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Abstract Dynamics of drainage is analyzed for packings of spheres, using numerical experiments.
For this purpose, a dynamic pore-scale model was developed to simulate water flow during drainage.
The pore space inside a packing of spheres was extracted using regular triangulation, resulting in an
assembly of grain-based tetrahedra. Then, pore units were constructed by identifying and merging
tetrahedra that belong to the same pore, resulting in an assembly of pore units. Each pore unit was
approximated by a volume-equivalent regular shape (e.g., cube and octahedron), for which a local capillary
pressure-saturation relationship was obtained. To simulate unsaturated flow, a pore-scale version of
IMPES (implicit pressure solver and explicit saturation update) was employed in order to calculate
pressure and saturation distributions as a function of time for the assembly of pore units. To test the
dynamic model, it was used on a packing of spheres to reproduce the corresponding measured
quasi-static capillary pressure-saturation curve for a sand packing. Calculations were done for a packing of
spheres with the same grain size distribution and porosity as the sand. We obtained good agreement, which
confirmed the ability of the dynamic code to accurately describe drainage under low flow rates. Simulations
of dynamic drainage revealed that drainage occurred in the form of finger-like infiltration of air into the
pore space, caused by heterogeneities in the pore structure. During the finger-like infiltration, the pressure
difference between air and water was found to be significantly higher than the capillary pressure.
Furthermore, we tested the effects of the averaging, boundary conditions, domain size, and viscosity on the
dynamic flow behavior. Finally, the dynamic coefficient was determined and compared to experimental
data.

1. Introduction

The capillarity phenomenon is fundamental to the flow of fluids in porous materials. For example, the rise
of water into a hydrophilic porous material is due to capillary action. Capillarity is a key process in many nat-
ural and industrial processes, for example, not only in unsaturated soils (Hassanizadeh et al., 2002; Likos &
Jaafar, 2013; Nikooee et al., 2013; Nuth & Laloui, 2008; Oh & Lu, 2014), carbon sequestration, oil and reservoir
engineering but also in water transport in thin porous media such as tissues (e.g., Sun et al., 2015), fuel cells
(e.g., Qin, 2015), and hygienic products (Diersch et al., 2010).

Capillarity is often described as the relation between capillary pressure and saturation under equilibrium
conditions. The capillary pressure-saturation relationship of air and water is often experimentally character-
ized where experiments may take hours to weeks. However, in many applications, flow of water may occur
in much shorter time scales. For example, during dynamic drainage experiments by Camps-Roach et al.
(2010) on a 20 cm long column, it took just 30 min for the majority of drainage to occur. Moreover, imbibi-
tion of ink in paper occurs within a second (Kettle et al., 2010). Relatively fast drainage and imbibition pro-
cesses give rise to the concept of dynamic capillarity effect. Under fast transient drainage or imbibition, the
difference in fluid pressures is not equal to capillary pressure anymore. Many examples exist in the soil phys-
ics and two-phase flow literature that describe the dynamic capillarity effect (see e.g., Bottero et al., 2011;
DiCarlo, 2005; Topp et al., 1967). For comprehensive reviews of dynamic capillarity effects, see Hassanizadeh
et al. (2002) and Diamantopoulos and Durner (2012).

Here we would like to employ an equation based thermodynamic considerations by Hassanizadeh and Gray
(1993), who have conjectured the following dynamic capillarity relationship:

Key Points:
� A pore-scale model was developed to

simulate dynamic drainage in
granular materials
� A comprehensive unsaturated flow

scheme was applied on an assembly
of pore units, to simulate flow during
dynamic drainage
� Migration of air resulted in irregular

patterns that affected dynamic
coefficient s significantly

Supporting Information:
� Supporting Information S1

Correspondence to:
S. M. Hassanizadeh,
S.M.Hassanizadeh@uu.nl

Citation:
Sweijen, T., Hassanizadeh, S. M.,
Chareyre, B., & Zhuang, L. (2018).
Dynamic pore-scale model of drainage
in granular porous media: The
pore-unit assembly method. Water
Resources Research, 54, 4193–4213.
https://doi.org/10.1029/
2017WR021769

Received 28 AUG 2017

Accepted 14 MAY 2018

Accepted article online 24 MAY 2018

Published online 30 JUN 2018

VC 2018. The Authors.

This is an open access article under the

terms of the Creative Commons

Attribution-NonCommercial-NoDerivs

License, which permits use and

distribution in any medium, provided

the original work is properly cited, the

use is non-commercial and no

modifications or adaptations are

made.

SWEIJEN ET AL. 4193

Water Resources Research

http://dx.doi.org/10.1029/2017WR021769
http://orcid.org/0000-0002-9728-7225
http://orcid.org/0000-0002-6473-9838
https://doi.org/10.1029/2017WR021769
https://doi.org/10.1029/2017WR021769
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1029/2017WR021769
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


hPairi2hPWi5Pc Sð Þ2s
@S
@t

(1)

where hPairi and hPWi denote the macroscopic pressure of air and water, respectively, Pc Sð Þ denotes the
capillary pressure, s is a dynamic coefficient, and @S

@t is the rate of change of saturation with time. Experi-
ments have been conducted to explore equation (1) and to determine the value of s. It has been shown
that for transient drainage, at any given saturation, hPairi2hPwi is larger than Pc ; the larger the imposed
pressure difference the more negative @S

@t and thus the larger the dynamic effect (e.g., Bottero et al., 2011;
Camps-Roach et al., 2010). During dynamic imbibition, hPairi2hPwi is smaller than Pc(see e.g., Bottero et al.,
2006). O’Carroll et al. (2005) conducted Multi-Step-Outflow (MSO) experiments on perchloroethylene (PCE)
and water, to investigate the effect of dynamic capillarity. In MSO, parameters are estimated by inverse
modeling of experimental data. They found that the goodness of the fit of inverse modeling of the experi-
ments improved significantly when the dynamic effect was included.

Dynamic capillarity effects have also been studied using pore-scale models. Pore-scale models can be
divided into two types, namely, (i) models that discretize the pore space into pore bodies and pore throats,
such as pore-network models (Joekar-Niasar et al., 2010; Qin, 2015; Thompson, 2002) and pore-unit assem-
bly models (Mason & Mellor, 1995) and (ii) models that employ direct, or fully resolved, simulations of flow
within the pore geometry, such as Lattice-Boltzman (Vogel et al., 2005), smooth particle hydrodynamics
(e.g., Kunz et al., 2016), and computational fluid dynamic (CFD) simulations (e.g., Ferrari & Lunati, 2012; Rab-
bani et al., 2017). Direct simulations of two-phase flow are typically applied to a small number of pores or
limited to two-dimensional domains, while pore-network and pore-unit assembly models can handle a very
large number of pores in two and three dimensions. On the other hand, pore-network and pore-unit assem-
bly models employ very simplified pore geometries and flow equations. Pore-network models have been
mainly employed to study the effect of various parameters on two-phase flow. For example, Mogensen and
Stenby (1998) developed a single-pressure algorithm to simulate dynamic imbibition. They studied the
effects of contact angle and capillary number on the residual oil saturation after a water flooding event.
Thompson (2002) developed a comprehensive pore-network model for dynamic imbibition to study water
movement in fibrous porous materials, where both the nonwetting and wetting pressures were solved
implicitly and saturation was updated explicitly. They included corner flow, capillary pressure in a pore
body and flow dynamics of two viscous fluids. Joekar-Niasar et al. (2010) developed a pore-network model
of two-phase flow based on a two-pressure algorithm similar to that in Thompson (2002), but saturation
was updated semi-implicit in order to enhance numerical stability at low flow rates. To evaluate their model,
they conducted simulations on a three-dimensional lattice of cubic pore bodies, with a coordination num-
ber of six (i.e., each pore body was connected to six other pore bodies). For a cubic pore body, the local
capillary pressure-saturation curve was analytically derived. The model has been used to study the effect of
various parameters, such as viscosity ratio and capillary number, on the dynamic capillarity effect (Joekar-
Niasar & Hassanizadeh, 2011).

However, pore-network models assume the pore geometry to be rigid, despite of the common occurrence
of coupled flow and deformation. For example, a deformation can be induced by applying a confining
stress to a porous sample, causing the pore space to decrease in size, which can invoke a change in water
saturation. In addition, soils can deform during a change of water saturation (Kharaghani et al., 2011; Lins &
Schanz, 2005); ink penetration in paper can induce swelling of the hydrophilic binders (Rosenholm, 2015);
and fluid distribution in foods occurs alongside changes in the polymeric chains (Takhar, 2014). Further-
more, in swelling materials, fluid absorption by the solid phase causes deformation of the pore space and
thus causes fluid redistribution, which is the case in super absorbent polymer particle beds in hygienic
products (Diersch et al., 2010).

An appropriate pore-scale model that can include deformation and flow is the development based on cou-
pling of pore-unit assembly method (PUA) with the Discrete Element Method (DEM). DEM is a particle-
based model that is capable of simulating particle-particle interactions during deformation of a granular
material (Cundall & Strack, 1979). In the PUA method, the pore geometry of spherical particle packings can
be extracted using a regular triangulation; four neighboring particles form the vertices of a tetrahedron,
which encloses a so-called pore unit. PUA has been applied on Finney packings to construct imbibition
curves for varying contact angles (Gladkikh & Bryant, 2005). More recently, PUA has been coupled to the
Discrete Element Method (DEM) to enable simulation of hydromechanical coupling in saturated granular
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materials (Catalano et al., 2014; Chareyre et al., 2012). PUA in combination with DEM has also been used to
construct equilibrium capillary pressure-saturation curves for packing of sand and glass-beads. First, the size
distribution of spheres and the porosity of the packing were matched to those of a granular material. Next,
the equilibrium capillary pressure-saturation curve was constructed, see for example, Yuan et al. (2016),
Sweijen et al. (2016, 2017a), and Mahmoodlu et al. (2016). In those studies, the capillary pressure-saturation
computations were based on binary saturation values (i.e., a pore unit is either empty or fully saturated).
They also calculated entry pressures for pore throats, which were based on pore throat radii following the
Mayer-Stowe and Princen method or the hemisphere method. See Sweijen et al. (2017a) for a comparison
between the two methods.

Based on the coupling of PUA with DEM, we introduce in this work a pore-scale model for unsaturated flow
to simulate dynamic drainage in a packing of spheres. We have developed an algorithm for simplifying the
complex pore geometry of pore units by fitting regular shapes into pore units. This algorithm accounts for
varying coordination numbers of pore units. By simplifying the pore geometry, a local capillary pressure-
saturation relationship for each pore unit could be determined, enabling dynamic flow computations with
pore units being partially saturated, rather than using a binary saturation. Dynamic drainage is simulated by
employing a single-pressure algorithm to solve for water pressure, based on a finite difference scheme. We
refer to this algorithm as a pore-scale version of IMPES (implicit pressure solver and explicit saturation
update).

The aims of this research are (i) to develop a dynamic pore-scale model that captures the main geometrical
information from packings of spheres and to simulate unsaturated flow during dynamic drainage, (ii) to test
and verify the model by reproducing the quasi-static capillary pressure-saturation curve, and (iii) to investi-
gate dynamic capillary effects in packings of spheres and to study the effects of averaging, boundary condi-
tions, pore-scale processes, domain size, and viscosity and by comparing the dynamic coefficient s in
simulations to that of experiments.

The outline of this study is as follows. First, we explain the algorithm to fit regular shapes into pore units.
Then, we evaluate the single-pressure solver and the local rules for two-phase flow. Finally, the model is
tested by simulating dynamic drainage experiments.

2. Numerical Model

Packings of spheres are generated using the Discrete Element Method (DEM), which was first introduced by
Cundall and Strack (1979). In this study, we employ open-source software Yade-DEM, which is an extend-
able and three-dimensional model (�Smilauer et al., 2015). Packings of spheres are generated for a prede-
fined porosity value and particle size distribution, following the methodology of Chareyre et al. (2002). From
the particle packing, the pore structure is extracted using a regular Delaunay triangulation, resulting in an
assembly of tetrahedra. Afterwards, the pore space is simplified by replacing the pore geometry inside each
tetrahedron by that of a regular shape, which is often referred to as a platonic solid (e.g., tetrahedron, cube,
and octahedron). Thus, each regular shape represents a pore body, which we refer to as a pore unit. Finally,
we obtain a pore-unit assembly. In the following sections, we explain the methodology of generating an
assembly of regular shapes.

2.1. Representing Pore Units by Regular Shapes
The pore space from a spherical particle packing is extracted using a regular triangulation, such that the pore
space is subdivided into tetrahedra (see Figure 1a). Each tetrahedron is enclosed by four spheres, where the
vertices of the tetrahedron are located at the centers of spheres. One tetrahedron is connected to four other
tetrahedra via narrow openings at the facet of the tetrahedra. These facets thus represent zero-volume pore
throats that offer resistance to flow (see Figure 1a). The tetrahedra are referred to as grain-based tetrahedra,
such that the whole pore space is represented by an assembly of grain-based tetrahedra. In this research, we
employ the regular triangulation which accounts for differences in particle sizes unlike the Delaunay triangula-
tion. Regular triangulation was implemented into Yade-DEM by Chareyre et al. (2012).

The pore space inside an individual grain-based tetrahedron has a complex shape that is different for each
grain-based tetrahedron. To enable unsaturated flow simulations, the pore space inside each grain-based
tetrahedron is simplified by representing it by a pore-based tetrahedron, which is placed with its vertices

Water Resources Research 10.1029/2017WR021769

SWEIJEN ET AL. 4195



into the pore throats and which has a volume equal to the pore volume of a grain-based tetrahedron (see
Figure 1b). The size of a pore throat is characterized by radius rij of the inscribed circle between three par-
ticles that make up a facet of a grain-based tetrahedron, while the size of the pore space is described by
radius ri of the inscribed sphere inside the pore-based tetrahedron (see Figure 1b).

In some cases, the pore throat radius rij of pore throat ij can be larger than the radius ri and/or rj of the
inscribed sphere of pore-based tetrahedra i and j, following Al-Raoush et al. (2003) and Sweijen et al. (2016).
Per definition, the pore throat size should be smaller than the pore size. However, this is not the case for
larger pores that contain two or more grain-based tetrahedra. This happens in the case of pore units that
are surrounded by more than four spheres. To alleviate this issue, we apply a merging algorithm with the
aim of identifying grain-based tetrahedra that belong to the same pore unit. This algorithm is explained fur-
ther in section 2.2.

When two grain-based tetrahedra are merged, another regular shape is chosen to represent the pore space
inside the merged tetrahedra such that the vertices of a regular shape are fitted into the pore throats, see
for example, Figure 1c. Each regular shape represents a pore unit and has a void volume Vi and Ni adjacent
pore throats. For example, a set of merged grain-based tetrahedra that has six adjacent pore throats is rep-
resented by an octahedron, which has six vertices. Here we do not consider the exact relative location of
those pore throats within the pore unit, but we merely assume them to match the location of pore throats
(i.e., vertices) of a regular shape.

2.2. Merging Algorithm
The aim of the merging algorithm is to identify grain-based tetrahedra that belong to the same pore unit,
while considering the regular shape that is chosen to represent the merged grain-based tetrahedra. Initially,
we replace the pore space of each grain-based tetrahedron by a pore-based tetrahedron, having four verti-
ces (Figure 1b). To check whether the pore throats are smaller than the radius of pore-based tetrahedra, we
compute the radius of inscribed sphere of each pore-based tetrahedron. The radius of the inscribed sphere
(rins

i ) of a pore-based tetrahedron (in fact any regular shape) is given by

rins
i 5v

ffiffiffiffi
Vi

3
p

(2)

in which v is a shape factor, whose value is different for different regular shapes, and Vi is the volume of the
regular shape (and thus of the pore unit). Values of v are given in Table 1. In the case that one (or both) of
the inscribed spheres is smaller than the pore throats connecting them, we merge the two spheres into one

Figure 1. Two-dimensional illustration of the algorithm to find regular shapes to represent pore units: (a) grain-based
tetrahedra from triangulation, (b) pore-based tetrahedra having the same volume as the void space inside the
grain-based tetrahedra, note the indication of rins

i and rij , and (c) regular shapes that were found after merging of
pore-based tetrahedra.
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big pore unit. In order to avoid very small differences between rij and rins
i or rins

j playing a role, we employ a
factor u to control the strictness of merging. Thus, when one of the following criteria are not satisfied, we
merge pore units i and j:

rij

rins
i

< u

rij

rins
j

< u

8>>>><
>>>>:

(3)

where u is a user-defined parameter less than unity. In this research u was set to 0.90. The method of merg-
ing grain-based tetrahedra is similar to the work by Al-Raoush et al. (2003), who merged grain-based tetra-
hedra together, based on their inscribed spheres. They showed that merging of tetrahedra is an efficient
way of generating a pore network but yields slightly different pore statistics than image analysing techni-
ques provide. Typically, the pore body radii and pore throat radii are larger when using merging of tetrahe-
dra, compared to radii from image analyzing techniques. Bakke and Øren (1997) also employed a technique
similar to merging; they used an imaging method (i.e., thinning) to draw Voronoi polyhedral around grains,

from which the vertices were combined until the inscribed sphere
with its center on a vertex was always bigger than a pore throat.

The merging procedure starts with a pore-based tetrahedron that has
the largest value of rij

rins
i

; it will be merged to its neighboring pore-based
tetrahedron. After merging, a new regular shape is fitted into the
merged tetrahedra, Vi and rins

i are subsequently updated. Then, a pore
unit with the next largest value of rij

rins
i

is merged to its neighbor; this is
repeated until conditions in equation (3) are satisfied for all pore units
and throats. To avoid long chains of merged pore units, the maximum
coordination number is set to 20, as otherwise pore units with very
large coordination numbers may arise. Finally, a small number of unre-
solved pore throats remain (typically <1% of the pore throats). For

those, we change their rij to umin rins
i ; rins

j

� �
. Finally, we ensure that

only one pore throat exists between two pore units, as it may occur
that more throats exist. If more throats exist, the throats are combined
to one throat by taking an arithmetic average of pore throat proper-
ties (e.g., pore throat radii). The final set of merged tetrahedra is
referred to as an assembly of pore units.

Benchmark testing revealed that our merging algorithm works well.
For example, we generated different packings for which we knew in
advance how the pore structure should be. First, a packing of spheres
was generated having tetrahedral pore units (i.e., pore units have a
coordination number of four). Second, a packing of particles was gen-
erated having octahedral pore units (i.e., pore units have a coordina-
tion number of eight), see Figure 2a. Finally, spheres were put in a
triangular prism (i.e., pore units have a coordination number of 5), see
Figure 2b.

Table 1
Geometrical Constants for Various Regular Shapes

Name Ni v k h Nedges j

Tetrahedron 4 0.42 2.04 1.23 6 3.87
Octahedron 6 0.53 1.62 1.91 12 8.71
Cube 8 0.50 1.00 1

2 p 8 6.83
Octahedron 1 cube 10 0.44 1.19 1

2 p and 1.91 12 5.15
Icosahedron 12 0.58 0.77 2.41 30 24.11
Dodecahedron 20 0.57 0.51 2.03 30 22.87

Figure 2. Three dimensional illustrations of packings of spheres from which
the pore space is represented by a regular shape that is known prior to apply-
ing our merging algorithm: (a) octahedral assembly of spheres, whose pore
unit has a coordination number of 8 and (b) a triangular prism assembly of
spheres, whose pore unit has a coordination number of 5.
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2.3. Pore-Scale Version of IMPES
To simulate flow of water in a pore-unit assembly, we employ a pore-scale algorithm of a finite difference
scheme to solve implicitly for pressure and explicitly for saturation, which is often referred to as IMPES (see
e.g., Chen et al., 2004; Huber & Helmig, 1999). Pressure is only solved for water, because air is assumed to be
infinitely mobile compared to water. In other words, the two-phase flow of air and water is characterized by
a viscosity ratio of 0.02 (ratio of air over water viscosity), hence its pressure is assumed to be constant at pair .
This assumption was also employed by Kibbey et al. (2016) to study the effect of drainage rate on residual
saturation in a pore-network model. Let us consider a pore unit i having a water saturation sw

i , water pres-
sure pw

i and air saturation sair
i . Per definition, we have

sair
i 1sw

i 51 (4)

In pore unit i, a local capillary pressure pc
i is defined that under no-flow conditions is related as follows:

pc
i 5pair2pw

i 5f sw
i

� �
(5)

When solving for water pressure, pc
i 5pair2pw

i is not strictly imposed as the capillary pressure may be differ-
ent than pair2pw

i . The volumetric flux of water though pore throat ij (qw
ij ) is assumed to be linearly propor-

tional to the pressure gradient (e.g., Chareyre et al., 2012; Joekar-Niasar et al., 2010):

qw
ij 5kw

ij pw
i 2pw

j

� �
(6)

in which kw
ij is a pore throat conductivity. For saturated pore units, a volume balance is written as follows:

XNi

j51

qw
ij 50 (7)

which yields the following equation, using equation (6):

XNi

j51

kw
ij pw

i 2pw
i

� �
50 (8)

For partially saturated pore units, a different set of equations is employed for computing the water pressure.
In what follows, we consider the air pressure pair to be equal to zero such that equation (5) reduces to
pc

i 52pw
i . For partially saturated pore units, the volume balance is given by

XNi

j51

kw
ij pw

i 2pw
j

� �
52Vi

dsw
i

dt
(9)

Equations (8) and (9) are can be written into a discretized form (see Appendix A) as follows:

a pw
i

� �t1Dt
2
XNi

j50

b pw
j

� �t1Dt
5c (10)

where coefficients a, b, and c are defined in Table 2. Equation (10) provides a linear set of equations that is
solved for water pressure, using implicit solver Sparse supernodal LU factorization in Eigen libraries (Eigen,
2017). Once the water pressure is solved, the saturation is updated explicitly following:

sw
i

� �t1Dt
5 sw

i

� �t
2

Dt
Vi

XNi

j51

kw
ij pw

i

� �t1Dt
2 pw

j

� �t1Dt
� �

(11)

2.4. Local Capillary Pressure Saturation Curve
A set of equations is derived to describe the local capillary pressure-
saturation relationship for partially saturated pore units, following the
work by Joekar-Niasar et al. (2010). See Appendix B for detailed and
illustrated information. We define a threshold saturation, sw;thr

i , for
pore unit i that corresponds to a saturation at which air fills the

Table 2
Parameters to Solve the Linear System in Equation 7.10

Name a b c

sw
i 51 Saturated PNi

j51
kw

ij

kw
ij 0

0 < sw
i < 1 Partially saturated PNi

j50
kw

ij 1 Vi
Dt

@sw
i

@pw
i

 !
kw

ij
Vi
Dt

@sw
i

@pw
i

pt
i
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inscribed sphere of the pore unit (Joekar-Niasar et al., 2010; Thompson, 2002):

sw;thr
i 512

4
3

pv3 (12)

When the saturation in a pore unit is smaller than sw;thr
i , water resides in corners and edges of a pore unit.

Thus, following the work by Joekar-Niasar et al. (2010), we can write

V w
i 5V w

i;corners1V w
i;edges (13)

where V w
i;corners and V w

i;edges is the volume of water residing in corners and edges, respectively. The volume of
water in the corners can be computed, using equation (2):

V w
i;corners5 rc

i

� �3 1
v3

2
4
3

p

� �
(14)

where rc
i is the radius of curvature of the air-water interface, which is given by Young’s Laplace equation

rc
i 5 2c

pc
i
, with c being the interfacial tension of air-water (0.072 N m21). The volume of water along the edges

is determined as follows. Consider an edge that has a dihedral angle h. In the plane that is perpendicular to
the length of an edge, the area occupied by water is given by, following Joekar-Niasar et al. (2010):

aw
i;edge5

1
4

rc
i

� �2 1

tan
1
2

h

� �2
p2h

2

0
BB@

1
CCA (15)

Note that the radius of curvature in an edge is given by c
pc

i
5 1

2 rc
i , because the second principal curvature is

assumed to be flat. The length of the edges inside a regular shape is given by

ledge5k
ffiffiffiffi
Vi

3
p

22rc
i (16)

where k is a geometrical parameter that determines the length of one edge as a function of the volume of a reg-
ular shape (see Table 1 for its values). We substitute equations (15) and (16) into V w

i;edges5Nedges3aw
i;edge3 ledge,

where Nedges is the number of edges in the regular shape. The total water volume in a pore unit, V w
i , is

given by

V w
i 5 rc

i

� �3 1
v3 2

4
3

p

� �
1

1
4

rc
i

� �2
Nedges k

ffiffiffiffi
Vi

3
p

22rc
i

� � 1

tan
1
2

h

� �2
p2h

2

0
BB@

1
CCA (17)

Thus, water saturation inside pore unit i can be written as

sw
i 5

V w
i

Vi
5

c1
2c
pc

i

� �3

1c2
ffiffiffiffi
Vi

3
p 2c

pc
i

� �2

Vi

(18)

where c1 and c2 are geometrical parameters defined by

c15
1
v3

2
4p
3

� �
2

Nedges

2
1

tan
h
2

2
p2h

2

0
B@

1
CA

2
64

3
75

c25k
Nedges

4
1

tan
h
2

2
p2h

2

0
B@

1
CA

(19)

Equations (18) and (19) are fitted by the following equation, following Joekar-Niasar et al. (2010):

pc
i 5

2c

v
ffiffiffiffi
Vi

3
p

12e2jsw
i

� � (20)

where j is a geometrical constant; for more information about the fitting of equation (20), see Appendix C.

Water Resources Research 10.1029/2017WR021769

SWEIJEN ET AL. 4199



2.5. Geometrical Parameters for a Range of Coordination Numbers
The pore space does contain pore units that can be fitted not only with regular shapes but also with irregu-
lar shapes that have other coordination numbers than regular shapes. To overcome this problem, we fit an
equation to relevant geometrical properties, namely: j; v, and k, as a function of Ni ; see Figure 3. When we
can replace a pore unit by a regular shape, we will use the values of j; v, and k that are derived directly for
that regular shape, otherwise we will use fitting equations to find values for those parameters. The fitted
equations should yield values that correspond to a sphere for Ni converging to infinity. This was checked
and all equations given in Table 3 satisfy this test.

2.6. Local Drainage
The entry pressure of pore throat ij, pe

ij , defines the air-water pressure difference at which air can invade a
water-saturated pore unit. To estimate the entry pressure, we assume that the air-water interface has the
shape of a hemisphere. The entry pressure is given by the Young’s Laplace equation, assuming a perfectly
water wet solid phase:

pe
ij5

2c
rij

(21)

Equation (21) is an approximation for the entry pressure for sake of computational time, but of course a more
rigorous method such as the level-set method would yield more accurate entry pressure values (Prodanović &
Bryant, 2006). During drainage, air can only invade from pore unit i to its neighboring pore unit j if

pair2pw
j > pe

ij (22)

2.7. Air-Water Interfacial Area
The air-water interfacial area within a pore unit (aaw

i ) is determined as follows. For pore units with
1 > sw

i � sw;thr
i , the shape of the air-water interface is unknown. Therefore, we assume it to be equal to that

of a sphere having the same volume as air, following Joekar-Niasar et al. (2010). For stable partially saturated
pore units (sw

i < sw;thr
i ), the water is residing in the edges and in the corners, for which a derivation of air-

water interfacial area is given in Appendix D. We approximate the air-water interface as follows:

aaw
i 5

4p v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vi 12sw

i

� �
3
q� �2

; 1 > sw
i � sw;thr

i

p2hð Þ 2c
pc

i
Nedges ledge2

4c
pc

i

� �
14p

2c
pc

i

� �2 Nw
i

Ni

� �
; sw

i < sw;thr
i

8>>>><
>>>>:

(23)

where Nw
i is the number of pore throats that are not invaded by air, yet.

2.8. Hydraulic Conductivity
The conductivity kw

ij is assumed to depend on the local capillary pres-
sure in pore units i and j and thus on the water saturation. Following
Chareyre et al. (2012), we assume that kw

ij can be approximated by

Figure 3. Pore-scale parameters needed for the local capillary pressure-saturation relationship for partially saturated pore
units. Symbols indicate the values for various regular shapes, given in Table 1, and the dashed lines indicate the fitting by
equations given in Table 3.

Table 3
Fitted Equations for Geometrical Parameter of Regular Shapes, Which Are Used
to Estimate Geometrical Parameters of Irregular Shapes

Parameter Fitting equation

j 1:32Ni

k 7:12 Nið Þ20:89

v
ffiffiffiffi
3

4p
3
q

12e20:170Nið Þ
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kw
ij 5a

aw
ij rh

ij

� �2

llij

(24)

in which aw
ij is the surface area of water that resides inside the pore throat, a is a scaling parameter to adjust

the overall permeability of the pore-unit assembly (following Chareyre et al., 2012), l is the viscosity of
water, lij is the distance between centers of pore units i and j, and rh

ij is a representative radius that is
assumed to depend on local capillary pressure. We define rh

ij as follows:

rh
ij 5

rs
ij sw

i > sw;thr
i and sw

j > sw;thr
j

4c
pc

i 1pc
j

sw
i � sw;thr

i or sw
j � sw;thr

j

8>><
>>: (25)

in which rs
ij is the hydraulic radius of pore throat ij that is computed for a fully saturated pore throat, see

Chareyre et al. (2012) for its definition. Moreover, aw
ij depends on the local capillary pressure in pore units i

and j such that aw
ij is given by

aw
ij 5

aw;sat
ij 2p rc

ij

� �2
� �

; 0 < sw
i � sw;thr

i

aw;sat
ij ; sw;thr

i > sw
i � 1

8>><
>>: (26)

in which aw;sat
ij is the area of pore throat ij. Note that in cases where aw;sat

ij 2p rc
ij

� �2
< 0, we set Aw

ij equal to
0. Finally, we define rc

ij is an effective curvature in pore throat ij, which is defined as

rc
ij5

2c
pc

i
sw

i < 1; sw
j 51

2c
pc

j
sw

i 51; sw
j < 1

4c

pc
i 1pc

j

� � sw
i < 1; sw

j < 1

8>>>>>>>>>>><
>>>>>>>>>>>:

(27)

2.9. Time Step and Stability
Controlling the time step is essential for the numerical model to be accurate and stable. For each unsaturated pore
unit, a time step Dti is computed, which is an estimation of the time needed for the next event to occur in that pore
unit. Following Joekar-Niasar et al. (2010), we compute Dti that is required to fully empty or fill a pore unit during
local drainage or imbibition, respectively. In addition, we have added a time step that is needed to reach a saturation
of sw;thr

i to ensure that the local capillary pressure-saturation behavior was reproduced. We define Dti as follows:

Dti5

Viðsw
i 2sw;thr

i ÞPNij
i

j51 qw
ij

for
XNij

i

j51

qw
ij > 0 and 1 > sw

i > sw;thr
i

Visw
iPNij

i
j51 qw

ij

for
XNij

i

j51

qw
ij > 0 and 0 < sw

i � sw;thr
i

9>>>>>>>>>>=
>>>>>>>>>>;

Drainage

Viðsw
i 2sw;thr

i ÞPNij
i

j51 qw
ij

for
XNij

i

j51

qw
ij < 0 and 0 < sw

i < sw;thr
i

Viðsw
i 21ÞPNij
i

j51 qw
ij

for
XNij

i

j51

qw
ij < 0 and 1 > sw

i � sw;thr
i

9>>>>>>>>>>=
>>>>>>>>>>;

Imbibition

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(28)

Note, that in determining Dti the absolute value of saturation differences, e.g., sw
i 2sw;thr

i

� �
, should be larger

than a truncation value of 1026 in order to avoid Dti converging to zero. The minimum saturation that a

Water Resources Research 10.1029/2017WR021769

SWEIJEN ET AL. 4201



pore unit can have is set to 1026, at that saturation, the pore unit was considered to be empty. Then, the
smallest value of Dti of all pore units is used and multiplied by a safety factor of 0.2.

The numerical scheme presented above is a pore-scale version of IMPES, which is a highly nonlinear system
of equations that is known to have stability problems for capillary dominated flow (Chen et al., 2004;
Thompson, 2002). To stabilize the solution, we evaluate @sw

i
@pw

i
and kw

ij backward in time. Thus, we linearly
extrapolate @sw

i
@pw

i
to the next time step. A similar approach was employed by Joekar-Niasar et al. (2010), who

linearly extrapolated the gradient of capillary pressure over a pore throat, namely
@pc

ij

@sw
ij

5
pc

i 2pc
j

sw
i 2sw

j
, over time.

3. Simulation Setup

3.1. Simulating the Experimental Setup
To test our model, we simulated the fast drainage experiments reported by Zhuang et al. (2017). In those
experiments, fast drainage was studied for a filter sand having a particle diameter of 0.0–0.50 mm (with an
average diameter of 0.20 mm) and porosity value of 0.39. The sample size in that experiment was 3 3 3 3 2
cm3. To reproduce the filter sand in our model, a packing of 4,000 spheres was generated having the same
particle size distribution and porosity value as in experiments, following the approach of Chareyre et al.
(2002). The final size of the packing was 3.2 3 3.2 3 3.2 mm3. In this work, the viscosity of water was set to
1023 Pa s, the surface tension of air-water to 0.072 N m21 and the contact angle to zero.

As our model is based on smooth spherical particles, it cannot represent irregular sand grains. So even
though we use the grain size distribution of the sand in experiments, the resulting pore space does not
have the same pore size distribution as the sand. To be able to match the entry capillary pressure measured
in the experiments (which has a link to pore sizes), we have modified the grain size distribution. We have
multiplied the grain size distribution of the spheres by a factor of 1.28 as a first order modification. Conse-
quently, results compared very well with measured capillary pressure-saturation curve (see Figure 4). Note
that the quasi-static capillary pressure-saturation curve was based on the pore-unit assembly as described
in this work, with partially saturated pore units, in contrast to previous work where a binary saturation was
assumed (e.g., Sweijen et al., 2016; Yuan et al., 2016).

The permeability of the packing of spheres was calculated to be 2.11 3 10210 m2 and was found to be 12.4
times larger than the measured value (1.7 3 10211 m2). This is a consequence of using spherical particles
rather than the actual particle shape (Sweijen et al., 2017b; Torskaya et al., 2014).

3.2. Initial and Boundary Conditions
The top boundary of the packing was assumed to be an air reservoir at pressure pair and the bottom bound-
ary was assumed to be a water reservoir at a constant pressure Pwater . The difference between pair and Pwater

is referred to as Pc
global . All other boundaries were considered impermeable. In this research, we used pair as

the reference pressure and was set to pair � 0. As initial conditions,
we assumed all pores to be fully water saturated, except for the first
row of pore units along the air reservoir. All pore units were assigned
an initial water pressure of –3; 000 Pa, which was just below the entry
pressure of the sample. Thus, along the air boundary, pore units were
partially saturated at a saturation value of

sw
i 5 sw

i Pc
0

� �
for Pc

0 �
2c

rins
i

(29)

where sw
i Pc

0

� �
was obtained from equation (20). Then, the water reser-

voir pressure was decreased in order to initiate drainage.

3.3. Averaging Procedure
The following three variables have been considered for each pore
unit: water pressure, saturation, and air-water interfacial area. Macro-
scale equivalents for those three variables were defined as their aver-
ages over all pore units. First, the macroscale water saturation S is
given by

Figure 4. Quasi-static capillary pressure-saturation curve from experiments
(symbols) and PUA simulations (solid line). For simulations, the particle radii
had to be increased by a factor of 1.28.
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S5

PNp

i51 sw
i ViPNp

i51 Vi

(30)

where Np is the total number of pore units in the packing. The volume-averaged water pressure, hPWi, was
computed by

hPWi5
PNp

i51 pw
i sw

i ViPNp

i51 sw
i Vi

(31)

The volume-averaged air pressure hPairi is equal to its boundary value pair , since air pressure is assumed to
be constant. The macroscale capillary pressure, hPci, was obtained by averaging the capillary pressure in
pore units over their respective air-water interfacial area (Joekar-Niasar et al., 2010):

hPci5hPairi2
PNp

i51 aaw
i pw

iPNp

i51 aaw
i

(32)

Hereafter, we define hPci as the capillary pressure, while hPairi2hPWi is referred to as the pressure difference
between air and water, which under equilibrium conditions is the same as hPci, but not under dynamic con-
ditions. Under dynamic conditions, the relationship between capillary pressure and the air-water pressure
difference is given by equation (1).

4. Results and Discussion

In the supporting information, sections S1 and S2, we evaluate the minimum number of particles that are
required in order to have a representative elementary volume and we verify our simulations. In what follows
we discuss the results of our dynamic drainage simulations.

4.1. Dynamic Drainage: Formation of Air Fingers
Simulations of dynamic drainage showed the formation of air fingers in an initially water-saturated domain.
The volume-averaged pressure difference between air and water, hPairi2hPWi, and capillary pressure, hPci,
as function of saturation are presented in Figure 5. Furthermore, to illustrate the migration of air, two-
dimensional cross sections are shown in Figure 6 that depict water pressure and water saturation distribu-
tions. For these simulations, the value of Pc

global was set to 7 kPa.

Initially, as most pore units were saturated, the water pressure was almost linearly distributed, varying from
just less than 23 kPa at the air reservoir to 27 kPa at the water reservoir; see Figure 6a. As drainage pro-
gressed, air infiltrated the modeling domain via channels (so-called air fingers). Figure 6b shows an air fin-
ger that has extended from the air boundary to the water reservoir. Consequently, the water pressure of
pore units closer to the water reservoir increased significantly, as they were invaded by the air and the local
capillary pressure corresponding to a local residual saturation was reached. The water pressure in many

pore units was close to 24 kPa, except for pore units near the water
boundary, which had lower values of water pressure (–4 to 27 kPa).
Toward the end of drainage as the water flow rate decreased and no-
flow conditions were approached, the water pressure in all pore units
connected to the water reservoir gradually reached 27 kPa.

The unsaturated flow illustrated in Figure 6 resulted in a peculiar
behavior of hPairi2hPWi when plotted against saturation (see Figure 5).
Initially, the value of hPairi2hPWi was higher than the value of hPci.
Then, the value of hPairi2hPWi decreased until it reached the value of
hPci at saturation 0.82, which corresponded to the moment that air fin-
gers reached the water reservoir. Drainage for saturations lower than
0.82 occurred with values of hPairi2hPWi close to the quasi-static capil-
lary pressure-saturation curve. The value of hPci deviated from the
quasi-static capillary pressure, which can be related to
the approximation of surface area in pore units that is presented in
equation (23).

Figure 5. Averaged pressure difference as a function of saturation for dynamic
drainage simulations with all sides open to water (denoted by blue lines) and
with closed sides (denoted by red lines).
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To investigate the effect of boundary conditions, dynamic drainage
was also simulated for the case that all sides were open to water, hav-
ing the same pressure as the water reservoir. Thus, Dirichlet boundary
conditions were imposed for the side walls, using a water pressure of
–Pc

global . Figure 7 shows two-dimensional distributions of the satura-
tion and water pressure at three different saturation values. Similar to
results in Figure 6, air fingers were formed in the granular material.
However, the air fingers did not infiltrate much farther than the center
of the packing, whereas for closed side walls, the air fingers migrated
down to the water reservoir. Consequently, the water pressure at satu-
ration 0.80 is much lower (i.e., higher values of pressure differences)
for simulations with open side walls compared to simulations with
closed side walls (compare Figures 6b and 7b). The difference in hPairi
2hPWi between the two simulations is shown in Figure 5, where simu-
lations with open side boundaries show higher values of hPairi2hPWi
and a smaller effect of air-finger formation. Note that the higher val-
ues of hPci for open side boundaries compared to that of imperme-
able side boundaries is merely an artifact of an increased number of
pore units along an water reservoir (even though the boundary pore
units were not included in obtaining averaged quantities).

Air fingers were a consequence of preferential pathways in the pore
structure due to small-scale heterogeneities. Reconstruction of quasi-
static capillary pressure-saturation curves showed the same preferential
pathways that were present in dynamic flow. The formation of air fin-
gers during primary drainage is a common phenomenon, as for exam-
ple, shown in the modeling efforts by Aker et al. (1998). They studied
the infiltration patterns during primary drainage for viscosity ratios
ranging from 1023 to 102. Their drainage simulation, using a low viscos-
ity ratio, clearly showed finger formations. Their results are compatible
with our results, as an air-water system has a low viscosity ratio of 0.02.
Similarly, using their dynamic pore-network model, Joekar-Niasar et al.
(2010) showed with their dynamic pore-network model that the pattern
of the nonwetting fluid is much more irregular under low values of vis-
cosity ratio (as shown for a viscosity ratio of 0.1).

4.2. The Dynamic Coefficient s

4.2.1. Effect of Averaging
In Figure 5, the averaged pressure differences, hPairi2hPwi, are much
higher than the corresponding capillary pressure values for satura-

tions higher than 0.82. As explained above, this is because the domain initially comprises mostly of satu-
rated pore units, whose number and thus their contribution to hPairi2hPwi decreases as drainage
progresses. So, the large values of hPairi2hPwi are a result of the contribution of saturated pore units to
hPwi and it is not a capillarity effect. However, in column experiments, where only macroscale quantities are
observed and water occupancy of pores is unknown, the difference between hPairi2hPwi and hPci is attrib-
uted to dynamic capillarity effect.

Thus, obtaining hPairi2hPwi by averaging over a domain that comprises mostly saturated pores is question-
able and various studies show that we get pseudo-dynamic effects due to averaging. This issue has been
discussed by Nordbotten et al. (2007, 2008) and it is attributed to the fact that the domains occupied by air
and water phases have different centroids, which are also different from the centroid of the averaging
domain. A proper way of calculating average values of phase pressures for such domains has been sug-
gested by Nordbotten et al. (2008). Therefore, we have also computed the pressure difference
while accounting for location of the centroid of air in the averaging domain, using Korteland et al. (2010,
equation (2)). Figure 8 shows the effect of averaging on hPairi2hPwi, where the pressure difference for satu-
ration values higher than 0.82 are slightly smaller (maximal 500 Pa smaller) when using a centroid-corrected

Figure 6. Distribution of water pressure and water saturation obtained using
dynamic drainage simulations, where Pc

global was set to 7 kPa. The sides are
closed and the bottom represent a water reservoir while the top represents an
air reservoir. Results for three different times, at which the average saturation
values are (a) 1.0, (b) 0.84, and (c) 0.11.
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averaging. In addition, we plotted in Figure 8 the values of hPairi2
hPwi based on volume averaging of only partially saturated pore units.
This curve lacks the enhanced values of hPairi2hPwi for saturation val-
ues higher than 0.82, because the water pressure inside a partially sat-
urated pore unit is close to the local capillary pressure (following
equation (5)). By only averaging over partially saturated pore units,
the pressure difference is close to the capillary pressure, but this pres-
sure is not a true average of the sample; it only represents specific
pore units and it is virtually impossible to measure experimentally.

Thus, by averaging over all pore units, hPairi2hPwi is not equal to hPci,
which results in a pseudo-dynamic effect and a value for s, following
equation (1). Therefore, the dynamic effect that we determine by
using volume-averaged pressures can be partially contributed to the
existence of saturated pore units inside the pore-unit assembly; in the
beginning of primary drainage, the contribution of saturated pore
units to the dynamic effect is obvious, because saturated pore units
form a distinct saturated domain having a layer of unsaturated pore
units at the air reservoir. But, as drainage progresses, saturated pore
units become smaller in number and also randomly dispersed inside
the unsaturated pore-unit assembly, yet they still contribute to a
dynamic effect. In the following sections, we still use the volume-
averaged pressures.
4.2.2. Effect of Boundary Pressure
To quantify the effect of boundary pressure values Pc

global , we simu-
lated dynamic drainage for three different values of Pc

global : 7, 10, and
14 kPa. In general, a higher value of Pc

global resulted in a higher value
of average pressure difference, for saturation values between 0.82 and
1.0 (see Figure 9a). However, for saturation values lower than 0.82, the
average pressure difference curves converged to the quasi-static
capillary pressure-saturation curve. During the saturation interval of
0.82–1.0, the rate of saturation change is relatively large (see Figure
9b). Figure 9c shows the value of s as function of saturation, which
quantifies the dynamic effect. For saturations of 0.82 or higher, s was
relatively high but it decreased during drainage to almost zero. The
decrease in s was a result of the average pressure difference that con-
verged to the capillary pressure (see Figure 9a). The value of s
increased again after a saturation of 0.5. This was related to an

increase in the deviation of the pressure difference of air and water and the capillary pressure (see
Figure 9a) as well as the low value of @S

@t, which converged to zero when the saturation reached the residual
saturation. Note that the value of s for low saturations is considered to be not reliable because @S

@t converges
to zero.
4.2.3. Effect of Domain Size
We conducted dynamic simulations for Pc

global 7kPa for five different domain sizes, with number of particles
varying from 4,000 to 12,000. Results are shown in Figure 10. In general, we found that the larger the
domain size, the larger the value of s. The increase of s is thus related to the increase in flow length (l),
which was experimentally confirmed by Abidoye and Das (2014). According to Stauffer (1978), Manthey
et al. (2005, 2008), Dahle et al. (2005), and Bottero et al. (2011), s is linearly proportional to l2. To test this
proportionality in our simulations, we plotted values of s

l2 for various domain sizes as a function of saturation
in Figure 10b. We can see that the curves approximately coincide with each other. This indicates that in our
simulations, / l2.
4.2.4. Effect of Permeability
To study the effect of permeability on s, we varied the value of parameter a in equation (24) from 1 to 1024.
Thus, we decreased the permeability of the packing from 2.11 3 10210 to 2.11 3 10214 m2, respectively,
without changing the pore structure, thus the entry pressures are not affected. Detailed results are reported

Figure 7. Cross sections of dynamic drainage simulations for water pressure
and water saturation, where Pc

global is 7 kPa. The sides and bottom represent a
water reservoir while the top boundary represents an air reservoir. Results for
three different times, at which the average saturation values are (a) 1.0,
(b) 0.82, and (c) 0.32.
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in the supporting information, section S3. Results showed that aver-
aged pressure differences were not affected by changing the perme-
ability. However, the permeability affects all fluxes through the pore
throats (qw

ij , see equation (6)). This leads to a proportionally smaller
rate of change of saturation with decreasing permeability, which in
turn results in larger values of s. Thus, we found that s is inversely pro-
portional to the permeability. This relation was also suggested by
Stauffer (1978) and by Manthey et al. (2005).

In case that drainage is fast, the assumption of a constant air pressure
may not hold; air pressure gradients may become significant in experi-
ments while in simulations they are assumed to be constant. Of
course, a constant air pressure is not always a valid assumption; air
pressure gradient may arise if flow rate is high, if a rate limiting mem-
brane is added to the air reservoir boundary (see Hou et al., 2012,
2014), and in the case of heterogeneous layered samples (Sakaki et al.,
2011).
4.2.5. Simulations Versus Experiments
Dynamic effects in our simulations are small (less than 5.5 Pa s) for sat-

uration values higher than 0.82 whereas for saturation values lower than 0.82, dynamic effects barely exist
(i.e., s is close to zero). However, experimental studies typically obtain larger values of s, for example,
Zhuang et al. (2017) reported a value of s in the range of 5 3 104 to 3 3 106 Pa s. But in experiments the
sample size is larger than that of our simulations. The domain size in our model is 3.2 3 3.2 3 3.2 mm3

whereas the sample size in experiments by Zhuang et al. (2017) was 30 3 30 3 20 mm3.

The small value of s in our simulations agrees with other studies on pore-scale simulations, which typically
are conducted on small domains. For example, Joekar-Niasar et al. (2010) found values between 100 and
300 Pa s, based on their dynamic pore-network simulations for a viscosity ratio of 0.1 and a domain size of 6
3 6 3 6 mm3. Dahle et al. (2005) reported a value of 274 Pa s based on simulations of a bundle of tubes
that had a characteristic length scale of 1023 m. Similarly, Mumford and O’Caroll (2011) found values of s
between 30 and 230 Pa s using a bundle of tubes model for varying contact angels.

To compare the magnitude of s values from our simulations with those of experiments, we scaled s values
(ssim) by domain size and permeability, based on the findings of previous subsections:

sscaled5ssim
Ksim
Kexp

lexp

lsim

� �2

(33)

where Ksim and Kexp are the permeability values of simulations and experiments, respectively, and l denotes
the length of the domain in flow direction. The value of s in simulations (less than 5.5 Pa s) was scaled to
sscaled (less than 6.000 Pa s), which is closer to, but still lower than, the values in experimental data.

Figure 8. Investigation of the effect of averaging on the pressure difference
between air and water. The dashed line is the quasi-static capillary pressure-
saturation curve, while the black solid line is the centroid-corrected pressure
difference and the red solid line is the volume-averaged pressure difference.

Figure 9. Investigation of dynamic effect for three dynamic drainage simulations using Pc
global of 14 kPa (black line), 10 kPa (red line), and 7 kPa (blue line). Results

are reported as (a) average pressure difference versus saturation, (b) rate of saturation change versus saturation, and (c) s as a function of saturation.
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Of course, care must be taken when drawing conclusions on the comparison between experiments and
simulations. As given by equation (1), for determining s the pressure difference between the nonwetting
and wetting phase pressure are needed. In this study, the function of averaged pressure difference and sat-
uration is nonmonotonic for dynamic drainage simulations, which is a direct result of flow patterns and the
averaging theorem as discussed in section 4.2.1; while air fingers progress toward the water reservoir, the
pressure differences decreases toward the capillary pressure. The effect of breakthrough was also discussed
in Joekar-Niasar et al. (2010), where a decrease in pressure difference was obtained after breakthrough. In
our simulations, dynamic effects disappear after air fingers reached the water reservoir. The saturation at
which air reaches the water reservoir can be decreased by using a larger modeling domain, such that more
fingers can exist and the effect of one finger is substantially smaller. However, modeling a larger domain is
not possible with our code because of the small time steps that are required for dynamic drainage in an
irregular pore-unit assembly.

In literature, various observations have been made on the shape of the pressure difference-saturation
curves. Using pore-scale models, Joekar-Niasar et al. (2010, 2011) reported nonmonotonic curves, whereas
Mumford and O’Carroll (2011) obtained monotonic curves. Similar observations are made in experimental
studies, where monotonic curves are reported such as in Sakaki et al. (2011), Camps-Roach et al. (2010) and
in Zhuang et al. (2017), while Bottero et al. (2006) reported a nonmonotonic curve. To conclude, the magni-
tude of s in pore-scale simulations can be scaled from small modeling domains to larger experimental sam-
ples (using equation (33)). But in our case, upscaling would also entail increasing the number of fingers that
can exist within a domain, thus upscaling will also affect the shape of the pressure difference-saturation
curve, and thus the functionality of s with saturation.

In addition, when comparing pore-scale simulations of an idealized pore structure with experiments on
sand samples, the difference in pore structure may play a significant role in discrepancies s values obtained
from simulations and experiments. Sands are typically irregular in shape and will have surface roughness,
which is of course simplified when using an assembly of regular shapes. The complex solid surface in real
porous materials may lead to (i) interfaces getting trapped more easily, thus reducing the rate of saturation
change and consequently larger s values, (ii) reduction or enhancement of air-finger formation, which can
affect hPairi2hPwi as a function of saturation, or (iii) a significant change in the local capillary pressure-
saturation curve that is idealized in simulations (such as by equation (20)).

5. Summary and Conclusions

This work presents a pore-scale simulation technique for dynamic drainage in a packing of spheres, using
the pore-unit assembly approach. The pore space inside the packing of spheres was extracted by a
sequence of meshing techniques: first, a triangulation was applied to extract grain-based tetrahedra, which
were then merged to find pore units. Subsequently, the pore space of each pore unit was replaced by a reg-
ular shape, for which the capillary pressure-saturation curves were determined. Using the assembly of pore

Figure 10. (a) Dynamic coefficient s as a function of saturation for different number of particles and (b) values of s
normalized to l2.
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units, a pore-scale version of IMPES (implicit pressure and explicit saturation scheme) was employed to
solve for water pressure during dynamic drainage. The dynamic model was then verified by simulating slow
dynamic drainage on a pore-unit assembly. The resulting capillary pressure-saturation curve was close to
the simulated quasi-static capillary pressure-saturation curve of that same pore-unit assembly.

Dynamic drainage simulations revealed that air infiltrated via preferential pathways in the pore structure,
resulting in air fingers. During finger infiltration, dynamic effects occurred; the pressure difference between
air and water was much larger than the capillary pressure. However, the air reached the water reservoir at
relatively high values of saturation (0.82), after which further drainage occurred with the pressure difference
between air and water being close to the global capillary pressure value. The enhanced values of pressure
difference were mainly due to the employed averaging method, which gives much weight to saturated
pores. When one averages over partially saturated pore units only, the air-water pressure difference gets
close to the capillary pressure. The value of s obtained from simulations was found to be low (<5.5 Pa s),
which is inherent to pore-scale modeling of dynamic drainage in a small domain.

Nomenclature

a parameter to adjust the overall permeability of the porous media.
aw

i;edge area of water in the cross section of an edge in a regular shape, L2.
aaw

i air-water interfacial area in a pore unit, L2.
aw

ij surface area of water in the cross section of pore throat ij, L2.
aij cross-section area pore throat ij, L2.
kw

ij water conductivity of pore throat ij, T L4 M21.
K macroscale permeability, L2.
l length, L.
ledge length of an edge of a regular shape, L.
lij distance between the centers of pore units i and j, L.
Nedges number of edges in a regular shape.
Ni number of pore units connecting to pore unit i.
Nw

i number of saturated pore units adjacent to pore unit i.
Np total number of pore units.
qw

ij volumetric water flux through pore throat ij, L3 T21.
rc

i radius of curvature of the air-water interface in a pore unit, L.
rh

ij hydraulic radius of pore throat ij, L.
rins

i radius of the inscribed sphere of pore unit i, L.
rij pore throat radius, L.
sw

i water saturation in pore unit i.
sair

i air saturation in pore unit i.
sw;thr

i saturation corresponding to the inscribe sphere of a pore unit.
SW macroscale water saturation.
pair air pressure, M T22 L21.
pw

i water pressure in pore unit i, M T22 L21.
pc

i capillary pressure in pore unit i, M T22 L21.
pe

ij entry pressure of pore throat ij, M T22 L21.
Pc

global pressure difference between air and water reservoir, M T22 L21.
hPWi macroscale water pressure, volumetric averaged, M T22 L21.
hPci macroscale capillary pressure, interfacial area averaged, M T22 L21.
Vi volume of pore unit i, L3.
V w

i water volume in pore unit i, L3.
V w

i;corners water volume in corners of a pore unit, L3.
V w

i;edges water volume in edges of a pore unit, L3.
z centroid of averaging domain, L.
c surface tension of water, M T22.
h dihedral angle of an edge, rad.
j geometrical parameter of a regular shape.
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k geometrical parameter of a regular shape.
l water viscosity, M T21 L21.
u maximum ratio of pore throat radius to pore-unit radius.
v geometrical parameter that relates Vi with rins

i .
s dynamic coefficient, M T21 L21.
Dt time step, T.
Xij void volume associated with pore throat ij, L3.
Uij solid surface area in pore throat ij, L2.

Appendix A: Discretization of Volume-Balance Equations
for Unsaturated Flow of Water

The volume balance in equation (9) for unsaturated pore units is given by

XNi

j51

kw
ij pw

i 2pw
j

� �
52Vi

dsw
i

dt
(A1)

Following the approach of Joekar-Niasar et al. (2010), dsw
i

dt is rewritten as dsw
i

dpw
i

dpw
i

dt and a forward time difference
scheme is employed to approximate equation (A1):

XNi

j51

kw
ij pw

i

� �t1Dt
2 pw

j

� �t1Dt
� �

52Vi
dsw

i

dpw
i

pw
i

� �t1Dt
2 pw

i

� �t

Dt

 !
(A2)

where @sw
i

@pw
i

and kw
ij are evaluated at time t and the term dpw

i
dt is evaluated for t1 Dt

2 . Note that dsw
i

dpw
i

is obtained
from the local capillary pressure-saturation curve (equation (20)). Equation (A2) is rearranged such that we
obtain

pw
i

� �t1Dt XNi

j51

kw
ij 1

Vi

Dt
dsw

i

dpw
i

 !
2
XNi

j51

kw
ij pw

j

� �t1Dt
5

Vi

Dt
dsw

i

dpw
i

pw
i

� �t
(A3)

Appendix B: Local Capillary Pressure-Saturation Curve of a Cube

Here a derivation is shown for the relation between capillary pressure and saturation of a pore unit, follow-
ing the work by Joekar-Niasar et al. (2010). A derivation is shown for the case that the saturation is equal or

Figure B1. Illustration of water in a cube for a water saturation lower than sw;thr
i , (a) illustration of the whole cube, (b) illus-

tration of water in a corner, (c) smaller cube that contains the eight corners in Figure B1b, (d) illustration of an edge of the
cube, and (e) cross-sectional section of the edge shown in Figure B1d.
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smaller than the saturation corresponding to an inscribed sphere (sw
i � sw;thr

i ). A cube is used as an example,
because it is a platonic solid that is easy to visualize.

The size of one edge of a cube is related to the volume by
ffiffiffiffi
Vi

3
p

, which in generalized form is k
ffiffiffiffi
Vi

3
p

. The
radius of the inscribed sphere (rins

i ) of a cube is related to the volume by 1
2

ffiffiffiffi
Vi

3
p

, which in generalized form is:
v
ffiffiffiffi
Vi

3
p

(see equation (2)). Consider a cube that has a saturation lower than sw;thr
i , such that water is only pre-

sent in corners and edges of a cube, see Figure B1a. The water volume in all corners of the cube can be
related to the radius of curvature rc

i , where rc
i is given by Young’s Laplace equation such that rc

i 5 2c
pc

i
. Water

in all the corners (see Figure B1b) form a smaller cube that has an inscribed sphere with a radius rc
i (see Fig-

ure B1c). The total volume of that smaller cube is
rc

ið Þ
3

v3 , such that the water volume of all corners is given by

V w
i;corners5

rc
i

� �3

v3 2
4
3

p rc
i

� �3 (B1)

where the value of v is 0.5 for a cube. Next, the volume of water in edges is computed. The cross-sectional
area of an edge is shown in Figure B1d. The radius curvature of water in an edge is given by 1

2 rc
i 5 c

pc
i
,

because the second curvature (tangential with the edge) is flat. The surface area of water that resides in
that cross section is thus given by

aw
i;edge5

1
2

rc
i

� �2

tan
h
2

� �2
1
2

rc
i

� �2 p2hð Þ
2

5
1
4

rc
i

� �2 1

tan
h
2

� �2
p2hð Þ

2

0
BB@

1
CCA (B2)

where
1
2rc

ið Þ
2

tan h
2ð Þ

is the generalized form of surface area of the square indicated by a dashed line in Figure B1e
and 1

2 rc
i

� �2 p2hð Þ
2 is the surface area of the circle in that same square. The length of an edge is given by the

total length minus twice the length of the corner segments shown in Figure B1b. That length is thus given by

li;edge5k
ffiffiffiffi
Vi

3
p

22rc
i (B3)

The number of edges in a cube is 12, denoted by Nedges. Thus, the volume of water that resides in all edges is

V w
i;edges5
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4 rc
i

� �2 1
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h
2

� �2
p2hð Þ

2

0
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1
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Vi

3
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i

� �
(B4)

Using equations (B1) and (B4), the local capillary-saturation curves can be obtained for all platonic solids,
see section 2.4 and Table 2.

Appendix C: Local Capillary Pressure-Saturation Relationships for Regular Shapes

In the work by Joekar-Niasar et al. (2010), the local capillary pressure-saturation curve was employed for all
saturation values smaller than unity, by extrapolating the value of pc

i at sw;thr
i , which is 2c

rins
i

, to values of
sw

i > sw;thr
i . We report the capillary pressure- saturation curves for all regular shapes that are employed in

this study. The capillary pressure-saturation relationship in a pore unit for sw
i � sw;thr

i reads (see equation
(18)):

sw
i 5

V w
i

Vi
5

c1
2c
pc

i

� �3

1c2
ffiffiffiffi
Vi

3
p 2c

pc
i

� �2

Vi

(C1)

where c1 and c2 are geometrical constants that are defined in equation (19). Following Joekar-Niasar et al.
(2010), we can introduce a dimensionless parameter:

R�5

2c
pc

i

� �,
ffiffiffi
Vi

3p
! 2c

pc
i

� �
5R�

ffiffiffiffi
Vi

3
p

(C2)

Substituting equation (C2) into equation (C1) gives
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sw
i 5c1R�31c2R�2 (C3)

We can fit equation (C3) with R�5v 12e2jsw
i

	 

, where j is a shape constant that is independent of the size

of the pore unit, but it does depend on the type of regular shape. The final relation between capillary pres-
sure and saturation is given by

pc
i 5

2c

v
ffiffiffiffi
Vi

3
p

12e2jsw
i

� � (C4)

which indeed is the local capillary pressure-saturation curve introduced by Joekar-Niasar et al. (2010). In
that work, the value of j for a cube was found to be 6.83 in that work and we found the same value.

Finally, we determine the value of @sw
i

@pw
i

by determining @pw
i

@sw
i

� �21
. Note that sw

i 5f pc
i

� �
has no solution for sw

i

� sw;thr
i and thus we do not determine @sw

i
@pw

i
by first inverting equation (C4). We assume air pressure to be

zero, such that pc
i 52pw

i , thus using equation (C4) yields

@sw
i

@pw
i

52
v
ffiffiffiffi
Vi

3
p

2c

� �
12e2jsw

i
� �2

je2jsw
i

(C5)

Appendix D: Air-Water Interfacial Area in a Pore Unit Having sw;thr
i < sw

i < =b >

The air-water interfacial area in a pore unit (aaw
i ) is determined for saturations lower than sw;thr

i . A distinction
is made between water in corners and water in edges. The air-water interfacial area that is present in cor-
ners is simply given by the surface of a sphere with radius rc

i , see Figure B1c. However, the corners of the
regular shapes are fitted in a pore throat, an interface does not exist once air breaks through a pore throat.
To account for this phenomenon, a fraction is defined that describes the number of pore throats that are
occupied with water (Nij;w

i ) over the total number of pore throats Nij
i

� �
. Thus, the air-water interfacial area

inside the corners of a regular shape is given by

aaw
i;corners54p rc

i

� �2 Nw
i

Ni

� �
(D1)

To determine the air-water interfacial area in an edge (aaw
i;edges), we first determine the length of the air-water

contact line in the cross section of an edge (see Figure B1e), which is rc
i p2hð Þ. Thus, aaw

i;edges is given by

aaw
i;edges5rc

i p2hð Þli;edgeNedges (D2)

where li;edge is given by equation (B3). Finally, we obtain the total air-water interfacial area:

aaw
i 5rc

i p2hð Þli;edgeNedges14p rc
i

� �2 Nw
i

Ni

� �
(D3)
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Chareyre, B., Briançon, L., & Villard, P. (2002). Theoretical versus experimental modeling of the anchorage capacity of geotextiles in
trenches. Geosynthetics International, 9(2), 97–123.

Chareyre, B., Cortis, A., Catalano, E., & Barth�elemy, E. (2012). Pore-scale modeling of viscous flow and induced forces in dense sphere pack-
ings. Transport in Porous Media, 94(2), 595–615.

Acknowledgments
The first author gratefully
acknowledges financial support from
the Technology Foundation STW, the
technological branch of the
Netherlands Organization of Scientific
Research, NWO, and the Dutch
Ministry of Economic Affairs under
contract 12538, entitled Interfacial
effects in ionized media. The second
author thanks European Research
Council for supporting this research
under the European Union’s Seventh
Framework Programme (FP/2007–
2013)/ERC grant agreement 341225.
The third author acknowledges the
CRCT granted by Grenoble INP in 2012
which allowed this joint research. All
authors gratefully acknowledge the
Van Gogh Program 2016 under
35530VM. All data used to support this
work are reported in the manuscript in
the respective tables and figures or as
supporting information. The numerical
code is available from www.yade-dem.
org. We also acknowledge the valuable
comments by Karsten E. Thompson
and by two anonymous reviewers.

Water Resources Research 10.1029/2017WR021769

SWEIJEN ET AL. 4211

https://doi.org/10.1029/2011WR010887
https://doi.org/10.1029/2009WR008881
http://www.yade-dem.org
http://www.yade-dem.org


Chen, Z., Huan, G., & Li, B. (2004). An improved IMPES method for two-phase flow in porous media. Transport in Porous Media, 54(3), 361–
376.

Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47–65.
Dahle, H. K., Celia, M. A., & Hassanizadeh, S. M. (2005). Bundle-of-tubes model for calculating dynamic effects in the capillary-pressure-

saturation relationship. In Upscaling multiphase flow in porous media (pp. 5–22). Berlin, Germany: Springer.
Diamantopoulos, E., & Durner, W. (2012). Dynamic nonequilibrium of water flow in porous media: A review. Vadose Zone Journal, 11(3).
DiCarlo, D. A. (2005). Modeling observed saturation overshoot with continuum additions to standard unsaturated theory. Advances in

Water Resources, 28(10), 1021–1027.
Diersch, H. G., Clausnitzer, V., Myrnyy, V., Rosati, R., Schmidt, M., Beruda, H., et al. (2010). Modeling unsaturated flow in absorbent swelling

porous media: Part 1. Theory. Transport in Porous Media, 83(3), 437–464.
Eigen. (2017). Eigen: A C linear algebra library. Retrieved from http://eigen.tuxfamily.org
Ferrari, A., & Lunati, I. (2012). Direct simulation of interface dynamics: Linking capillary pressure, interfacial area and surface energy. Paper pre-

sented at the CMWR XIX—Computational Methods in Water Resources, Urbana-Champaign, IL.
Gladkikh, M., & Bryant, S. (2005). Prediction of imbibition in unconsolidated granular materials. Journal of Colloid and Interface Science,

288(2), 526–539.
Hassanizadeh, S. M., Celia, M. A., & Dahle, H. K. (2002). Dynamic effect in the capillary pressure–saturation relationship and its impacts on

unsaturated flow. Vadose Zone Journal, 1(1), 38–57.
Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10),

3389–3407.
Hou, L., Chen, L., & Kibbey, T. C. (2012). Dynamic capillary effects in a small-volume unsaturated porous medium: Implications of sensor

response and gas pressure gradients for understanding system dependencies. Water Resources Research, 48, W11522. https://doi.org/
10.1029/2012WR012434

Hou, L., Sleep, B. E., & Kibbey, T. C. (2014). The influence of unavoidable saturation averaging on the experimental measurement of
dynamic capillary effects: a numerical simulation study. Advances in Water Resources, 66, 43–51.

Huber, R., & Helmig, R. (1999). Multiphase flow in heterogeneous porous media: A classical finite element method versus an implicit pres-
sure–explicit saturation-based mixed finite element–finite volume approach. International Journal for Numerical Methods in Fluids, 29(8),
899–920.

Joekar-Niasar, V., & Hassanizadeh, S. M. (2011). Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network
modeling. International Journal of Multiphase Flow, 37(2), 198–214.

Joekar-Niasar, V., Hassanizadeh, S. M., & Dahle, H. (2010). Non-equilibrium effects in capillarity and interfacial area in two-phase flow:
Dynamic pore-network modelling. Journal of Fluid Mechanics, 655, 38–71.

Karadimitriou, N., Hassanizadeh, S., Joekar-Niasar, V., & Kleingeld, P. (2014). Micromodel study of two-phase flow under transient condi-
tions: Quantifying effects of specific interfacial area. Water Resources Research, 50, 8125–8140. https://doi.org/10.1002/2014WR015388

Kettle, J., Lamminm€aki, T., & Gane, P. (2010). A review of modified surfaces for high speed inkjet coating. Surface and Coatings Technology,
204(12), 2103–2109.

Kharaghani, A., Metzger, T., & Tsotsas, E. (2011). A proposal for discrete modeling of mechanical effects during drying, combining pore net-
works with DEM. AIChE Journal, 57(4), 872–885.

Kibbey, T. C., Naghavi, B., & Hou, L. (2016). Understanding the role of water phase continuity on the relationship between drainage rate
and apparent residual saturation: A dynamic network model study. Transport in Porous Media, 112(3), 689–705.

Korteland, S., Bottero, S., Hassanizadeh, S. M., & Berentsen, C. W. J. (2010). What is the correct definition of average pressure? Transport in
Porous Media, 84(1), 153–175.

Kunz, P., Zarikos, I., Karadimitriou, N., Huber, M., Nieken, U., & Hassanizadeh, S. (2016). Study of multi-phase flow in porous media: Compari-
son of SPH simulations with micro-model experiments. Transport in Porous Media, 114(2), 581–600.

Likos, W. J., & Jaafar, R. (2013). Pore-scale model for water retention and fluid partitioning of partially saturated granular soil. Journal of Geo-
technical and Geoenvironmental Engineering, 139(5), 724–737.

Lins, Y., & Schanz, T. (2005). Determination of hydro-mechanical properties of sand. Unsaturated soils: Experimental studies (pp. 15–32). Ber-
lin, Germany: Springer.

Mahmoodlu, M. G., Raoof, A., Sweijen, T., & van Genuchten, M. T. (2016). Effects of sand compaction and mixing on pore structure and the
unsaturated soil hydraulic properties. Vadose Zone Journal, 15(8).

Manthey, S., Hassanizadeh, S. M., & Helmig, R. (2005). Macro-scale dynamic effects in homogeneous and heterogeneous porous media.
Transport in Porous Media, 58(1–2), 121–145.

Manthey, S., Hassanizadeh, S. M., Helmig, R., & Hilfer, R. (2008). Dimensional analysis of two-phase flow including a rate-dependent capillary
pressure–saturation relationship. Advances in Water Resources, 31(9), 1137–1150.

Mason, G., & Mellor, D. W. (1995). Simulation of drainage and imbibition in a random packing of equal spheres. Journal of Colloid and Inter-
face Science, 176(1), 214–225.

Mogensen, K., & Stenby, E. H. (1998). A dynamic two-phase pore-scale model of imbibition. Transport in Porous Media, 32(3), 299–327.
Mumford, K. G., & O’Carroll, D. M. (2011). Drainage under nonequilibrium conditions: Exploring wettability and dynamic contact angle

effects using bundle-of-tubes simulations. Vadose Zone Journal, 10(4), 1162–1172.
Nikooee, E., Habibagahi, G., Hassanizadeh, S. M., & Ghahramani, A. (2013). Effective stress in unsaturated soils: A thermodynamic approach

based on the interfacial energy and hydromechanical coupling. Transport in Porous Media, 96(2), 369–396.
Nordbotten, J. M., Celia, M. A., Dahle, H. K., & Hassanizadeh, S. M. (2007). Interpretation of macroscale variables in Darcy’s law. Water Resour-

ces Research, 43, W08430. https://doi.org/10.1029/2006WR005018
Nordbotten, J. M., Celia, M. A., Dahle, H. K., & Hassanizadeh, S. M. (2008). On the definition of macroscale pressure for multiphase flow in

porous media. Water Resources Research, 44, W06S02. https://doi.org/10.1029/2006WR005715
Nuth, M., & Laloui, L. (2008). Effective stress concept in unsaturated soils: Clarification and validation of a unified framework. International

Journal for Numerical and Analytical Methods in Geomechanics, 32(7), 771–801.
O’Carroll, D. M., Phelan, T. J., & Abriola, L. M. (2005). Exploring dynamic effects in capillary pressure in multistep outflow experiments. Water

Resources Research, 41, W11419. https://doi.org/10.1029/2005WR004010
Oh, S., & Lu, N. (2014). Uniqueness of the suction stress characteristic curve under different confining stress conditions. Vadose Zone Jour-

nal, 13(5).
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