with MRI.

The study protocol was approved by the Institutional Review Board
and was conducted in accordance with the Declaration of Helsinki. All
participants gave written informed consent prior to study participation.

2.2. Rehabilitation intervention

The intervention consisted of two 6-week training blocks of three, 1-
h training sessions/week for a total of 36 sessions. Because the subjects
included in this study demonstrated moderate to moderately severe
arm function, the aim of the first 6 weeks was to prime the affected
upper extremity to improve voluntary motor control and active range
of motion such that functional tasks could be more effectively practiced
during the second 6 week session. Therefore, during the first block,
training was focused on repetitive, active movement of the affected
arm into shoulder flexion and elbow extension. The Tailwind, bilateral
arm training with rhythmic auditory cueing (BACTRAC) device was
used for all sessions, whichwas previously shown to improve arm func-
tion in subjects with chronic (N6 months) stroke (McCombe Waller et
al., 2008). Training at each visit included four 5-minute training bouts
with a 10-minute rest period between bouts. Rate was initially set at a
preferred speed and then increased as tolerated. Adjusting the height
of the BATRAC device added resistance to the training. The device was
flat during the first week and the height was increased as tolerated for
the remaining weeks of treatment. During the second 6-week session
block, the focus was on task-specific training that included use of the
affected arm and hand in grasp, reach, and release activities. This
study focused on the group before and after thefirst 6weeks of training.

2.3. Behavioral measures

A testing battery of clinical assessments was conducted on each
subject before and after the intervention and included the following
measures:

1. The Upper Extremity Fugl–Meyer Assessment Scale was used to
assess motor impairments.

2. The Wolf Motor Function Test was used to assess motor function in
terms of movement time and quality.

3. The University of Maryland Arm Questionnaire for Stroke (UMAQS)
was selected to measure daily use of the paretic arm.

4. Isometric grip strength was assessed with a hand dynamometer and
pinch strength (lateral pinch and 3-jaw pinch) was assessed using
the Jamar Pinch Gauge.

5. The Box and Block Test was used to assess hand function.

To determine the combined clinical effects of affected upper extrem-
ity training on measures of brain connectivity, a composite measure of
the difference in all clinical outcomes was calculated and used as the
single primary outcome measure. Intersubject baseline variability was
normalized by use of a change score in which the difference between
baseline and post-intervention was divided by the baseline score of
each outcome measure.

2.4. Neuroimaging acquisition

A 3 T Phillips Archieva MR scanner was used for all magnetic reso-
nance (MR) data acquisition. fMRI data were acquired using an echo-
planar imaging (EPI) sequencewith the following scanning parameters:
TR = 3000, TE = 30, flip angle = 75, voxel size is 2.5/2.5/3, 50 slices/
3 mm slice thickness with no gap. Data were collected while partici-
pants performed an auditory-cued affected hand grasp and release
task. The hand motor task was standardized based on available range
of finger flexion achieved with minimal effort. An MRI compatible
SAEBO-FLEX exoskeleton (Saebo, Inc., Charlotte, NC) was worn by
each participant to assist with finger extension at the completion of
each finger flexion task. The task was cued once every 3 s in a block de-
sign of 24 s of motor task followed by 30 s of rest. Subjects were
instructed to squeeze lightly at each beep, then to relax and wait for
the next beep. Eight blocks were completed during each session. Prac-
tice blocks outside of the scanner ensured consistency in task perfor-
mance and the absence of mirror movements of the unaffected hand.
In addition to the fMRI data, a high-resolution 3-dimensional T1-
weighted, image was acquired for anatomical reference.

2.5. fRMI preprocessing

The SPM8 software package (Friston, 2013) was employed to
perform fMRI preprocessing. Slice timing was performed with a shift
relative to the acquisition time of the middle slice using sinc-interpola-
tion. All images were spatially realigned to the 1st volume to correct for
inter-scan movement. To remove movement-related variance the
realigned images were processed using the unwarp SPM8 function.
Given the observed variance (after realignment) and the realignment
parameters, estimates of how deformations changed with subject
movement were made, which subsequently were used to minimize
movement-related variance. Data were then spatially normalized to a
standard echo-planar imaging template based on the standardMontreal
Neurological Institute space (Friston et al., 1995) with an affine
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transformation followed by a non-linear approachwith a 4 × 5× 4 basis
functions. Images, originally collected at 2.5 mm × 2.5 mm × 2.5 mm,
were resampled at 2mm×2mm×2mmvoxels. Finally, datawere spa-
tially smoothed with a Gaussian kernel of full-width half maximum
(FWHM) of 5 mm × 5 mm × 5 mm.

3. fMRI analysis

3.1. IVA

IVA is a recent extension of ICA tomultiple datasets. A key feature of
IVA is that it takes dependence across datasets into account while
achieving joint blind source separation. IVA has also been shown to bet-
ter capture subject variability in ICA comparison studies (Dea et al.,
2011; Ma et al., 2013; Michael et al., 2014). For K datasets, IVA models
each as linearmixtures ofN statistically independent sources. For spatial
IVA and ICA, which is themost commonly usedmodel, a source can also
be referred to as a spatial component or spatial map. Each dataset is
represented as a random vector using superscript notation as x[k] =
[x1

[k], …, xn[k], …, xN
[k]]T, k = 1, …, K. The IVA generative mixture model

for x[k] is

x k½ � ¼ A k½ �s k½ � k ¼ 1;…;K ð1Þ

where each A[k] is an N by N mixing matrix and s[k] = [s1
[k], …, sn[k], …,

sN
[k]]T is the random vector representing the original sources for the kth
dataset. When K = 1, IVA is equivalent to ICA:

x ¼ As: ð2Þ

For K N 1, IVA simultaneously estimates a demixing matrix W[k] for
each dataset

y k½ � ¼ W k½ �x k½ � k ¼ 1;…;K ð3Þ

where y[k] is the random vector representation for the estimated
sources for the kth dataset. Dependence across datasets is exploited in
the IVA model by allowing each source to have statistical dependence
with one source from each other dataset. Sources across datasets are
placed in a vector called a source component vector (SCV) and the mu-
tual information within each SCV is maximized as part of the IVA cost
function while maximizing the independence between each SCV. In
this study, sources refer to spatial components.

3.2. Order selection

Order selection refers to selecting the number of spatial components
to be estimated during analysis; the number of components is referred
to as the order. Order selection is important due to the high dimension-
ality and high noise level in fMRI data. However, the problem of
estimating the number of clinically meaningful components is not
straightforward due to noise, such as headmovement artifacts and am-
bient noise, and the dependence among samples, i.e., voxels in the spa-
tial domain. For data obtained from subjects with stroke, high subject
variability due to lesions and the process of brain plasticity makes the
order estimation more difficult. One approach, as in Li et al. (2007),
has been to subsample to a set of independent and identically distribut-
ed (i.i.d.) voxel samples in order to take advantage of information-
theoretic criteria that require this assumption.More recentwork jointly
estimates order and downsampling depth to produce i.i.d. samples
using information-theoretic criterion leading to slightly higher orders
(Li et al., 2011). The higher order used in Li et al. (2011) produced com-
ponents of interest in the frontal, parietal, and temporal regions that
were not observed at lower order ICA. Using this approach (Li et al.,
2011), the average order for the current study was found to be 61
with a standard deviation of 35. Due to the large standard deviation,
the effect that order has on component estimates was investigated. At
lower orders with low t-values, fewmeaningful components were esti-
mated. As the order was increased, t-values increased and components
began to reflect canonical networks. Therefore, components at a range
of orders from 20 to 100 were estimated in steps of 10. At order 80,
the component estimates produced more meaningful components
with higher t-values than those at lower orders. At orders higher than
80, the components become fragmented into separate spatial maps.
The low to high frequency power ratio for each of the 80 components
was then analyzed using the Group ICA of fMRI Toolbox (GIFT). Mean-
ingful components were retained by removing artifacts found outside
of graymatter (in ventricles, skull and surrounding tissue,whitematter,
and eye sockets), high frequency time courses due to scanner noise, and
rings of signal representing motion. Other work has also made use of
higher orders to provide a more detailed view of functional activity
(Allen et al., 2011; Erhardt et al., 2011; Kiviniemi et al., 2009; Ma et
al., 2012).
3.3. Validation

Calculated group features are validated by subsampling each
group at one-third the group size to form a subgroup. A third of the
subjects are randomly selected from the pre-intervention dataset
and the corresponding subjects are selected at post-intervention. Re-
peating this random sampling with replacement, twenty subgroups
are formed. The given feature is recalculated for both the pre- and
post-subgroups. A two-sample t-test is then used to validate wheth-
er random subgroups demonstrate the same difference as when the
entire population is considered. A similar approach to functional net-
work connectivity (FNC) validation has been used by Jafri et al.
(2008). FNC is computed by calculating the temporal dependence
among spatial components usually through covariance and is thus
a measure of connectivity across components. Spatial FNC (sFNC)
measures connectivity in terms of the dependence among spatial
components calculated using mutual information (Ma et al., 2014).
Each spatial component can be thought of as a maximally independent
brain state. Understanding how each state shares mutual information
with each other leads to an understanding of sFNC. Thus, changes in
FNC and sFNC give us a way to quantify differences in functional net-
works between pre- and post-intervention.
3.4. Graph-theoretical analysis

GT analysis simultaneously takes all clinically meaningful compo-
nents into account to form group features such as the clustering coeffi-
cient, path length, small worldness, and node centrality. For each
subject, an undirected graph is formed where each node corresponds
to an estimated temporal or z-scored spatial component for the analysis
of FNC and sFNC, respectively. For sFNC, each edge is defined by themu-
tual information between nodes and for FNC, edge values are defined by
the correlation coefficient between nodes. Graph densities are then
formed by removing edges with values below a chosen threshold.
When the threshold is low, the graph retains many connections and is
comparable to a random network with an equal number of edges and
nodes. As the threshold increases, graphs with different connection
densities are formed resulting in trends in the graph-theoretical
features.

Random subject sampling is used for pre-intervention and post-
intervention with replacement as described in Section 3.3. At each
threshold, theGT features are calculated for each subject then the corre-
sponding subgroup feature is the average taken over the subjects' fea-
tures. Differences between groups were assessed using a two-sample
t-test across subgroups with the FDR corrected level of significance set
at alpha 0.05.
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3.4.1. Clustering coefficient
The clustering coefficient is calculated as in Liu et al. (2008)

C ¼ 1

N

XN

n¼1

En
Nn Nn−1ð Þ=2

� � : ð4Þ

A cluster exists if two neighbors of the nth node are connected. The
number of edges connected to the nth node isNn. Therefore,Nn(Nn − 1)/
2 is themaximumnumber of possible clusters and En represents the ac-
tual number clusters at the nth node. This clustering coefficient is then
normalized by the corresponding coefficient from the comparable ran-
dom graph with the same number of nodes and edges as the observed
graph. These values are then averaged over subjects for each threshold.

3.4.2. Path length
At each threshold the average shortest path length for the ith node is

calculated as defined in (Ma et al., 2013)

Li¼
1

N−1

XN

j≠i

Li;j; ð5Þ

where Li,j is the number of edges along the shortest path from node i to
node j. Then the graph's average shortest path length L is computed by
averaging over Li for i = 1, …, N. Smaller values of the average path
length indicate greater efficiency in the connectivity structure
(Hyvärinen et al., 2001). The average path length is then normalized
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Fig. 2. Smallworldness vs threshold plots, where graph edgeswith values below the threshold a
worldness. FDR corrected p-values are 0.0094 for (a) and 0.0059 for (b).
by the corresponding average path length from the comparable random
graphwith the same number of nodes and edges as the observed graph.

3.4.3. Small worldness
Small worldness is calculated by dividing each subject's clustering

coefficient by the average path length. Small worldness values are also
averaged across subjects. Small worldness is a quality found in the
FNCof healthy subjects and is a feature that takes allmeaningful compo-
nents into account simultaneously. As noted in Wang et al. (2010), the
quality of small worldness in neural networks is indicative of efficient
communication. Small values suggest functional network shifts toward
random networks and have previously been demonstrated in stroke
and other brain pathologies, such as brain tumors (Bartolomei et al.,
2006), Alzheimer's disease (de Haan et al., 2009), and epilepsy (van
Dellen et al., 2009). Larger values of small worldness indicate local cliqu-
ishness among groups of nodes with long-range paths connecting node
clusters (Bassett et al., 2012).

3.4.4. Centrality
Investigation of how spatial brain components share mutual infor-

mation with each other leads to an understanding of sFNC. Spatial
nodeswith high centrality are important in termsof the functional orga-
nization of the brain as these nodes are found along the shortest path
that connect other components to each other and hence connect com-
ponent clusters throughout the brain. The centrality of a node is deter-
mined by its role in the shortest path between all pairwise nodes. The
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shortest path from one node to another is calculated by first converting
edge values into distance values. The edge values are the mutual infor-
mation values between nodes which represent the z-scored spatial
components. These edge values aremapped to distance values between
zero and one. Let ei and di represent theMI and distance values of the ith
edge, respectively. The distance value for the ith edge is calculated as

di ¼
maxk ek−ei
maxk ek

: ð6Þ

The shortest path from node p to node q is the path that has the
smallest sum of distances along the path. The centrality of the ith
node is representative of the number of times that node i is found on
the shortest path between all other pairwise nodes. High centrality sug-
gests that the component is important in terms of efficiency of the
brain's functional network connectivity. The centrality for the ith node
is calculated as in Sporns et al. (2007),

Hi¼
XN

p≠q≠i

Ep;i;q
Ep;q

ð7Þ

where Ep,i,q is the number of shortest paths between pairwise nodes that
include node i and Ep,q is the number of shortest paths from node p to
node q which is equal to one when using distance edges.
3.5. Task correlation

Two evenly sized groups were formed from the 10 subjects. Half of
these subjects exhibited motor improvement with composite clinical
scores ranging from 2.9 to 11.5 and will be referred to herein as re-
sponders. The other five subjects had scores ranging from −0.4 to 1.8
andwill be referred to as non-responders. In order to determinewheth-
er the fMRI data exhibit a similar trend, and hence correlatewith clinical
results, the two groups were separated and a time course correlation
analysis was performed. The block design of 30 s rest followed by 24 s
task for 8 cycles forms the hand-task time course where resting times
are represented by zeros and task times are represented by ones. The
hand-task time course is convolved with the hemodynamic-response
function generating the model time course for task activation. The sen-
sorimotor and cerebellum components are task-activated components
that correlate with the task paradigm. The correlation coefficient is
calculated between these components' time courses and the model
time course for each subject. Then the average value is calculated for
the responders and non-responders at pre- and post-intervention.
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4. Results

4.1. t-Maps

Example t-maps are shown in Fig. 1 for pre- and post-intervention.
Improvements can be seen in terms of larger t-values andmore activat-
ed voxels for the visual, frontal, andDMN components. It is important to
note that not all component t-maps revealed differences between pre-
and post-intervention. However, differences are evident in the GT fea-
tures despite the lack of difference in t-maps thus making GT analysis
an attractive solution for quantifying post-intervention improvements.
Each t-map was thresholded at p b 0.05 and the color bars beneath
the t-maps in Fig. 1 indicate the t-value range.
4.2. Graph-theoretical analysis

4.2.1. Small worldness
The average values of small worldness were calculated at a range of

thresholds, i.e., edge values between nodes, for the components gener-
ated by IVA. See Fig. 2a and b for temporal and spatial small worldness,
respectively. Blue circles indicate pre-intervention values and red aster-
isks indicate post-intervention values. Triangles on the x-axis indicate
that the difference was found to be statistically significant at p b 0.01.
An increase in smallworldnesswas identified at post-intervention com-
pared to pre-intervention, suggesting improved local efficiency in neu-
ral communication. As the threshold increased, trends in small-
worldness values suggested an increase in local cliquishness among
node clusters, for both temporal and spatial components. Validation
methods as described in Section 3.3 revealed a false discovery rate
(FDR) corrected p-value of 0.0094 for Fig. 2a and 0.0059 for Fig. 2b.
The difference in small-worldness values is considered significant if
the p-value at the respective threshold is at or below the FDR p-value.
Note that IVA generates spatial componentswhich aremaximally statis-
tically independent, which is why the thresholds for mutual informa-
tion take on lower values than for the temporal correlations used in FNC.
4.2.2. Centrality
Node centrality was calculated for 20 randomly selected subgroups

selected from the pre- and post-group for sFNC validation and a two-
sample t-test was then performed across these values. A red triangle
pointing right along the x-axis of the plots in Fig. 3 indicates significantly
higher centrality for the post-groupwhereas a blue triangle pointing left
indicates that the pre-group exhibited more centrality at the given
threshold. In particular, an increase in centrality was noted for the sen-
sorimotor component across the entire range of thresholds. Increased
centrality was also found for the frontal, left frontal–parietal, visual,
and cerebellum components. Interestingly, the task-deactivated DMN
component and the right frontal–parietal component both showed
decreased centrality at post-intervention.
4.3. Task correlation

Responders and non-responders were compared using differences
in cross correlation values between the time courses of the sensorimo-
tor and cerebellar components and the time course of the hand motor
task. The average correlation value improved for the sensorimotor com-
ponent of the responders by 0.1 and by 0.05 for non-responders. The
standard deviation decreased for both groups at post-intervention. For
the cerebellar component, the correlation value increased by 0.06 for
the responders, but decreased by 0.07 for non-responders, reflecting
negative improvement in the clinical results of some subjects. The stan-
dard deviation also decreased for both groups for this component, pro-
viding further confidence in the results of our correlation analysis.
5. Discussion

Results of this study demonstrate, for the first time, the usefulness of
a novel fMRI analysis in the identification of neuroplastic changes in
network communication induced by rehabilitation after stroke. Data
driven IVA was used to capture between and within subject variability
of distinct neural networks to which graph theoretical analysis was
then applied. Several of these networks demonstrated significantly
greater, albeit subtle, within network activation differences as a result
of the upper extremity intervention. Despite these small changes of
within network activation, marked differences in neural communica-
tion efficiency were determined. First, an increased in small worldness
across networkswas identified, suggesting an increased overall efficien-
cy in the transfer of neural information. Analysis of individual spatial
components then revealed increased centralitywithin the sensorimotor
and cerebellum networks, providing further evidence of improved
within-network communication. Conversely, decreased centrality was
observed in theDMN and right frontal-parietal components, which like-
ly reflected a reduced reliance on cognition as motor task performance
improved. Lastly, responders were separated from non-responders
based on clinical outcomes. Results revealed greater correlation be-
tween both the sensorimotor and cerebellar network and hand motor
task time course in responders compared to non-responders, again sug-
gesting a more efficient use of these two networks, which mirrored the
behavioral results.

The increased values of small worldness and centrality in this study
indicate improved local cliquishness among groups of neural nodes as a
result of the rehabilitation intervention (Bassett et al., 2012).

In light of previous findings of functional network shifts toward ran-
dom networks in stroke and other brain pathologies (Bartolomei et al.,
2006; de Haan et al., 2009; van Dellen et al., 2009), our results suggest
a return toward healthy brain function during motor task performance.
Improvements were most pronounced within sensorimotor and cere-
bellar network efficiency,which is consistentwith results fromprevious
intervention studies (Grefkes and Fink, 2011; Ovadia-Caro et al., 2013;
Westlake and Nagarajan, 2011; Westlake et al., 2012). However, most
intriguing is that these changes would not have been as evident if the
IVA approach were not paired with graph theoretical analysis. This
point is especially important given the subtle changes that result from
rehabilitation in the chronic post stroke stage or even among higher
functioning individuals immediately after stroke. Until this point, an un-
derstanding of neural changes after rehabilitation has been confounded
by group analysis approaches that collapse group data, thereby limiting
their ability to capture individual variability. By preserving this informa-
tion within canonical neural networks, important changes in neural
communication within these networks could then be observed. Unique
to this study is the decrease in communication efficiency noted within
the DMN and frontal–parietal cognitive networks during the hand
motor task. To the best of our knowledge, the involvement of cognitive
neural resources and the changes induced by a rehabilitation interven-
tion has not been previously examined. Following stroke, individuals
often demonstrate impaired cognitive function such as decreasedwork-
ing memory, attention deficit, and executive function disorder. Im-
provements in such cognitive function were recently found to parallel
increases in DMN connectivity in the resting brain up to 3 months
post stroke (Park et al., 2014). However, unlike the commonly observed
increase in DMN connectivity foundwhen the brain is in a resting state,
a relative decrease (i.e., suppression) in connectivity is a well-
established observation during cognitively engaging tasks. Although
our data-driven component analysis did notmodel differences between
rest and task-activated brain states, the pre–post intervention increase
in DMN suppression is intriguing and may suggest a return toward a
more normative brain state. Future studies including age-matched
healthy controls and an analysis of the spatiotemporal dynamics during
the transition from rest to motor task will help us better interpret this
result. A decrease in network communication within the right fronto-
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parietal network was also identified and reflects a reduction in the
attentional requirements for the hand motor task. This network is
generally engaged during tasks that require shifts of spatial attention
and target detection (Shulman et al., 2010). Since our training included
a motor task with auditory cueing, it was not surprising that the fMRI
auditory cued hand task became more automated with a reduced
need for attentional resources. Evidence of reduced attentional require-
ments as a result of motor learning has previously been demonstrated
from a behavioral perspective, but our observation provides the
first evidence of the changes in neurocognitive communication that
underlies motor rehabilitation in the stroke-affected brain.

Future work should consist of much larger groups; our sample size
was a limitation of this study. These groups should contain control sub-
jects and patients with differing lesion locations, clinical improvements,
and treatment interventions. The primary advantage of our group fMRI
analysis is that the inherent neural variability after stroke can be
modeled andmaintained. GT analysis can then be applied to further an-
alyze how GT features within and between key neural networks differ
between groups as a result of different interventions. Investigations
that demonstrate changes in these features with respect to clinical
outcomes can ultimately lead to a better understanding of neural
mechanisms and rehabilitation targets to improve motor function in
individuals with stroke.
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