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Simple Summary: Radiotherapy is an important cancer treatment. Aside from its direct killing effect,
it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on
the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have
focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist,
especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and
low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical
studies supporting this finding have accumulated, but gaps between theory and clinical practice
still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy
approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this
combination, raises questions that must be addressed in clinical practice, and provides ideas for
designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using
high-dose plus low-dose radiotherapy.

Abstract: Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on
anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate
immunity, and many other factors. There are conflicting findings on the optimal radiation dose
and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts
in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose
radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment.
Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining
HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising
potential. However, there are still questions to be addressed in order to put this novel combination
therapy into clinical practice. For example, the selection of treatment site, treatment volume, the
sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and
so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains
possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered
when working out individualized treatment plans, and lists possible avenues to increase efficiency in
stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.

Keywords: high-dose radiotherapy; low-dose radiotherapy; immune; radiotherapy dose; fraction;
treatment volume; multisite radiotherapy

1. Introduction

Radiotherapy (RT) is a powerful strategy for activating anti-tumor immunity through
various mechanisms [1]. It plays crucial roles in regulating the tumor immune microen-
vironment (TME), shifting it towards an immune-favorable type, and amplifying the
immunotherapy effect [2]. However, the immune-stimulating effect of RT seems to be
uncertain, depending on the cancer type, RT dose and fractions, combined immunotherapy,
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and many other factors [3]. Of particular concern is the best RT dose and fractions to stim-
ulate anti-tumor immunity and overcome the immune-suppressive barriers of the TME,
which is still the main challenge that is faced by many researchers and clinical workers.

In recent years, many studies have investigated the immune-stimulating effect of
different RT doses on different cancer types [4–6]. It is now well established that high-dose
radiotherapy (HDRT), defined as more than 5 Gy/fraction, can trigger many pathways to
activate the innate or adaptive immune system against tumors [7]. HDRT can induce an in
situ vaccination effect, modify the phenotype of tumor cells to render them more ‘visible’
to T-cell killing, and alter the tumor microenvironment to promote greater infiltration of
immune effector cells [6,8–11]. However, HDRT also has negative effects on anti-tumor
immunity, such as recruiting immune-suppressive cells and increasing immune-regulatory
cytokines secretion [12]. Furthermore, radiation, especially when the dose is high, has
a cytotoxic effect on anti-tumor immune cells, which will impair anti-tumor immunity.
Researchers have spent much effort on optimizing HDRT’s immune-stimulating effect
and attenuating its negative immune effects [13–15]. Meanwhile, the evidence of the
immune-modulating effect of low-dose RT (LDRT), defined as lower than 2 Gy/fraction, is
also emerging [16,17]. Interestingly, HDRT’s and LDRT’s effects on anti-tumor immunity
seem to be complementary in many pathways. In contrast to HDRT, LDRT plays a critical
role in modulating the tumor immune microenvironment via enhancing immune effector
cell infiltration and attenuating the immune-suppressive effects of RT [18]. Thus, using a
‘hybrid’ RT regimen may be the way to optimally stimulate anti-tumor immunity.

This combination of RT doses has been tested in some preclinical and clinical studies,
yielding hopeful results [19–21]. However, research to date has not yet solved some aspects
that must be considered when putting this novel RT treatment regimen into clinical practice.
The main question is how to combine high- and low-dose RT in space and time. For
example, when treating a metastatic tumor, we must decide which tumor site should be
treated with HDRT or LDRT. Whether we should deliver HDRT and LDRT to the same
tumor site and what the proper sequence of HDRT and LDRT should be are questions that
need to be discussed and explored in future studies. This review summarizes the current
knowledge and promising investigations into inducing anti-tumor immunity using HDRT
+ LDRT and provides ideas for combining HDRT + LDRT in space and in time.

2. HDRT + LDRT in Stimulating Anti-Tumor Immunity: A Preclinical Snapshot

In 2020, Barsoumian et al. established an RT regimen that was called the ‘RadScopal
Technique’, which referred to treating the primary tumor with HDRT (12 Gy*3) and sec-
ondary metastases with LDRT(1 Gy*2) 3 days later. They combined this new approach
with immune checkpoint inhibitors (ICIs) in mice bearing 344SQ lung adenocarcinoma.
They observed that the HDRT + LDRT + ICIs group showed slower primary and secondary
tumor growth, higher levels of immune effector cell infiltration, and a greater reduction of
transforming growth factor beta (TGF-β) at secondary sites than mice that were receiving
HDRT or LDRT alone or in combination with immunotherapy [19]. TGF-β is a powerful
immunosuppressive cytokine that hinders the cross-priming of T-cells, impairs T-cells
functional differentiation, and recruits Tregs [22,23]. This phenomenon suggested that
HDRT + LDRT was superior to HDRT or LDRT alone in tumor control and activation of
anti-tumor immunity.

More recently, the same group combined the ‘RadScopal Technique’ with other im-
munotherapy and observed similar results [20,24,25]. Aside from applying HDRT to the
primary tumor and LDRT to the secondary tumor, other researchers have applied LDRT to
a larger treatment volume such as a whole metastatic organ or the entire body, harvesting
similar immune-modulating effects [16,26]. A novel systematic low-dose RT technique,
targeted radionuclide therapy (TRT), has also been proven to exert satisfying immune-
stimulating effects in combination with HDRT [27]. The details of these studies are provided
in Table 1.
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Table 1. Key preclinical studies on evaluating the valuating immune effect of high-dose radiotherapy (HDRT) + low-dose radiotherapy (LDRT).

Authors Mice and Cell Line Number of
Tumor Sites RT Regimen Immunotherapy Results

H Barsoumian et al. [19]
129Sv/Ev mice

344SQ parental lung
adenocarcinoma cell line

2

12 Gy*3 HDRT to the primary
tumor + 1 Gy*2 LDRT to the

secondary tumor (3 days
after HDRT)

anti-CTLA-4
anti-PD1

Delayed growth in both primary and
secondary tumors.

Enhanced natural killer cell activation,
increased M1 macrophages and CD4 +

T-cells, and decreased TGF-β in
secondary tumors.

H Barsoumian et al. [20]
129Sv/Ev mice
344SQ parental

lung adenocarcinoma cell line
2

12 Gy*3 HDRT to the primary
tumor + 1 Gy*2 LDRT to the

secondary tumor (3 days
after HDRT)

anti-TIGIT
anti-PD1

Delayed growth in both primary and
secondary tumors,

reduced the exhaustion of T-cells,
generated effector immune memory,

and prolonged survival.

Y Hu et al. [25]
129Sv/Ev mice
344SQ parental

lung adenocarcinoma cell line
2

12 Gy*3 HDRT to the primary
tumor + 1 Gy*2 LDRT to the

secondary tumor (3 days
after HDRT)

anti-PD1
anti-CTLA4

NBTXR3 nanoparticle

Slowed the growth of both primary
and secondary tumors,

suppressed the appearance of
lung metastases,

increased survival rates,
induced robust long-term immune

memory, and
increased the CD8/Treg ratio in the

secondary tumors

T Savage et al. [26]

C57BL/6 mice
Lewis Lung Carcinoma, 3LL 1 22 Gy*1 + 0.5 Gy*4(12 days after

HDRT) to the tumor site -

Delayed tumor growth,
increased survival,

reduced Tregs and M2 macrophages in
the tumor microenvironment (TME),

and increased systemic
T-cell responses.

BalB/C mice
breast carcinoma cell line, 4T1 1

22 Gy*1 to the tumor site +
0.5 Gy*4(12 days after HDRT) to

the whole lung (metastatic
prone organ)

-

Delayed local tumor progression,
suppressed pulmonary metastases,

remodeled the metastatic niche with
decreased Tregs and increased effector

T-cell infiltration in lungs, and
increased survival.
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Table 1. Cont.

Authors Mice and Cell Line Number of
Tumor Sites RT Regimen Immunotherapy Results

J Liu et al. [16]

BALB/C mice
mammary carcinoma 4T1 and

colon carcinoma CT26
cell lines

2
0.1 Gy total body irradiation (3

days before HDRT) + 8 Gy*3 to the
primary tumor

-

Delayed growth in both primary and
secondary tumors,

increased secondary tumor infiltration
of CD8+ T-Cells, decreased

myeloid-derived suppressor cells
(MDSCs) and M2 macrophages in the

secondary tumor, and
inhibited metastasis

R Patel et al. [27]
C57Bl/6 and BALB/c mice

B78 melanoma tumors
cell line

2

targeted radionuclide therapy
(TRT) using 50uCi90Y-NM600
(2.5 Gy) + 12 Gy external beam

radiotherapy targeting the
primary tumor

anti-CTLA4

Improved tumor response at the
secondary tumor not targeted by EBRT

and improved overall survival,
augmented response to ICIs, and

induced robust long-term
immune memory.

NBTXR3: a hafnium oxide radio-enhancing nanoparticle. TIGIT: an immune checkpoint expressed on T-cells, impairing antigen presentation and T-cell proliferation. -: No
immunotherapy was implemented.
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3. Immunobiology Mechanisms of HDRT + LDRT

HDRT and LDRT have distinct effects on inducing anti-tumor immunity. HDRT is
likely to ‘inspire’ the immune system via various immune pathways that trigger recogni-
tion and presentation of tumor-associated antigens. However, HDRT itself is not without
drawbacks. It has the unwanted side effect of dampening later immune responses in
a so-called ‘rebound’ immune suppression [28]. HDRT recruits immuno-suppressive
cell populations such as Tregs, myeloid-derived suppressor cells (MDSCs), and tumor-
associated macrophages (TAMs) [29]. In contrast, LDRT polarizes TAMs to the anti-tumor
M1 phenotype, reduces immune-suppressive MDSCs and Tregs, and improves T-cell infil-
tration [30,31]. To illustrate this complementary effect of HDRT and LDRT, we summarize
evidence that explains the immunobiology mechanism of HDRT and LDRT and establishes
a hypothesis-based immune response model that shows the immune pathways that are
activated after HDRT + LDRT (Figure 1).
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Figure 1. A hypothesis-based immune response model. In the course of tumor growth, the tumor
microenvironment (TME) accumulates high concentrations of immune-suppressive cytokines/growth
factors, such as transforming growth factor beta (TGFβ) and vascular endothelial growth factor.
Under their action, immunosuppressive cells (black cells), regulatory T-cells, and myeloid cells, will
prevail in the tumor environment. Dentric cells (DCs) become tolerogenic and immune effector
cells cannot infiltrate the tumor (1). After high-dose irradiation (2), many immune pathways are
activated. Firstly, high-dose radiotherapy (HDRT) will cause tumor cell necrosis and the release of
tumor cell debris, which can be taken up by antigen-presenting cells (APCs). Secondly, HDRT causes
dsDNA release, triggering the cGAS-STING-IFN-1 pathway. In addition, HDRT upregulates cell
surface molecules such as MHC-1/Fas/NKG2D. Activated APCs then migrate to the lymph nodes,
where they educate and prime cytotoxic T-cells (3). Cytotoxic T-cells will enter the bloodstream (4) to
reach primary and distant tumor sites and kill tumor cells. However, these effector immune cells
might not be able to enter primary or distant tumor stroma because of immune-suppressive barriers
that are formed naturally or after HDRT. Low-dose radiotherapy (LDRT) enhances immune cells
infiltration and diminishes immune-suppressive cells and cytokines, acting in a similar way to an
immune-modulator (5). LDRT can be applied to the local tumor which has received HDRT or other
tumor lesions, which remains to be explored by more studies. After LDRT, the activated immune
cells successfully enter the primary and distant tumor issue, eradicating tumor cells, and causing
abscopal effect (6). The crucial timing of LDRT needs to be explored by future studies in order to
avoid effector immune cell depletion.
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3.1. HDRT: A Powerful Tool to Inspire Anti-Tumor Immunity

HDRT plays powerful roles in achieving >90% local control [32] and inducing immuno-
genic cell death (ICD) [33] with an increase in antigen presentation [9]. HDRT kills tumor
cells directly, and the tumor cell debris can be taken up by antigen-presenting cells (APCs)
such as dentric cells (DCs). Another important mechanism is triggering the cyclic GMP-
AMPsynthase (cGAS)- stimulator of interferon genes (STING)-IFN-1 pathway [34–36]. Type
I interferon (IFN-1) recruits DCs that cross-prime CD8+ T-cells against tumor antigens [37].
DCs that are activated by the two mechanisms that are described above then migrate to
the lymph nodes and participate in the cross-priming of naïve CD8 + T-cells [38]. The
activated tumor-specific CD8 + cytotoxic T-cells enter the blood flow and infiltrate both
the irradiated tumor and the non-irradiated lesion, eliminating tumor cells. This process is
the well-known ‘abscopal effect’ that was first described in 1953 by Mole et al., referring to
systemic immune responses that are triggered following radiotherapy that is applied to a
local tumor site [39].

In addition, HDRT is associated with the strong release of damage-associated molecules
(DAMPs), further promoting an immune response following RT [40,41]. DAMPs, mainly in-
cluding calreticulin (CRT), heat-shock proteins (HSP70 and HSP90), adenosine triphosphate
(ATP), and high-mobility group box-1 (HMGB1), are molecules that are released by dying or
stressed cells that function as either adjuvants or danger signals for the immune system [42].
These molecules trigger different pathways to activate the anti-tumor immune system. For
example, HMGB1 promotes tumor antigen presentation [43], recruits inflammatory cells,
and mediates interactions between natural killer cells (NKs), DCs, and macrophages [44].
CRT acts as a pro-phagocytic signal by binding to the CD91 receptor on macrophages and
DCs, promoting tumor antigen presentation [45]. ATP-P2X7 purinergic receptor (P2X7R)
signaling enhances immune cell recruitment [46].

HDRT induces tumor cells to upregulate several cell surface molecules, including
major histocompatibility complex (MHC) class 1 [9], the apoptosis-inducing death receptor
FAS, and several natural killer group 2D (NKG2D) ligands, which enhance the recognition
and cytolysis of the tumor by T-cells and NKs, respectively [47]. HDRT increases pro-
inflammatory cytokines and chemokines such as CXCL10 and CXCL16, which promotes ef-
fector immune cell infiltration [48,49]. High-dose irradiation upregulates IL-1β, TNF-α, and
Type 1 and 2 interferons [50], which upregulate intracellular adhesion molecule-1 (ICAM-1)
and vascular adhesion molecule-1 (VCAM-1) on the tumor endothelium [51,52]. These cell
adhesion molecules promote migration of lymphocytes into the tumor parenchyma.

More importantly, all the pro-immune effects that are described above are associated
with a relatively higher dose of RT rather than LDRT, indicating that HDRT has its unique
role in activating anti-tumor immunity [9,41,53–57]. A higher dose of radiation is more
likely to induce immunogenic cell death that is mediated by DAMPs, activate cGAS-STING-
dependent IFN-1 production, and upregulate pro-inflammatory molecules, providing the
first underpinning of combining HDRT with LDRT.

3.2. LDRT: An Immune Modulator

Several immunosuppressive features can preclude HDRT induction of anti-tumor
immunity [22,58,59]. Although LDRT is not as effective as HDRT in stimulating the anti-
tumor immune response, its immune-modulating effect can attenuate the side effects
of HDRT that impair anti-tumor immunity, acting as a complementary product in the
combination treatment.

Firstly, HDRT recruits many immune-suppressive cells such as MDSCs, Tregs, M2
macrophages, and cancer-associated fibroblasts (CAFs); causes the release of immune-
suppressive factors; and dampens anti-tumor immunity [12,14,60–62]. M2 macrophages
secrete immunosuppressive mediators such as IL-10 and TGF-β, inhibiting anti-tumor
immunity and promoting a radioresistant phenotype [63,64]. Tregs cause CTLA-4 ex-
pression, IL-10 and adenosine release, leading to the inhibition of T-cell activation and
poor outcome [65]. Additionally, MDSCs inhibit T-cell function and anti-tumor immunity
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through arginase-mediated arginine depletion, nitric oxide production, and reactive oxygen
species release [66]. CAFs play a powerful role in immunosuppression via the secretion of
relevant immunosuppressive molecules such as prostaglandin E2, interleukin-6 and 10, or
TGF-β, resulting in impaired T-cells activation and DC maturation, and this effect remains
unchanged after HDRT [59].

In contrast, LDRT reduces negative regulatory factors and shifts immune cell subpop-
ulations to favor tumor control [17,19,67]. Liu et al. observed that total body low-dose
irradiation (TBI) of 1.25 Gy significantly decreased the number of Tregs, while increasing
the effector-memory T-cells [67]. Klug et al. found that LDRT (2 Gy*1) reprogrammed the
TME by polarizing iNOS+ M1 macrophages. In turn, iNOS activity by these reprogrammed
macrophages was responsible for vascular normalization and activation, T-cell recruitment,
and tumor rejection [31]. A Phase 2 randomized study showed patients that were receiving
HDRT (24 Gy in 3 fractions) experienced a decrease in the ratio of M1/M2 macrophages
in the TME, while subjects that were receiving LDRT (2 Gy in 4 fractions) experienced the
opposite effects [68].

LDRT also attenuates other immune-suppressive effects of HDRT. HDRT negatively
affects the tumor immune microenvironment by damaging the tumor vasculature [69–71]
and reducing blood flow, which preclude immune cell infiltration and exacerbates the
hypoxia-driven immunosuppressive environment [58,72,73]. In contrast, LDRT promotes
immune effector cell infiltration, acting as a ‘TME modulator’ [18]. Dovedi et al. demon-
strated that low-dose fractionated radiotherapy (5*2 Gy) enhanced T-cell trafficking to
irradiated tumor sites and augmented resident anticancer T-cell responses with the capacity
to mediate the abscopal effect [74]. Herrera et al. also demonstrated that a dose of 0.5 to
1 Gy enhanced T-cell infiltration and rendered immune desert tumors responsive to its
combination with immunotherapy. Furthermore, they translated the preclinical findings to
the clinic with a pilot study in eight patients with metastatic immune cold tumors, yielding
a response rate of 12.5% [17].

In total, LDRT complements the immune effects of HDRT. LDRT increases immune
system access to the TME and mitigates the immunosuppressive consequences of HDRT.

4. Clinical Challenges: How Will We Bridge the Gap between Theory and Practice?

Although the theory of combining HDRT + LDRT has matured, there are still gaps
between the theory and clinical practice. Some researchers have brought this combination
RT into the clinic with the aim of improving outcomes [75]. However, positive results are
still rare. There are still many questions that need further investigation.

Patel et al. conducted a prospective Phase II trial of HDRT with or without LDRT
for metastatic cancer [21]. Disease control rate (DCR) was defined as a complete/partial
response [CR/PR] or stable disease [SD], and overall response rate (ORR) was defined
as CR/PR at any point. The four-month DCR was 47% [16/34] in the HDRT + LDRT
group vs. 37% [14/38] in the HDRT alone group, p = 0.38, and ORR was 6% [9/34] in the
HDRT + LDRT group vs. 13% [5/38] in the HDRT alone group, p = 0.27. Although tumor
response did not meet statistical significance, the LDRT lesion response (53%) improved
compared to the nonirradiated lesions in the HDRT + LDRT (23%, p = 0.002) and HDRT
(11%, p < 0.001) groups. LDRT enhanced T-cells and NK cell infiltration in irradiated lesions.

Several factors contributed to the lack of statistical significance in this trial. (i) The
choice of radiation, dose, fractionation, and the number of sites lacked randomization
owing to consideration of treatment efficiency and safety. (ii) The number of patients that
were enrolled was limited. Here, we raise questions needing further investigation and
provide suggestions on how to utilize HDRT + LDRT in the clinic with respect to patients’
immune functions, disease burden, and other factors.

4.1. How to Decide the Number of HDRT Site

Theoretically, multi-site HDRT is superior to the single-site strategy in activating
systemic immune response [76]. Each tumor lesion provides an independent release of
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distinct tumor-associated antigens (TAAs), which cannot be shared by all the metastatic
sites [77]. Multiple site HDRT might circumvent the issue of tumor heterogeneity by
priming ‘visualization’ of a wider range of TAAs. Furthermore, all-site irradiation can
stimulate the tumor vasculature and negate the immunosuppressive features of bulky
disease, thus enhancing immune cell penetration in all tumor lesions [78–80]. In addition,
delivering SBRT to all tumor sites directly ensured tumor sterilization.

A Phase I trial that was conducted by Luke et al. demonstrated the feasibility of
multisite stereotactic body radiotherapy (SBRT) and pembrolizumab in patients with
advanced solid tumors [81]. They observed that the overall objective response rate was
13.2% and the out-of-field response rate (CR/PR) of nonirradiated target metastasis was
26.9%. The median overall survival was 9.6 months and the median progression-free
survival was 3.1 months. These data showed that multisite SBRT effectively controlled
both the primary and distant tumor with acceptable toxicity in patients with metastatic
cancer. Moreover, a secondary analysis of this trial showed increased expression of innate
and adaptive immune genes after SBRT [82]. In conclusion, as long as it is feasible and
tolerable, HDRT should be given to as many tumor sites as possible to achieve efficient
tumor control and systemic immune response. For one thing, delivering HDRT to all tumor
sites ensures tumor sterilization; for another, multisite HDRT is prone to activate systemic
immune response, which is crucial for eliminating circulating tumor cells that cannot be
eliminated by HDRT.

However, multisite HDRT has drawbacks. One of the biggest challenges is that we
lack knowledge of the appropriate organ dose–volume constraints when high RT doses
are delivered to multiple isocenters [83]. In plans with multiple isocenters, the scatter dose
and low-dose bath are likely to affect the circulating immune cells, particularly highly
radiosensitive lymphocytes, leading to T-cell depletion, impairing anti-tumor immunity,
and reducing response to ICIs. Indeed, replacing HDRT at some sites with LDRT may offer
a solution to this problem, but toxicities that are related to low-dose irradiation of large
tumor volumes is yet to be defined.

Aside from intentionally delivering LDRT to large tumor sites, scattered low doses can
also act as an immune modulator if a large-volume tumor lesion is close to the lesion that
is treated with HDRT. Welsh et al. observed in a Phase II trial that when treating patients
bearing metastatic tumors with SBRT, non-targeted lesions that unintentionally received
low-dose radiation were more likely to respond than those that received no radiation (31 vs.
5%, p = 0.0091) [84]. A post hoc analysis that was conducted by Menon et al. had similar
results. Their data indicated that 58% of the lesions that unintentionally received scattered
low-dose irradiation met the PR/CR criteria for RECIST, compared with 18% of the lesions
that received no dose (p = 0.001) [85]. Consequently, scattered low-dose irradiation can be
potentially utilized to enhance the abscopal effect and tumor control.

Another challenge of multisite HDRT is that adding to the number of tumor sites
that are receiving HDRT may aggravate its immune-suppressive effect. Schoenhals et al.
found that delivering HDRT to both tumors accelerated the tumor growth, which could be
attributed to HDRT’s ability to induce higher levels of Tregs. Adding anti-Treg immunother-
apy abrogated this immune-suppression effect and the abscopal effect was restored [86]. In
this experiment, the researchers used anti-Treg immunotherapy to overcome the immune-
suppressive effects of HDRT. However, we argue that LDRT or immunotherapy may also
overcome the immune-suppressive effect of multisite HDRT. In all, immune modulation
management (LDRT or anti-Treg therapy or other immunotherapy) must be implemented
if we want to yield a satisfying immune-stimulating effect.

4.2. Target Volume of HDRT

When a tumor lesion is too large to be treated with high-dose irradiation because
of toxicity, partial-volume treatment might be a choice, which has been demonstrated
to have similar or even better tumor control and abscopal effect [81,87]. Luke et al.’s
clinical trial made an interesting finding: patients who had at least one metastasis that was
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measuring >65 mL that was partially treated with SBRT had control levels that were similar
to those who were treated with complete SBRT. Additionally, no significant difference in
ORR, PFS, and OS was observed, indicating that the clinical responses at the irradiated site
could be induced without irradiation of an entire metastasis [82].

Markovsky et al. conducted an experiment investigating whether partial-volume
HDRT (10Gy*1) is inferior to full-volume radiation in tumor control in mice bearing bilateral
breast tumors. Their data showed that partial HDRT led to an abscopal effect that was
similar to fully exposed tumors [88]. They observed the same results when using the
less immunogenic Lewis Lung Carcinoma mouse model to perform similar experiments,
confirming that the findings are not unique to 67NR breast cancer or otherwise highly
immunogenic tumors. Similarly, Yasmin-Karim et al. treated mice bearing bilateral prostate
tumors with one site whole-tumor HDRT (5 Gy*1) or partial-volume (the center zone of
tumor) HDRT. They observed when using smaller field sizes, the abscopal effect, cytotoxic
CD8 + T-lymphocytes infiltration, and the positive shift of pro-inflammatory cytokines
were equal to irradiating the whole tumor volume. Mice treated with partial-volume HDRT
even experienced better survival [89]. These data suggest that targeting tumor sub-volumes
with HDRT offers an opportunity for boosting the abscopal effect while minimizing healthy
tissue toxicity. The unirradiated peripheral tumor issue will unintentionally receive LDRT,
which may explain the positive immune effect, further confirming the benefit of HDRT +
LDRT. More studies are needed on further optimizing the HDRT treatment parameters of
this approach to boost the anti-tumor immunity and abscopal response rates with increased
sparing of healthy tissue.

Another novel way of setting the target volume of HDRT has been shown to achieve
strong abscopal effect. An in vitro study that was conducted by Johnsrud et al. brought
spatially fractionated radiation therapy (SFRT) into view, suggesting that this form of
RT delivery is superior to whole-tumor RT in inducing the abscopal effect [90]. Spatially
fractionated radiation therapy (GRID) describes the delivery of a single high-dose fraction
to a large treatment area that has been divided into several smaller fields with steep dose
gradients, thus reducing the overall toxicity of the treatment [91]. Johnsrud et al. treated 4T1
murine breast carcinoma mice with a single dose of 20 Gy. The irradiation field covered the
whole primary tumor (WTRT) or used a honeycomb beam pattern of 2 mm openings and a
4 mm center-to-center distance (GRID) to deliver 20 Gy. They observed an obvious growth
inhibition of the primary tumor in mice that were receiving WTRT or GRID. However, an
abscopal response was only observed in mice who received the 20 Gy GRID treatment to
the primary tumor. GRID-treated mice showed greater increases in CD8+ T-cell activation
and CD4+ T-cell activation levels compared to the WTRT-treated mice [90]. This form of
setting the HDRT target volume is worthy of further exploration by preclinical or even
clinical studies.

4.3. The Impact of Patients’ Immune Function

The patient’s endogenous immune system must be functioning in order to stimulate
anti-tumor immunity using HDRT + LDRT. Immunotherapy-related outcomes in patients
with poor immune function may be worse [92], and immune cell function is important
in tumor response to radiation [12]. Some researchers divide HDRT into two kinds of
doses according to their effects on the immune system: an immune-priming dose and an
ablative dose [78]. The former represents a radiation dose that induces in situ vaccination.
Generally, it is defined as 6–12 Gy since a dose >12–18 Gy can induce TREX1, which
clears the cytosolic DNA that is induced by HDRT and consequently impairs the cGAS-
STING pathway [93]. The latter is defined as a biologic effective dose (BED) in excess of
100 Gy, which is designed to ablate all tumor and immune components. Patients harboring
relatively stronger endogenous immune function may be more compatible with immune-
priming doses, as opposed to ablative RT. Conversely, patients with poor immune function
may be less likely to benefit from multisite HDRT + LDRT. They are more suitable to
receiving ablative RT to achieve ideal tumor control.
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However, the particular definition of immune function remains unvalidated to date.
The absolute lymphocyte count (ALC) is readily obtained from peripheral blood samples
and is well standardized, which has been shown to predict clinical response to immunother-
apy in several types of cancers [92,94]. Another way to stratify immune function is to
characterize T-cell function and strength. For example, cell surface markers such as ICOS,
GITR, OX40, 4-1BB, CD40L, and CD44 can indicate T-cell activation, while PD-1, Tim-3,
Lag3, and TIGIT suggest exhaustion, or attenuated T-cell effector function [95–99]. However,
we still lack affordable and feasible factors for quantifying the strength of an individual’s
immune system.

5. Clinical Decision Suggestions

According to the factors that are discussed above, we offer some suggestions and
possible treatment options that are based on the number of tumor lesions, patient immune
status, and other factors. This hypothesis-generating decision tree is summarized in
Figure 2.
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5.1. Single Tumor Site

When treating patients with only one tumor lesion, we should pursue the ablation
effect since the disease is localized. Applying LDRT after ablative HDRT may be a feasible
strategy to induce anti-tumor immunity and prevent recurrence, as demonstrated in an
animal experiment [26]. LDRT can be used to attenuate the immune-suppressive effect that
is caused by HDRT and increase immune effector cell infiltration, providing platforms for
immune checkpoint inhibitors.

5.2. Oligo-Metastasis (OGM) Tumor

In 1995, Hellman and Weichselbaum first proposed oligometastatic disease as a distinct
cancer state between locally confined and systemic metastatic disease [100], which refers to
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a metastatic tumor with no more than three to five metastases [101–106]. For these patients,
some researchers claim oligometastasis-directed SBRT should be delivered to all tumor
lesions to yield efficient tumor control and immune-stimulating effect [76,107,108].

Over the years, some clinical evidence on the use of all-site SBRT for the treatment of
oligometastatic tumors has accumulated, with efficacy and safety demonstrated [79,109].
For example, the SABR-COMET Phase II randomized trial reported that oligometastatic
patients that were receiving SBRT to all tumor sites experienced a survival benefit that was
comparative to patients that were receiving the best supportive care [110,111]. Another
multicenter randomized Phase II trial that was conducted by Gomez et al. had similar
results [112]. They found that in patients with Stage IV NSCLC and ≤3 metastatic sites,
the median PFS for local consolidative therapy (SBRT or surgery) was 11.9 months vs.
3.9 months for maintenance treatment alone (p = 0.0054).

In conclusion, all-site SBRT might be efficient in tumor control, prolonging sur-
vival, and activating anti-tumor immunity, so we hypothesize that ablative treatments for
oligometastases should be as curative as possible, and HDRT serves as a feasible choice.
Patients with a relatively stronger immune system should have their endogenous immune
function optimally stimulated using all-site HDRT. Immunotherapy and LDRT should
be added to attenuate the immune-suppressive features of HDRT. For patients with poor
immune functions, applying an immune-stimulating dose of SBRT to all tumor lesions may
not elicit the ideal immune response. Given that the tumor burden is relatively small, an
ablative dose should be given to all tumor sites to achieve a curative effect. However, the
long-term outcomes and toxicity of all-site HDRT still need preclinical and clinical studies
to explore. There might be some patients who cannot benefit from this approach. There is
ongoing clinical trial testing whether HDRT + LDRT + ICI is effective in treating metastatic
tumor (NCT03085719).

5.3. Polymetastatic Disease/High Tumor Burden

In a high tumor burden condition, it is less realistic to give HDRT to all lesions, owing
to the risk of toxicity. For those with intact immune function, applying HDRT to one or a few
smaller lesions to prime anti-tumor immunity, followed by LDRT to other larger lesions for
stromal modulation may be beneficial. Immunotherapy should also be implemented [113].
With extensive metastasis and a high tumor burden, it is irrational to pursue an ablative
effect for all tumor lesions. Therefore, the abscopal effect appears to be critical to reduce
the tumor burden. Partial-volume HDRT or SFRT might serve as a choice to induce an
abscopal response.

For patients with attenuated immune function and a high tumor burden, HDRT
might not be suitable owing to the toxicity and the patients’ weak immune strength.
Systemic therapy is still a standard treatment. Adoptive cell therapy (ACT), which is
currently being studied in polymetastatic solid tumors, should be taken into consideration.
A major concern for the therapeutic effect of ACT is the entry of immune cells into the
immunosuppressive tumor environment. LDRT can be combined with ACT to circumvent
the immunosuppressive features of the TME and enhance immune cell infiltration [114].

6. Conclusions

This review introduced a novel ‘hybrid’ RT regimen attempting to effectively stimulate
anti-tumor immunity and exert its greatest synergy effect with immunotherapy. HDRT
acts as a ‘primer’ for anti-tumor immunity, while LDRT serves as an immune modula-
tor to overcome the immune-suppressive TME. Integrating HDRT with LDRT may be
synergistic and generate early robust changes in the immune activation profile against
primary and metastatic tumors. We established an immune response model showing the
immune biology effect of HDRT + LDRT and built a hypothesis-based decision tree to show
the possible personalized treatment choices, depending on different tumor burdens and
immune function status. In addition, we raised questions that remain to be explored. Our
understanding of many questions related to personalized treatment remain limited, in that
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little information is available. We still need more preclinical and clinical studies to explore
effective way of combining HDRT with LDRT to stimulate anti-tumor immunity.
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