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Abstract

Background: Sepsis induces early activation of coagulation and fibrinolysis followed by late fibrinolytic shutdown and
progressive endothelial damage. The aim of the present study was to investigate and compare the functional hemostatic
response in whole blood and plasma during experimental human endotoxemia by the platelet function analyzer, Multiplate
and by standard and modified thrombelastography (TEG).

Methods: Prospective physiologic study of nine healthy male volunteers undergoing endotoxemia by means of a 4-hour
infusion of E. coli lipopolysaccharide (LPS, 0.5 ng/kg/hour), with blood sampled at baseline and at 4 h and 6 h. Physiological
and standard biochemical data and coagulation tests, TEG (whole blood: TEG, heparinase-TEG, Functional Fibrinogen;
plasma: TEG6tissue-type plasminogen activator (tPA)) and Multiplate (TRAPtest, ADPtest, ASPItest, COLtest) were recorded.
Mixed models with Tukey post hoc tests and correlations were applied.

Results: Endotoxemia induced acute SIRS with increased HR, temperature, WBC, CRP and procalcitonin and decreased
blood pressure. It also induced a hemostatic response with platelet consumption and reduced APTT while INR increased (all
p,0.05). Platelet aggregation decreased (all tests, p,0.05), whereas TEG whole blood clot firmness increased (G, p = 0.05).
Furthermore, during endotoxemia (4 h), whole blood fibrinolysis increased (clot lysis time (CLT), p,0.001) and Functional
Fibrinogen clot strength decreased (p = 0.049). After endotoxemia (6 h), whole blood fibrinolysis was reduced (CLT, p,0.05).
In contrast to findings in whole blood, the plasma fibrin clot became progressively more resistant towards tPA-induced
fibrinolysis at both 4 h and 6 h (p,0.001).

Conclusions: Endotoxemia induced a hemostatic response with reduced primary but enhanced secondary hemostasis,
enhanced early fibrinolysis and fibrinogen consumption followed by downregulation of fibrinolysis, with a discrepant
fibrinolytic response in plasma and whole blood. The finding that blood cells are critically involved in the vasculo-fibrinolytic
response to acute inflammation is important given that disturbances in the vascular system contribute significantly to
morbidity and mortality in critically ill patients.
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Introduction

Experimental human endotoxemia induced by intravenous

administration of purified standard reference lipopolysaccharide

(LPS) to healthy volunteers induces an acute systemic inflamma-

tory response, which mimics the inflammatory response of early

sepsis as well as other acute inflammatory conditions [1–3]. Sepsis

is associated with initial activation of coagulation and fibrinolysis

followed by late fibrinolytic shutdown and exhaustion of the

natural anticoagulant systems [4], the latter mainly due to

progressive endothelial disruption and damage [5,6]. Convention-

al coagulation tests like activated partial thromboplastin time
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(APTT), international normalized ratio (INR), platelet count,

plasma fibrinogen and D-dimer neither reveal (changes in)

fibrinolysis nor platelet (dys)function, both of which may

contribute significantly to hyper- and hypocoagulability in

critically ill patients. However, viscoelastic hemostatic whole blood

tests, such as Thrombelastography (TEGH, Hemoscope–Hemo-

netics, Niles, IL, US) and Rotation Thromboelastometry (RO-

TEMH, TEM Inc., Durham, NC, US) [7] as well as platelet

function tests, such as light transmission aggregometry and whole

blood platelet function tests (e.g. Multiple Platelet function

Analyzer; MultiplateH, Verum Diagnostica GmbH, Munich,

Germany) [8] reveal both fibrinolysis and platelet function.

Several studies have characterized the coagulopathy in sepsis [9–

22] and experimental human [23,24] and animal [25–29]

endotoxemia by these tests.

In addition to fibrinolytic changes and platelet dysfunction,

degradation of the endothelial glycocalyx may, through release of

large amounts of heparin-like substances [30,31], induce endog-

enous heparinization that contributes to hypocoagulability in

septic patients [32–37], and we recently reported similar findings

in severely injured trauma patients [38].

Excessive sympathoadrenal activation is a hallmark of acute

critical illness and the accompanying increase in circulating

catecholamines induces widespread dose-dependent effects on

metabolism and the vascular system [39–41]. Apparently,

catecholamines induce opposite directed effects on the endothe-

lium (progressive activation and damage) [42–44] and circulating

blood (initial hypercoagulability followed by progressive hypoco-

agulability, hyperfibrinolysis and endogenous heparinization)

[38,42,45–49] and we infer that this reflects an evolutionary

adapted response aiming at maintaining blood flow through a

damaged and procoagulant microvasculature in the (shocked)

critically ill patient [42]. Similarly to the opposite directed effects

of catecholamines on the vascular endothelium and circulating

blood [38,42–49], the cells and fluid that constitutes the fluid

phase of the vascular system i.e., the circulating blood, may also

respond in opposite directions in acute inflammatory conditions in

order to maintain homeostasis in the vascular system. In vitro

studies of platelet function in sepsis and experimental endotoxemia

have revealed that addition of septic plasma to control platelets

can induce a pathologic response [28,50], and that removal of

septic plasma from patient platelets can restore platelet function

[28]. Also, fibrinolytic activity may both be enhanced and

inhibited by circulating blood cells and cell-derived microparticles

[51–55]. Thus, platelets protect the clot against tissue-type

plasminogen activator (tPA)-induced fibrinolysis [51] and enhance

the antifibrinolytic effect of exogenous FXIII in vitro [52] and red

blood cells confer lytic resistance to fibrin resulting from modified

fibrin structure and impaired plasminogen activation [56]. In

contrast, other blood and endothelial cells, and their derived

microparticles, promote fibrinolysis through the action of cell-

associated urokinase-type plasminogen activator (uPA) and tPA

[53–55] and leukocytes promote fibrinolysis through various

alternative pathways [57]. Together, this emphasizes that platelets

and other blood cells are critically involved in balancing the

vasculo-fibrinolytic response, which may contribute to discrepant

findings when evaluating fibrinolysis in plasma and whole blood.

Given that sepsis and other acute inflammatory conditions are

characterized by excessive changes in hemostasis and the vascular

system that may be differently driven by and detected in whole

blood and plasma, improved understanding and characterization

of this response is of critical importance for optimizing and

potentially goal-directing therapy.

The primary aim of the present study was to investigate and

compare the functional hemostatic response in whole blood and

plasma during experimental human endotoxemia as evaluated by

Multiplate and by standard and modified TEG analyses,

respectively. We expected that endotoxemia would induce a

hemostatic response comparable to that previously described

[23,24] and given the role of blood cells for fibrinolysis [51–55],

we hypothesized that fibrinolytic activity during endotoxemia

would differ in plasma and whole blood.

Here we report that experimental endotoxemia by means of a 4-

hour 0.5 ng/kg/hour LPS-infusion in healthy volunteers induced

a hemostatic response with reduced primary but enhanced

secondary hemostasis, enhanced early fibrinolysis and fibrinogen

consumption followed by downregulation of fibrinolysis, with a

discrepant fibrinolytic response in plasma and whole blood. Our

findings indicate a critical role of platelets and/or other blood cells

in the vasculo-fibrinolytic response to acute inflammation. The

finding here that platelets and other blood cells, not present in

plasma, may enhance fibrinolysis in acute inflammatory conditions

is important given that especially thrombocytopenia is a strong

predictor of poor outcome including excessive non-bleeding

mortality in critically ill patients [58–63]. Since thrombocytopenia

in septic patients often coexists with bleeding and excessive

thrombus formation, or even overt disseminated intravascular

coagulation (DIC) [59], it is tempting to speculate that thrombo-

cytopenia may directly contribute to tip the hemostatic balance in

the circulating blood towards a reduction in fibrinolysis and

thereby paradoxically contribute to enhanced thrombus formation

in the microvasculature.

Materials and Methods

Experimental human endotoxemia
The study was approved by the Scientific Ethical Committee of

Copenhagen and Frederiksberg Municipalities, Denmark (file

number H-A-2009-020 with amendments) and The Danish Data

Protection Agency and was performed in accordance with the

Declaration of Helsinki.

Nine healthy male volunteers (mean6SD age 2362 years) were

enrolled after giving oral and written informed consent. All had an

unremarkable medical history without signs of infection within 4

weeks ahead of the trial day and none took any regular

medication. Before inclusion, volunteers underwent a thorough

physical examination, a 12-lead electrocardiogram (ECG) was

obtained and standard laboratory tests were performed. All tests

were normal.

Endotoxemia: Following 12-hour overnight fast volunteers

reported to the intensive care unit (ICU) at 7:30 am and were

placed in bed. They were catheterized with an intravenous

antecubital catheter (for LPS-infusion) and following local

anesthesia (lidocaine, 20 mg/ml) an arterial line was inserted in

the left radial artery. Heart rate (via a three-lead ECG), invasive

blood pressure (mean arterial pressure, MAP) and peripheral

oxygen saturation (SpO2, by pulse oximetry) were continuously

monitored and medically qualified personnel were present at all

times. Experimental endotoxemia was induced by means of a 4-

hour continuous intravenous infusion of purified Escherichia coli

LPS (infusion rate 0.5 ng/kg/hour; Batch G2 B274, US Pharma-

copeial Convention, Rockville, Maryland, US). In this model,

plasma tumor necrosis factor (TNF)-a reaches its peak value at

approximately 1 hour after cessation of the infusion [3,64]. As part

of another sub-study, which investigated cerebral auto regulation

(data reported elsewhere), noradrenaline was infused immediately

after blood samples had been collected at baseline and 4 h as
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previously described [65]. Given the short in vivo half-life of

noradrenaline (tK = 2.5 min in healthy individuals [66]) this drug

could be assumed to be completely metabolized at the following

blood sample time-points.

Blood was sampled for routine biochemistry and functional

hemostatic measurements (TEG, Multiplate) at 0 h, 4 h and 6 h

where 0 h denotes the time when LPS-infusion was initiated; thus

4 h corresponds to the cessation of the infusion (denoted ‘‘during

endotoxemia’’) and 6 h is two hours after cessation. Volunteers

were allowed to drink tap water ad libitum during the study day.

They were discharged after 12 hours following removal of

catheters and a light meal. According to the Danish Legislation,

volunteers were not allowed payment alone for their attendance in

the study. However, they were compensated for the loss of

earnings and for any pain and suffering associated with the study.

Blood samples and routine biochemistry
Blood was sampled from the radial artery catheter, to mimic the

conditions under which blood is often sampled in the critically ill

patient. Routine biochemistry were analyzed in a DS/EN ISO

15189 standardized laboratory as follows: Blood cell counts (XE-

2100, Sysmex, Japan), C-reactive protein (CRP) (Modular P-

modul, Roche, Switzerland), procalcitonin (IMFA, Kryptor,

Immulite), D-dimer, fibrinogen, enzymatic active antithrombin

(AT), activated partial thromboplastin time (APTT), international

normalized ratio (INR) and coagulation factor II-VII-X (ACL

TOP, Beckman Coulter, Inc., CA, US), ABG and lactate

(Radiometer ABL 725/735, Copenhagen, Denmark).

Multiplate
Platelet aggregation in heparinized whole blood was analyzed

by impedance aggregometry using a Multiple Platelet function

Analyzer (MultiplateH analyzer, Dynabyte GmbH), applying

commercially available platelet agonists, according to the manu-

facturers recommendations [normal range reported by Dynabyte

GmbH]: TRAPtest (thrombin-receptor activating peptide

(TRAP)-6 32 mM [92–151 U]), ADPtest (ADP 6.5 mM [55–

117 U]), ASPItest (arachidonic acid 0.5 mM [79–141 U]) and

COLtest (collagen 3.2 mg/ml [61–108 U]). Results of each test

were recorded as aggregation units (U) or as U per platelet (U/109

platelets, U divided by platelet count).

Thrombelastography (TEG)
TEG whole blood clot formation was evaluated simultaneously

in 3.2% citrated blood samples by kaolin-activated (TEG), kaolin-

heparinase-activated (heparinase-TEG) and tissue-factor (TF)-

activated platelet-blocked (TEG Functional FibrinogenH, FF)

analyses by a TEGH 5000 Hemostasis Analyzer System (Haemo-

netics Corp., MA, US), according to the manufacturers recom-

mendations. All analyses were conducted at 37uC. The simulta-

neous TEG and heparinase-TEG analysis allowed investigation of

endogenous heparinization as previously described [38] and the

FF analysis allowed investigation of fibrinogen contribution to

TEG clot strength. The variables recorded were [normal TEG

range reported by Haemonetics Corp.]: Reaction time (R [3–

8 min], rate of initial fibrin formation), angle (a [55–78 degrees],

clot growth kinetics), clot strength (maximum amplitude (MA)

[51–69 mm], maximum clot strength; shear elastic modulus

strength G [4,600–10,900 dyn/cm2], global clot strength; FF

MA [14–24 mm], fibrinogen clot strength) and fibrinolysis (clot

lysis time (CLT [min], velocity of clot degradation reflecting

fibrinolysis; Ly30/60 (%), percent lysis 30/60 min after MA)[7].

To estimate platelet contribution to clot strength (MA) we

calculated platelet MA (mm) by subtracting FF MA from TEG

MA, with results reported as crude platelet MA and platelet MA

per platelet (mm/109 platelets, platelet MA divided by platelet

count).

The day-to-day coefficient of variation of whole blood TEG MA

is ,7% in our laboratory [67].

In addition, the clotting potential of citrated plasma i.e., the

capacity for formation of a pure fibrin clot was investigated by

TEGH. Briefly, citrated plasma samples were thawed from 280uC
just before analysis and 340 ml plasma was recalcified (20 ml 0.2 M

CaCl2, final concentration 11.1 mM) and activated with TF

(lipidated recombinant human TF, Innovin, Dade Behring,

Marburg, Germany; final dilution 1:42,500) and analyzed

immediately at 37uC. To assess the clot resistance to fibrinolysis,

citrated plasma samples were analyzed with or without addition of

1.8 nM tissue-type plasminogen activator (tPA, single-chain,

American Diagnostica, Greenwich, US) as previously described

[67]. The TEG variables described above were recorded.

Statistics
Statistical analysis was performed using SAS 9.1 (SAS Institute

Inc., Cary, NC, US). Data from volunteers were investigated by

repeated-measures (RM) analyses (PROC MIXED, autoregressive

covariance structure, SAS) and Tukey post hoc tests. Goodness of

fit of the mixed model was assessed by investigating the residuals.

Correlations between variables were investigated by Pearson

correlations, and reported by R and p-values. Data are presented

as means 6SD. P-values ,0.05 were considered significant.

Results

Physiology, inflammation and routine coagulation tests
Endotoxemia induced a systemic inflammatory response syn-

drome (SIRS) as indicated by increased HR, temperature and

white blood cell count and decreased MAP (Table 1). Further-

more, lymphocyte and monocyte counts decreased while CRP and

procalcitonin increased. With regard to routine coagulation tests,

platelet count, APTT and factor II, VII and X decreased and INR

increased whereas plasma fibrinogen, D-dimer and antithrombin

did not change (Table 1).

Hemostatic response in whole blood
Endotoxemia induced a decline in primary hemostasis (platelet

adhesion and aggregation) as evaluated by MultiplateH TRAPtest,

ADPtest, ASPItest and COLtest and it significantly reduced the

per platelet response in the TRAPtest (Table 2).

Secondary hemostasis (fibrin-platelet clot formation in whole

blood) also changed during and after endotoxemia as evaluated by

standard and modified TEGH analysis (representative profiles

displayed in Figure 1): TEG R-time decreased, G increased and

CLT decreased during endotoxemia, indicating combined in-

creases in coagulation factor activity, clot strength and clot lysis,

respectively. In contrast, Functional Fibrinogen (whole blood,

blocked platelet GPIIb/IIIa receptors) MA decreased after

endotoxemia indicating reduced fibrinogen level and fibrin clot

strength.

The calculated platelet contribution to TEG MA (platelet MA)

increased during endotoxemia (p = 0.006) from 4165 mm at

baseline (0 h) to 4765 mm at 4 h and 4662 mm at 6 h (both

p,0.05 compared to 0 h), probably explaining the discrepant

increase in TEG MA and decline in FF MA (Table 2). Since

platelet count decreased during endotoxemia, the platelet MA per

platelet also increased (p,0.001) from 0.1960.04 mm/109

platelets at baseline (0 h) to 0.2560.04 mm/109 platelets at 4 h
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and 0.2760.05 mm/109 platelets at 6 h (both p,0.001 compared

to 0 h).

There was no evidence of endogenous heparinization as

evaluated by the difference between TEG and heparinase-TEG

(TEG minus heparinase-TEG) [38]: delta R at 4 h 20.160.2 and

6 h 0.461.2; delta angle at 4 h 20.563.9 and 6 h 0.368.3; delta

MA at 4 h 23.065.4 and 6 h 24.464.0 (all non-significantly

different from zero indicating that TEG and heparinase-TEG

were comparable).

Hemostatic response in plasma
In contrast to the findings in whole blood, TEG Angle increased

and TEG+tPA MA and G increased in plasma during and after

endotoxemia indicating increased clot velocity and strength/

firmness, respectively (Table 2). Furthermore, plasma TEG+tPA

Ly30/60 decreased considerably whereas CLT increased during

and after endotoxemia, indicating increased resistance towards the

tPA-induced in vitro clot lysis (Figure 1 and Table 2).

Correlations between plasma fibrinogen, platelet count
and TEG MA

The main determinants of TEG/ROTEM clot strength are

fibrinogen and platelets (in addition to FXIII which we did not

measure) [68–71]; we therefore investigated correlations between

these variables and TEG MA during endotoxemia. At baseline,

fibrinogen correlated significantly positively with TEG MA

(r = 0.83, p = 0.006) whereas platelets did not (r = 0.14, p = NS).

However, during (4 h) and after (6 h) endotoxemia, the contribu-

tion of fibrinogen to TEG MA decreased and became non-

significant (r = 0.32 and r = 0.25, both p = NS) whereas the

contribution of platelets to TEG MA increased non-significantly

at 4 h (r = 0.55, p = 0.128), indicating increased platelet reactivity

in the context of declining platelet count. After endotoxemia (6 h),

TEG MA and platelet count did not correlate significantly

(r = 0.18, p = NS).

Discussion

The main finding of the present study was that experimental

endotoxemia, along with induction of SIRS, resulted in a

Table 1. Physiology and standard biochemistry in nine healthy volunteers before (0 h), during (4 h) and after (6 h) induction of
experimental endotoxemia by means of a 4 h 0.5 ng/kg/hour LPS-infusion.

Endotoxemia (n = 9)

Units 0 h 4 h 6 h RM p-value Tukey

Physiology

HR bpm 5867 9467 97615 ,0.001 a,b

MAP mmHg 9267 7869 86614 0.020 a

SpO2 % 0.9860.00 0.9760.01 0.9760.01 0.090

Temperature uC 36.660.3 39.060.3 38.660.3 ,0.001 a,b

SBE mmol/l 1.161.1 0.361.2 0.861.3 0.003 a

pH 7.4160.02 7.4560.03 7.4560.01 ,0.001 a,b

Lactate mmol/l 0.960.4 1.060.4 1.060.2 0.049 b

Inflammation

WBC 109/l 5.460.9 6.863.0 12.462.7 ,0.001 b,c

Neutrophils 109/l 3.160.9 6.162.8 11.762.5 ,0.001 a,b,c

Progenitor cells 109/l 0.01460.005 0.01760.011 0.04060.017 ,0.001 b,c

Lymphocytes 109/l 1.760.5 0.660.3 0.460.1 ,0.001 a,b

Monocytes 109/l 0.4260.11 0.0560.03 0.2960.17 ,0.001 a,c

CRP mg/l 1.160.3 1.360.6 2.261.1 0.012 b

Procalcitonin mg/l 0.160.0 ND 6.263.1 ,0.001 b

Hemoglobin mmol/l 8.960.7 8.860.7 8.960.7 NS

Routine coagulation

Platelets 109/l 218635 188632 177631 ,0.001 a,b

Fibrinogen g/l 2.060.2 2.060.2 2.060.2 NS

D-dimer mg/l 0.260.1 2.864.7 1.561.2 0.162

AT 103 IU 1.0260.07 0.9960.06 1.0160.07 0.102

APTT Sec 3064 2362 2362 ,0.001 a,b

INR Ratio 1.160.1 1.260.1 1.260.1 ,0.001 a,b

Factor II-VII-X U 0.860.1 0.760.1 0.760.1 ,0.001 a,b

Data are presented as means6SD. Data from volunteers were compared by repeated-measures analyses (RM) and Tukey post hoc tests: p,0.05 for 0 h vs. 4 ha, 0 h vs.
6 hb and 4 h vs. 6 hc. P-values ,0.2 are shown and in bold if p,0.05.
HR, heart rate; MAP, mean arterial blood pressure; SpO2, peripheral oxygen saturation; SBE, standard base excess; WBC, white blood cells; CRP, c-reactive protein; AT,
antithrombin; APTT, activated partial thromboplastin time; INR, international normalized ratio. NS, non-significant; ND, not done.
doi:10.1371/journal.pone.0059368.t001
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Table 2. Functional hemostatic assays in whole-blood (impedance aggregometry (Multiplate), Thrombelastography (TEG),
Functional fibrinogen) and plasma (TEG with or without addition of tPA to induce fibrinolysis) in nine healthy volunteers before,
during and after induction of experimental endotoxemia by means of a 4 h LPS-infusion (0.5 ng/kg/hour).

Endotoxemia (n = 9)

Units 0 h 4 h 6 h RM p-value Tukey

Multiplate

TRAPtest U 125624 85619 89621 ,0.001 a,b

U/platelet 0.5960.15 0.4560.08 0.5160.11 0.008 a

ADPtest U 79615 57612 55610 ,0.001 a,b

U/platelet 0.3760.10 0.3060.04 0.3260.06 0.064

ASPItest U 93616 73617 82613 0.028 a

U/platelet 0.4260.10 0.3760.07 0.4560.04 0.117

COLtest U 84614 64614 70613 ,0.001 a,b

U/platelet 0.4060.10 0.3460.04 0.4060.06 0.060

Whole blood TEG

R min 8.662.4 5.561.2 6.762.0 0.003 a

Angle degrees 5766 6267 58610 NS

MA mm 5466 5965 5863 0.084

G dyn/cm2 6,01061,232 7,22961,487 6,9286934 0.050 a

LY30 % 0.760.8 0.761.1 0.861.1 NS

LY60 % 3.562.6 3.762.9 4.363.7 NS

CLT min 136638 71616 15165 ,0.001 a,c

Whole blood Functional Fibrinogen

R min 5.661.2 5.261.3 5.761.5 NS

Angle degrees 2968 3269 32611 NS

MA mm 1462 1262 1263 0.049 a

G dyn/cm2 7876151 6886157 6716210 0.051

LY30 % 060 060 060 NS

LY60 % 060 060 060 NS

CLT min 120662 80618 2376221 0.067

Plasma TEG

R min 6.361.8 5.660.9 5.360.3 0.137

Angle degrees 45613 5268 5667 0.013 a,b

MA mm 1963 1963 2063 0.151

G dyn/cm2 1,1626221 1,1726217 1,2506245 0.149

LY30 % 060 060 060 NS

LY60 % 060 060 060 NS

CLT min 124636 117640 114640 NS

Plasma TEG +tPA

R tPA min 6.262.1 5.660.8 5.160.5 0.178

Angle tPA degrees 44614 5368 5766 0.011 a,b

MA tPA mm 1464 1663 1963 ,0.001 a,b,c

G tPA dyn/cm2 7986249 9786200 1,1656216 ,0.001 a,b,c

LY30 tPA % 51.1626.2 25.2629.0 0.160.4 ,0.001 a,b,c

LY60 tPA % 73.5616.2 43.6636.5 3.269.2 ,0.001 a,b,c

CLT tPA min 26614 68658 117640 ,0.001 a,b,c

Data are presented as means6SD. Data from volunteers were compared by repeated-measures analyses (RM) and Tukey post hoc tests: p,0.05 for 0 h vs. 4 ha, 0h vs.
6 hb and 4 h vs. 6 hc. P-values ,0.2 are shown and in bold if p,0.05.
Different platelet agonists were applied in the Multiplate tests: TRAPtest, thrombin-receptor activating peptide; ADPtest, ADP; COLtest, collagen; ASPItest, arachidonic
acid; TEG, thrombelastography; R, reaction time; Angle, a angle; MA, maximum amplitude; G, shear elastic modulus strength; CLT, clot lysis time; Ly30/60, percent lysis
30/60 min after MA;
tPA, tissue-type plasminogen activator. NS, non-significant.
doi:10.1371/journal.pone.0059368.t002
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hemostatic response in whole blood with reduced primary but

enhanced secondary hemostasis, enhanced early fibrinolysis and

fibrinogen consumption followed by inhibition of fibrinolysis. In

plasma, however, endotoxemia resulted in a progressive increase

in clot resistance towards tPA-induced fibrinolysis indicating that

the early LPS/inflammation-induced increase in fibrinolytic

activity may be mediated by cellular elements in the whole blood.

Sepsis is associated with vascular dysfunction and coagulopathy

that may progress from an initially normal coagulation profile to

hypercoagulability, hyperfibrinolysis and ultimately hypocoagula-

bility with increasing disease severity [11–13,18]. This has been

documented by TEG/ROTEM and has been reproduced in

studies using experimental human [23] and animal [25–27]

models of endotoxemia [23,25–27]. Also, platelet aggregation is

profoundly reduced in septic patients [19–22] and decreases with

disease severity [20–22], which has also been reproduced in

experimental human [23,24] and animal [28,29] models of

endotoxemia.

In the present study, experimental endotoxemia, by means of a

4-hour infusion of 0.5 ng/kg/hour LPS, reduced primary

hemostasis (platelet aggregation, reduced by Multiplate) and

enhanced secondary hemostasis (clot formation) in whole blood

(reduced R time (enhanced coagulation initiation) and increased G

(enhanced clot strength) at 4 h by TEG) in accordance with

previous findings [23–25,27–29]. During endotoxemia, fibrinolysis

was enhanced (increased breakdown of the platelet-fibrin clot,

CLT reduced at 4 h by TEG), which probably explains the

observed reduction in the functional fibrinogen level (reduced

strength of the fibrin clot, MA reduced at 4 h by FF). However,

after endotoxemia, fibrinolysis was inhibited (increased CLT at

6 h by TEG), in accordance with previous findings in human [23]

and animal [25] studies of experimental endotoxemia.

In contrast to the reduction in platelet aggregation, platelet clot

formation increased (the pure contribution of platelets to TEG clot

strength, platelet MA increased at 4 h and 6 h) both in total and

on a per platelet basis (i.e. each platelet became more reactive), in

accordance with the notion that the platelet fibrinogen receptor

activity (GPIIb/IIIa) is enhanced in early sepsis [50].

Given that thrombosis may represent a critical component of

innate immunity [72], the hemostatic changes observed in

response to endotoxemia probably reflect part of a coordinated

immune response. Thus, there is emerging evidence that platelet

function goes far beyond hemostasis and that platelets are critically

involved in and modulators of host defense and immune function

[73–76]. Hence, Yaguchi and colleagues [21] suggested almost 10

years ago that sepsis induces a redistribution of platelet function

from hemostasis toward other functions like e.g. vascular healing.

We recently reported of an association between excessive

sympathoadrenal activation and reduced hemostatic function of

platelets in trauma patients [77,78] suggesting that catecholamines

may promote a switch in platelet function from hemostasis to e.g.

immunomodulation [42,76]. We infer that the change in

hemostatic platelet function in critical illness may serve to sustain

platelet circulation (avoiding consumption), thereby allowing

platelets to exert other functions like e.g., vascular healing [21]

and immunomodulation [76].

The oppositely directed responses in primary and secondary

hemostasis observed in the present study probably reflect that we

investigated an early hemostatic response to acute inflammation,

in which it is well documented that secondary hemostasis is

enhanced rather than reduced [11–13,23,25,27].

In contrast to the early increase (4 h) in and later downregu-

lation (6 h) of fibrinolysis observed in whole blood by TEG, the

resistance of the fibrin clot towards tPA-induced fibrinolysis

increased progressively both during (4 h) and after (6 h) endotox-

emia. This discrepancy indicates that blood cells and/or blood

cell-derived microparticles and/or molecules enhance fibrinolysis

in acute inflammation in accordance with the notion that

inflammatory and endothelial cells and their derived microparti-

cles can promote fibrinolysis [53–55]. Though platelets in some

studies have been reported to enhance clot resistance towards

fibrinolysis [51] it cannot be excluded that platelets under

conditions characterized by systemic inflammation accompanied

Figure 1. Representative profiles of TEG and modified TEG analyses in healthy volunteers before (t = 0), during (t = 4 h) and after
(t = 6 h) experimental endotoxemia induced by a 4-hour continuous intravenous infusion of purified Escherichia coli LPS (infusion
rate 0.5 ng/kg/hour). TEG and Functional Fibrinogen were analyzed in whole blood whereas plasma TEG was analyzed in plasma with or without
addition of 1.8 nM tPA to induce lysis of the clot i.e., allowing extended evaluation of clot resistance to fibrinolysis.
doi:10.1371/journal.pone.0059368.g001
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by endothelial activation and damage may change their phenotype

towards a more pro-fibrinolytic one to avoid clot formation in the

microvasculature thereby ensuring adequate organ perfusion.

Given that degranulation of platelets is a highly regulated process

[79,80], it is also tempting to speculate that thrombocytopenia,

depending on the context, may both enhance and reduce

fibrinolysis. Besides platelets, other blood cells, leukocytes in

particular, may also through mechanisms such as release of

neutrophil elasase, enhance fibrinolysis and thereby contribute to a

discrepant response in plasma and whole blood [57]. Finally, this

discrepancy emphasizes the importance of evaluating hemostasis

in whole blood, opposite plasma, while also taking the concurrent

state of the vascular endothelium (pro- vs. anticoagulant) into

account since the states of the fluid (circulating blood) and solid

(endothelium) phases of the vascular system may, from a systems

biology perspective, counterbalance each other [42]. Thus, in

conditions with systemic inflammation and/or coagulation acti-

vation, progressive hypocoagulability and fibrinolysis of the

circulating blood may serve to keep a progressively more damaged

and procoagulant microvasculature open in order to maintain

perfusion of critical organs [42]. This notion is in accordance with

the progressive hypocoagulability and fibrinolysis reported in

septic patients [11–13,18] and it also agrees with the finding of

hyperfibrinolysis in trauma [77,81–90], cardiac arrest [91] and

major surgical [92] patients and with the finding of enhanced

protein C activation in patients with septic shock [93], during the

reperfusion phase after cardio pulmonary bypass [94] and in

cardiac arrest [95] or severely injured [77] patients. Despite

thrombosis being a critical player in innate immunity [72], it is

notable that several of the endothelial derived molecules that

promote hypocoagulability exert potent antiinflammatory and

cytoprotective functions [96–99] that may ultimately generate at

survival advantage in critically ill patients.

We found no evidence to suggest that endotoxemia induces

endogenous heparinization. This contrasts previous findings in

septic [32–37] and trauma [38] patients. This discrepancy is likely

explained by the presence of endothelial damage and hence

glycocalyx degradation in patients with severe sepsis [5,6,100],

which cannot be reproduced in human experimental endotoxemia

since the LPS-doses required to mimic severe sepsis with regard to

endothelial damage and/or organ dysfunction are unsafe and

ethically unacceptable [1–3].

The present study has several limitations. Firstly, only young

male volunteers were investigated in the experimental part and

consequently a possible age and/or gender difference in response

to endotoxemia was not evaluated. Furthermore, the low number

of volunteers investigated increases the risk of introducing both

type I and II errors, emphasizing that the findings herein should be

confirmed in a larger studies. Finally, though the administered

noradrenaline infusion [65] was assumed completely metabolized

before blood sampling [66], it cannot be excluded that the infused

noradrenaline influenced platelet number and function as

catecholamines including noradrenaline influence both platelet

adhesion and activation [45].

In conclusion, induction of experimental endotoxemia by means

of a 4-hour LPS-infusion at 0.5 ng/kg/hour induced a hemostatic

response comparable to that observed in early sepsis, with reduced

primary but enhanced secondary hemostasis, enhanced early

fibrinolysis and fibrinogen consumption followed by downregula-

tion of fibrinolysis. In plasma, however, endotoxemia resulted in a

progressive increase in clot resistance towards tPA-induced

fibrinolysis. We infer that the discrepant fibrinolytic response

observed in plasma and whole blood reflects a critical role of

platelets and/or other blood cells in the vasculo-fibrinolytic

response to acute inflammation in accordance with the finding

here of significantly altered platelet function in response to

endotoxemia.
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