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Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) 
group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those 
otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, 
increasing research into M. abscessus in recent years has highlighted its continued 
evolution into a true pathogen. This is demonstrated through an extensive collection of 
virulence factors (VFs) possessed by this organism which facilitate survival within the host, 
particularly in the harsh environment of the CF lung. These include VFs resembling those 
of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable 
contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus 
continued acquisition of VFs is cause for concern and highlights the need for novel 
vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must 
be suitably designed for target populations (i.e., individuals with CF) and incorporate 
current knowledge on immune correlates of protection against M. abscessus infection. 
Vaccination strategies must also build upon lessons learned from ongoing efforts to 
develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. 
tb); decades of research into M. tb has provided insight into unconventional and innovative 
vaccine approaches that may be applied to M. abscessus. Continued research into M. 
abscessus pathogenesis will be critical for the future development of safe and effective 
vaccines and therapeutics to reduce global incidence of this emerging pathogen.
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INTRODUCTION

The Mycobacterium abscessus clade are an emerging group of prominent human pathogens. 
Comprised of the three subspecies M. abscessus subsp. abscessus, M. abscessus subsp. bolletti, 
and M. abscessus subsp. massiliense and previously including closely related species Mycobacterium 
chelonae, these organisms are responsible for severe skin, soft tissue, and pulmonary infections 
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(Adekambi et al., 2017; Ryan and Byrd, 2018). The M. abscessus 
clade is particularly problematic for individuals with enhanced 
susceptibility to pulmonary infection, such as those with 
bronchiectasis or chronic obstructive pulmonary disease (COPD), 
prior tuberculosis (TB) infection, or individuals with cystic 
fibrosis (CF; Griffith et  al., 2007). The incidence of NTM 
infection in individuals with non-CF bronchiectasis is particularly 
high, with an estimated 37% of all patients with this condition 
having an NTM infection (Mirsaeidi et  al., 2013). CF patients 
are particularly susceptible to NTM infection, with incidence 
rates in one study reported to be  1,000 times higher than in 
the general population (Martiniano et al., 2019). CF is a recessive 
genetic disorder affecting the cystic fibrosis transmembrane 
conductance receptor (CFTR) and resulting in dysregulated 
chloride transport, with a wide affect across different organs 
including the lung. Individuals with CF have dysregulated 
mucus production and are particularly susceptible to bacterial 
infections that become chronic and difficult to eradicate (Cantin 
et  al., 2015). Mycobacterium abscessus infection is extremely 
difficult to treat due to intrinsic, adaptive, and acquired antibiotic 
resistance traits; these result in poor treatment success rates 
as low as 30% depending on the subspecies (Nessar et  al., 
2012; Koh et  al., 2014). Furthermore, the establishment of 
chronic M. abscessus infection is associated with a significant 
decline in lung function, which has a profound impact on 
patient quality of life (Esther et  al., 2010; Kwak et  al., 2019). 
Despite the significant impact of M. abscessus infection on 
susceptible populations, there is currently no vaccine available 
(approved or within clinical trials) for M. abscessus. Given 
both the difficulty in treating M. abscessus and the poor 
prognosis following the establishment of persistent and chronic 
infection, there is an urgent need to develop novel prophylactic 
interventions to reduce incidence of M. abscessus infections 
in at-risk populations.

The development of novel vaccines for pathogens, such as 
M. abscessus, can be  guided by the characterization of novel 
virulence factors (VFs), molecular components which facilitate 
pathogen survival and persistence in the host. Bacterial VFs 
promote pathogen resistance to immune defenses, improve 
adherence or invasion of host cells/tissues or enhance survival 
through modification of the host environment (Wu et al., 2008). 
The study of virulence determinants can identify targets for 
the attenuation of pathogens, or proteins which themselves 
may be  sufficiently immunogenic to be  formulated into a 
vaccine (Ottenhoff and Kaufmann, 2012). For example, M. 
tuberculosis antigen 85 complex proteins are VFs that promote 
bacterial entry into host cells; the immunogenic nature of these 
proteins has led to their inclusion in numerous recombinant, 
subunit, and viral vectored vaccines (Babaki et  al., 2017). 
Although some VFs are unsuitable for incorporation into 
vaccines—due to poor immunogenicity or unsuitable cellular 
location for immune exposure—mechanistic studies of these 
VFs can shed light onto host responses to infection and thus 
informs future vaccine studies.

While traditionally viewed as an opportunistic pathogen, there 
is now compelling evidence that the M. abscessus clade possesses 
hallmark characteristics of a true pathogen. Work on M. abscessus 

in recent years has shed light on the unique disease pathogenesis 
and VFs possessed by this clade. While M. abscessus has multiple 
well-characterized mycobacterial VFs, it also possesses 
non-mycobacterial VFs which share high homology with other 
notable CF pathogens (Ripoll et al., 2009). Given the developments 
in our understanding of M. abscessus virulence in recent years, 
the purpose of this review is to summarize our current knowledge 
on M. abscessus VFs, as well as recent research efforts to develop 
vaccines against this emerging pathogen. An overview of M. 
abscessus biology and pathogenesis in the context of 
non-tuberculous mycobacteria (NTM) can be found in Johansen, 
Herrmann (Johansen et  al., 2020).

EVOLUTION OF MYCOBACTERIUM 
ABSCESSUS INTO A HUMAN 
PATHOGEN

Many species of NTM are ubiquitous in both urban and natural 
environments. NTM are adept at survival in numerous habitats, 
such as soil, peats, and swamps, where the thick hydrophobic 
membrane of Mycobacterium spp. facilitates strong adherence 
to different surfaces and likely promotes survival in hostile 
environments (Falkinham, 2009). This resilience to different 
environmental conditions has allowed the permeation of NTM 
into urban settings, where species, such as M. abscessus, are 
isolated from potable water sources and plumbing systems 
(Thomson et  al., 2013). Hospital outbreaks of NTM infections 
are frequently linked to contaminated water supplies (Tam 
et  al., 2014; Guimarães et  al., 2016); acquisition of infection 
from environmental sources, rather than from other infected 
individuals, is through to be  the major transmission route by 
which M. abscessus gains entry to human hosts (Thomson 
et  al., 2013). The prevalence of M. abscessus in nosocomial 
environments, combined with high-level resistance to many 
glutaraldehyde-based hospital-grade disinfectants (Burgess et al., 
2017), has facilitated the establishment of opportunistic 
M.  abscessus infections in both immunocompetent and 
immunocompromised individuals.

Given the incursion of M. abscessus into urban environments, 
such as plumbing systems and water sources, the occurrence 
of opportunistic NTM infections is unsurprising. However, 
the diverse array of VFs possessed by the M. abscessus clade 
points to a more complex evolution of this organism into a 
human pathogen. Importantly, NTM including M. abscessus 
have been isolated from free-living amoeba derived from 
urban water sources, suggesting a role for amoeba in enabling 
NTM persistence (Delafont et al., 2014). It has been proposed 
that early adaptations of M. abscessus to an intracellular 
amoeba lifestyle may have enhanced M. abscessus virulence 
and promoted survival in mammalian hosts (Thomas and 
McDonnell, 2007). Preculture of M. abscessus in Acanthamoeba 
castellanii amoeba enhances persistence in vivo in a murine 
model of infection (N'Goma et  al., 2015). Mycobacterium 
abscessus also remain viable when encysted by amoeba, 
suggestive of both their adaptation to the intracellular lifestyle 
and the potential for amoeba to act as an environmental 
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reservoir for M. abscessus (da Silva et  al., 2018). Dubois et  al. 
(2019) performed extensive transcriptomic analysis to track 
changes in gene expression induced in M. abscessus during 
intracellular growth. It was demonstrated that growth of M. 
abscessus in amoeba and macrophages induced similar patterns 
of differential gene expression, including an upregulation of 
genes to cope with intracellular stresses, such as heat shock 
and oxidative stress (e.g., GroEL-ES and hsp), a switch to 
slower growth phenotype, and utilization of fatty acids as 
an energy source. Following selection of M. abscessus genes 
upregulated in amoeba and subsequent expression of these 
genes in opportunistic pathogen M. chelonae, the authors 
showed enhanced growth of complemented M. chelonae in 
macrophages. This supports the theory that growth of M. 
abscessus in amoeba facilitates enhanced infection and survival 
in mammalian macrophages, and also highlights the diverse 
range of mechanisms M. abscessus uses to persist in the host 
(Dubois et  al., 2019).

Although most NTM infections are acquired from 
environmental sources, phylogenetic analysis of M. abscessus 
clinical isolates suggests that CF centers may facilitate indirect 
person-to-person transmission of M. abscessus clones through 
fomites (Aitken et  al., 2012). Whole genome sequencing of 
M. abscessus isolated in global CF centers has revealed the 
presence of dominant M. abscessus clones with diverse 
geographical distribution. In addition to comprising 70% of 
total global M. abscessus infections, these dominant isolates 
display heightened virulence in macrophages and in Severe 
Combined Immunodeficiency (SCID) mice (Bryant et al., 2016). 
This is reflective of trends observed with other well-characterized 
CF pathogens, such as Pseudomonas aeruginosa, where epidemic 
strains are associated with worse patient outcome (Panagea 
et  al., 2003; Fothergill et  al., 2012).

While patterns of evolution in CF pathogens have been 
extensively described for other species, such as P. aeruginosa, 
only recently have similar patterns been described in M. 
abscessus. Bryant et  al. recently used single nucleotide 
polymorphism analysis of global M. abscessus clinical isolates 
to define the trajectory of M. abscessus evolution into a true 
pathogen (Bryant et al., 2021). The initial horizontal acquisition 
of genes from unrelated species (as described by Ripoll et  al., 
2009) resulted in a significant leap in M. abscessus genomic 
variation. Following this, the transition of M. abscessus to the 
preferred infection site of the lung and evolution into a 
pulmonary pathogen was coupled with a further increase in 
M. abscessus genomic variation. This is unsurprising given the 
crucible of selective pressures present within the CF lung, such 
as antibiotic stressors, interspecific competition, and host immune 
defenses all encouraging the dominance of favorable traits 
(Harrison, 2007; Folkesson et  al., 2012). Furthermore, the 
physical separation of different lung lobes coupled with the 
heterogeneity of CF lung tissue creates numerous ecological 
niches that facilitate species diversification (Harrison, 2007). 
Bryant et  al. confirmed this hypothesis with the identification 
of numerous, genetically distinct subclones of M. abscessus 
isolated from different areas of the lung in individual patients 
(Bryant et  al., 2021). The authors also described the presence 

of M. abscessus clones with hypermutable phenotypes, capable 
of greater phenotypic variation likely due to DNA damage 
from the highly oxidative pulmonary environment (Ciofu et al., 
2005; Martina et al., 2014). While these results identified strong 
evolutionary pressure on M. abscessus genes that promote 
intramacrophage survival, perhaps the most prominent finding 
was the apparent fitness cost of enhanced virulence of M. 
abscessus isolates. Importantly, mutants with virulence mutations 
display reduced transmission rates, presumably due to their 
impaired survival on fomites. As such, the “evolutionary potential” 
or continued gain of virulence of M. abscessus is limited 
provided direct patient-to-patient spread (through aerosolized 
droplets) does not occur (Doyle et  al., 2020; Bryant et  al., 
2021). However, whether M. abscessus can spread through 
aerosols is still a matter that requires clarification (Bryant et al., 
2013). Given the demonstrated potential of this species to 
acquire polymorphisms that promote M. abscessus survival and 
the possibility for continued species adaptation, there is a 
significant need for the continued identification of M. 
abscessus VFs.

MYCOBACTERIA-SPECIFIC VIRULENCE 
FACTORS

The genus Mycobacterium contains approximately 200 species, 
many of which inhabit soil or water environments and have 
occasional interaction with humans (Tortoli et  al., 2017; 
Armstrong and Parrish, 2021). However, some members of 
this genus, such as M. tb and Mycobacterium leprae, are extremely 
successful human pathogens, being the causative agents of TB 
and leprosy, respectively (Gupta et  al., 2018). Similarly, 
Mycobacterium marinum and Mycobacterium ulcerans are NTM 
infections acquired by environmental exposure but are adept 
at establishing cutaneous infection in humans (Tan et al., 2020). 
The success of these species is tied closely with their ability 
to survive within the host using an extensive collection of 
Mycobacteria-specific VFs. As our understanding of M. abscessus 
virulence expands, there is continual discovery of virulence 
traits resembling other Mycobacterial species. These further 
contribute to the definition of M. abscessus as a truly 
pathogenic species.

Mycobacterial Membrane Protein Large 
Proteins
Mycobacterial membrane protein large (MmpL) proteins are 
a family of VFs of the Mycobacterium genus, responsible 
for transport of lipids and siderophores to the periplasmic 
space (Melly and Purdy, 2019). These include complex lipids 
that are essential for the integrity of the mycobacterial 
envelope, which forms a barrier of protection from immune 
cells and chemotherapeutic agents (Bailo et  al., 2015). Many 
of these lipids play prominent roles in modifying host–
pathogen interactions, and as a result mutations within MmpL 
proteins can lead to alterations in mycobacterial virulence 
(Chalut, 2016).
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The MmpL class of transport proteins is overrepresented 
in M. abscessus, with 31 identified MmpL proteins in the 
reference strain compared to 14 within M. tb (Deshayes et  al., 
2010). MmpL4 proteins have an important contribution to M. 
abscessus virulence through their transport of glycopeptidolipids 
(GPL) to the outer mycobacterial surface which gives colonies 
a glossy and smooth appearance on solid agar. Disruption of 
MmpL4 proteins results in the conversion from the smooth 
morphotype to a rough cording morphotype, the latter of which 
is associated with enhanced virulence due to large serpentine 
cord formation, triggering pro-inflammatory responses and 
apoptosis (Pawlik et  al., 2013). Disruption of M. abscessus 
MmpL8 reduces the transport of glycosyl-diacylated-nondecyl-
diols (GDND), a novel glycolipid that facilitates bacterial 
adhesion to macrophages and induces macrophage phagosomal 
rupture, and thereby reduces mycobacterial virulence (Halloum 
et  al., 2016). MmpL proteins from mycobacterial species, such 
as Mycobacterium smegmatis, also confer resistance to some 
antibiotics, such as isoniazid, by acting as an efflux pump 
(Pasca et  al., 2005; Viljoen et  al., 2017). Mutations within 
transcriptional regulator tetR, which controls two MmpS-MmpL 
gene pairs, promote resistance to clofazimine and bedaquiline 
in M. abscessus (Richard et  al., 2019), while MmpS5-MmpL5 
are associated with efflux of thiacetazone derivatives (Halloum 
et  al., 2017). Absence of either MmpL-S pair increases 
susceptibility of intracellular M. abscessus to bedaquiline, 
indicating the contribution of this protein to providing antibiotic 
resistance (Gutiérrez et  al., 2019). Given the role of MmpL 
proteins in enhancing or attenuating virulence and conferring 
antimicrobial resistance, this a particularly noteworthy area of 
continued research for the development of M. abscessus 
vaccine candidates.

ESX Secretion Systems
Members of the Mycobacterium genus possess an outer 
mycomembrane comprised of components that must 
be transported across the cell membrane to reach the extracellular 
space. Early secretory antigenic target (ESAT-6) secretion (ESX) 
systems, also known as Type VII secretion systems, are important 
players in facilitating transport of proteins across this outer 
membrane and are known to play a significant role in mycobacterial 
virulence, nutrient acquisition, and bacterial conjugation (Lagune 
et  al., 2021). There are five characterized ESX secretion systems 
spread across the Mycobacterium genus, varying in complexity 
and in function (Gröschel et al., 2016). However, all ESX systems 
have a conserved set of genes that include the machinery for 
substrate secretion, accessory proteins, and ESX secreted proteins 
(Houben et al., 2014). The most extensively studied ESX system, 
ESX-1, facilitates M. tb intracellular survival via inhibition of 
phagosomal acidification and induces phagosome rupture and 
mycobacterial escape to the cytosol (Sturgill-Koszycki et  al., 
1994; van der Wel et  al., 2007). The contribution of other ESX 
secretion systems to virulence is less well-characterized; however, 
the ESX-3 system of M. tb is known to be  utilized for iron 
acquisition in low nutrient environments and the absence of 
this system attenuates growth in vivo (Siegrist et  al., 2009; 
Tufariello et  al., 2016). The role of the ESX-5 secretion system 

in slow-growing mycobacteria relates to the integrity of the 
mycobacterial capsule, with disruption of ESX-5 in M. marinum 
leading to inability of this pathogen to disrupt the cellular 
membrane (Ates et al., 2016). While attenuation of ESX-5 deficient 
M. marinum is evident in zebrafish embryos, the same mutant 
is hypervirulent in adult zebrafish (Weerdenburg et  al., 2012). 
Given that zebrafish embryos solely possess innate immunity, 
while the adult zebrafish harbors both innate and adaptive 
immunity, these findings suggest that ESX-5 may play different 
roles in disease pathogenesis depending on whether innate or 
adaptive immunity is the major driver of cellular control of 
mycobacterial infection (Cronan and Tobin, 2014).

There are currently three characterized secretion systems 
of M. abscessus—ESX-3, ESX-4, and ESX-P. Secretion targets 
of ESX-3 (EsxG/H proteins) induce pro-inflammatory cytokine 
production when co-cultured with bone marrow-derived 
macrophages, and mice infected with ESX-3-deleted-M. abscessus 
display a reduced inflammatory and granulomatous response 
coupled with decreased bacterial survival (Kim et  al., 2017). 
However, this work did not elucidate specific mechanisms by 
which ESX-3 promotes M. abscessus growth in vivo. Furthermore, 
this study did not include complementation of ESX-3 function 
in M. abscessus, highlighting the need for further investigation 
into the role of ESX-3  in M. abscessus virulence. In contrast, 
the function of ESX-4 within M. abscessus was recently 
characterized in detail (Laencina et al., 2018). Through generation 
of an extensive mutagenesis library, Laencina et  al. associated 
disruptions of the ESX-4 locus with a decrease in intramacrophage 
and amoeba survival. ESX-4 associated ATPase EccB4 was 
shown to contribute to virulence by limiting phagosomal 
acidification and facilitating cytosol contact through phagosomal 
membrane damage. Unlike ESX-3 and ESX-4, ESX-P is a 
plasmid-borne secretion system unique to a clinical isolate of 
M. bolletti (Dumas et  al., 2016). More recent work has 
characterized plasmid-borne ESX components within M. abscessus 
clinical isolates, suggesting a more extensive presence of ESX 
systems in this species than previously thought (Dedrick et  al., 
2021). Whether these secretion systems are functional and 
contribute to M. abscessus virulence is an area of continued 
research, and may represent an unexplored means by which 
M. abscessus is able to acquire novel VFs that contribute to 
evolving pathogenicity.

Lsr2
Lsr2 is a histone-like protein possessed by several members 
of the Mycobacterium genus, with roles in transcriptional 
regulation and DNA damage protection. In M. tb, Lsr2 is 
required for normal growth in anaerobic and DNA damage-
inducing conditions (Bartek et  al., 2014). When functioning 
as a transcriptional regulator, the binding of Lsr2 to coding 
sequences (of which VF genes are common) may contribute 
to the transition to a latent metabolic state that occurs during 
chronic M. tb infection (Gordon et  al., 2010; Bartek et  al., 
2014). In M. smegmatis, lsr2-knockout strains have decreased 
persistence within macrophages, an effect which is reversed 
following scavenger treatment to sequester free radicals (Colangeli 
et  al., 2009). Mycobacterium smegmatis lsr2 knockouts also 
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display a smooth, glossy phenotype and are defective in biofilm 
and pellicle formation (Chen et  al., 2006). This is reflected in 
M. abscessus, where rough morphotypes display greater levels 
of Lsr2 expression than smooth morphotypes. While M. abscessus 
lsr2 knockouts are not affected in their glycopeptidolipids (GPL) 
profile, lsr2 knockout in the rough morphotype of M. abscessus 
show greater susceptibility to reactive oxygen intermediates 
and display reduced survival within macrophages, as well as 
in the zebrafish and murine model of infection, particularly 
at later time points during infection (Le Moigne et  al., 2019). 
Given the importance of this transcriptional regulator for 
pathogenesis of M. abscessus, Lsr2 may be  a promising target 
for drug development (Liu and Gordon, 2012).

Glycopeptidolipids
Mycobacterium abscessus grown on solid agar medium displays 
distinct colony morphologies characterized as smooth (S) and 
rough (R) morphotypes, each with unique patterns of virulence. 
These are linked to the variable expression of GPL on the 
cell surface of M. abscessus, with expression of GPL within S 
morphotypes resulting in round, glossy colonies, while absence 
of GPL leads to R morphotypes resulting in a dry, corded 
appearance (Nessar et al., 2011). The localization of M. abscessus 
GPL has been shown to cluster to specific nanodomains on 
the bacterial surface, ultimately modulating surface 
hydrophobicity and likely influencing bacterial adhesion and 
virulence (Nessar et al., 2011; Viljoen et al., 2020). The conversion 
of S to R occur as a result of mutation within genes located 
within the GPL locus, often associated with GPL synthesis or 
secretion (Nessar et  al., 2011; Pawlik et  al., 2013; Park et  al., 
2015; Li et  al., 2020). To date, the mechanisms responsible 
for S to R conversion are not known; however, this has been 
hypothesized to occur in response to stress (e.g., Antibiotic 
stress) which may manifest during host colonization (Bernut 
et al., 2016b; Gutiérrez et  al., 2018). R morphotypes are more 
frequently isolated from CF patients with chronic infection, 
and display heightened virulence compared to smooth 
morphotypes (Jönsson et  al., 2007; Kreutzfeldt et  al., 2013). 
The differences in virulence can be linked to different interactions 
between S and R morphotypes with immune subsets 
following infection.

As surface molecules on M. abscessus, the absence of GPL 
on the surface of R morphotypes alters the initial interaction 
between bacteria and phagocytic cells. A lack of surface GPL 
exposes immunostimulatory ligands such phosphatidyl-inositol 
mannoside (PIM) moieties which activate Toll-like receptor 
(TLR) signaling, resulting in downstream pro-inflammatory 
cytokine production (Rhoades et al., 2009). While S morphotypes 
also express PIMs, the heightened expression of surface GPL 
masks these TLR ligands which acts to prevent innate cell 
activation (Davidson et  al., 2011). Polar GPL themselves also 
act in an immunosuppressive manner, dampening pro-apoptotic 
signals induced by R morphotypes and limiting reactive oxygen 
species (ROS) production (Whang et  al., 2017). It is likely 
that GPL also play an important role in cell–cell interactions, 
with post-translational modifications of GPL affecting adherence 
and invasion of M. abscessus to macrophages (Daher et al., 2020). 

Remodeling of surface GPL also occurs following growth in 
artificial CF sputum, although the biological significance of 
this is unknown (Wiersma et  al., 2020). Together, these data 
point to the prominent role of GPL in defining early infection 
outcomes, with immunologically “silent” establishment of 
S  morphotype M. abscessus in the upper respiratory tract 
likely  facilitating initial colonization of the lung (Gutiérrez 
et  al., 2018).

The S and R morphologies of M. abscessus interact differently 
with immune cells, leading to different patterns of growth in 
vivo. While S morphotypes exist largely as single bacilli, R 
morphotypes form clumps which are difficult for phagocytic 
cells to engulf (Roux et  al., 2016). These aggregates remain 
adhered to phagocytic cups or, if small enough, are contained 
within “social” phagosomes containing multiple bacilli. Within 
the macrophage, R morphotypes appear resistant to lysosomal 
degradation, leading to extensive and rapid intracellular growth, 
followed by macrophage apoptosis (Aguilo et  al., 2013; Kim 
et al., 2019). Following apoptosis, rough bacilli are then released 
into the extracellular space whereby they replicate freely and 
aggregate to form large extracellular serpentine cords which 
resist phagocytosis, causing excessive inflammation and abscess 
formation (Bernut et al., 2014a). Disruption of M. abscessus 
cording attenuates virulence in vivo, indicating the importance 
of this phenotype in dictating the outcome of infection (Bernut 
et al., 2014a; Halloum et  al., 2016).

S morphotypes of M. abscessus also resist intracellular 
degradation, through more direct manipulation of macrophage 
effector function. Phagocytosed S bacilli often exist in “loner 
phagosomes,” and act to limit phagosomal acidification and 
disrupt phagosome membrane integrity, which may facilitate 
escape to the cytosol (Roux et  al., 2016). While cytosol escape 
and blocking of phagosome acidification are associated with 
functional ESX-4 found in M. abscessus, it is unclear what 
role surface GPL may play in facilitating this effector function 
(Gutiérrez et al., 2018; Laencina et al., 2018). Given the integral 
link between mycobacterial virulence and macrophage function, 
understanding the mechanisms by which M. abscessus interacts 
with innate immune cells is critical in our understanding of 
M. abscessus virulence (Feng et  al., 2020).

Other Cell Surface Molecules
The structure of the mycobacterial cell wall and outer envelope 
is comprised of a complex array of lipoproteins, glycolipids, 
and glycoproteins, many of which take part in host–pathogen 
interactions (Jackson, 2014). These may directly modulate 
immune responses, or improve the structural integrity of the 
mycomembrane which renders M. abscessus more resistant to 
immune mediators (Karakousis et  al., 2004). For example, 
succinylation of M. abscessus surface polysaccharides alters 
intracellular survival by an uncharacterized mechanism, possibly 
in relation to altered cell surface hydrophobicity and charge 
(Palčeková et  al., 2020). Other VFs may arise from proteins 
associated with the modification or transport of cell surface 
molecules. Knockout of pmt, a protein-O-mannosyltransferase 
which is responsible for glycosylation of lipoproteins in the 
mycobacterial cell envelope, increases cell wall permeability 
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which may enhance susceptibility to innate cellular defenses, 
such as ROS (Becker et  al., 2017). Similarly, probable N-acetyl 
transferase Eis2 is thought to play a role in cell wall biogenesis 
or transport of cell wall components; deletion of this VF 
increases M. abscessus susceptibility to ROS and H2O2 and 
reduces intracellular survival (Dubois et  al., 2019). Expression 
of some surface components, such as trehalose polyphelates 
(TPPs), does not directly affect macrophage viability, but promote 
virulence by facilitating M. abscessus cording (Llorens-Fons 
et  al., 2017). Mycobacterium abscessus cell envelope-derived 
lipids, such as cardiolipin or I-mannosides, are also effective 
at neutralizing LL-37, an antimicrobial peptide produced by 
neutrophils and macrophages (Honda et  al., 2015, 2020). It 
has been established that different growth conditions alters 
the cell wall composition of M. abscessus; whether this occurs 
in an infection setting and how this impacts on the outcome 
of infection remains to be established (Hunt-Serracin et al., 2019).

NON-MYCOBACTERIA-SPECIFIC 
VIRULENCE FACTORS

While M. abscessus was first isolated in 1952, complete sequencing 
of the M. abscessus genome was completed relatively recently 
in 2009 (Brown-Elliott and Wallace, 2002; Ripoll et  al., 2009). 
In their genomic analysis of M. abscessus, Ripoll et al. identified 
regions syntenic with non-mycobacterial species, including 
Actinobacteria, such as Rhodococcus, as well as opportunistic 
CF pathogens P. aeruginosa and Burkholderia cepacea (Ripoll 
et al., 2009; Mahenthiralingam, 2014). The organization of these 
genes into large clusters was suggestive of en bloc horizontal 
gene transfer events from distant species, with some of these 
regions encoding proteins that are known to promote virulence 
in other species. The functions of these VFs are well defined 
in other species, with most facilitating survival in harsh or 
stressful conditions. Some are involved in early P. aeruginosa 
colonization and/or persistence in CF airways, such as phenazine 
biosynthesis and homogentisate catabolism genes (Rodriguez-
Rojas et  al., 2009; Jimenez et  al., 2012). VFs involved in iron 
acquisition and resistance to reactive nitrogen intermediates 
(RNI) were also identified, with sequence homology to 
Rhodococcus spp. (Ripoll et al., 2009). Similarly, the M. abscessus 
genome contained proteins with predicted function in 
phenylacetic acid degradation; these promote B. cenocepacia 
survival in the Caenorhabditis elegans models of infection, 
although their precise mechanism of action is unknown (Law 
et  al., 2008; Loutet and Valvano, 2010). Some of these 
non-mycobacterial VFs have been examined in detail (Figure 1), 
however for the most part their function in M. abscessus 
virulence is yet to be  established.

Phospholipase C
Phospholipases are virulence determinants found in a diverse 
range of mycobacterial and non-mycobacterial species, including 
P. aeruginosa, Staphylococcus aureus, and Listeria monocytogenes 
(Ghannoum, 2000). Phospholipases promote virulence by allowing 
escape from the phagosome and cell-to-cell spread, which is 

thought to be  mediated by cleavage of phospholipids that form 
part of the cell membrane (Camilli et  al., 1991; Smith et  al., 
1995; Ghannoum, 2000). Expression of plc genes by P. aeruginosa 
is associated with phosphate limiting conditions, and disruption 
of plcC results in a reduction of P. aeruginosa virulence in the 
murine model of infection (Ostroff et  al., 1989). Similarly, 
phospholipase C is upregulated by virulent M. tb in phosphate 
limiting conditions, such as those that may occur in an intracellular 
environment (Le Chevalier et  al., 2015). PlcC isolated from M. 
abscessus induces macrophage lysis, and plcC knockout strains 
display reduced survival within amoeba (N'Goma et  al., 2015). 
Given the sequence similarity between plcC from M. abscessus 
and other CF pathogens (N'Goma et al., 2015), PlcC is a promising 
antigenic target for vaccine development. CF patients with 
pulmonary NTM infection or P. aeruginosa infection have higher 
titers of anti-PlcC antibodies in serum than uninfected individuals, 
indicating immune exposure to the PlcC antigen following 
infection (Le Moigne et al., 2015). Vaccination with M. abscessus 
plcC DNA induces potent antibody responses and a moderate 
reduction in bacterial burden in ΔF508 mice, which possess 
the most common CF gene mutation (Cutting, 2015; Le Moigne 
et  al., 2015). However, the role of PlcC in nutrient acquisition 
in the lung, and if it enables M. abscessus to maintain long-
term infection is unclear (Raynaud et  al., 2002).

MgtC
MgtC plays an essential role in the survival of pathogens such 
Salmonella enterica subsp. typhimurium and CF pathogens B. 
cenopacea and P. aeruginosa (Alix and Blanc-Potard, 2007; Belon 
et  al., 2015). While the physiological function of this protein 
has not been fully elucidated, MgtC is a membrane protein that 
confers survival benefits for both intracellular and extracellular 
pathogens (Belon et al., 2015). Expression is essential for growth 
in magnesium poor conditions for P. aeruginosa and B. cenopacea, 
while upregulation of MgtC following phagocytosis provides 
enhanced intracellular survival and resistance to low pH for 
intracellular pathogen Salmonella spp. (Maloney and Valvano, 
2006; Rang et  al., 2007; Lee and Lee, 2015). MgtC appears to 
perform a similar role in M. tb, as the protein contributes to 
improved survival in low magnesium and pH conditions and 
enhanced virulence in mice (Buchmeier et al., 2000). Mycobacterium 
abscessus has two sequences encoding proteins homologous to 
MgtC, MAB_3953, and MAB_0146, both of which bear sufficient 
sequence similarity to S. typhurmium MgtC, as they can partially 
restore its function in an mgtC-deficient strain (Le Moigne et al., 
2016). Mycobacterium abscessus MgtC is induced in low Mg2+ 
conditions and within the macrophage, mgtC-encoding DNA 
provides protection against M. abscessus challenge (Le Moigne 
et  al., 2015, 2016). Of note, M. abscessus lacking functional 
MgtC does not show a significant impairment in macrophage 
survival, which may indicate a role of this VF in the extracellular 
stage of M. abscessus growth (Bernut et al., 2014a).

Porins
Porins are a diverse class of pore proteins that play an important 
role in the transport of hydrophilic molecules into the bacterial cell. 
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Porins are expressed widely among gram-positive and negative 
virulence of different species (Achouak et  al., 2001). The 
contribution of porins to the virulence of different species of 
pathogenic bacteria is extremely diverse and includes facilitating 
cell adherence, inducing host cell apoptosis and transporting 
surface proteins associated with virulence (Müller et  al., 1999; 
Azghani et  al., 2002; Brunson et  al., 2019). Within the context 
of mycobacteria, M. smegmatis has a collection of pore-forming 
proteins that regulate nutrient influx which is important for 
maintaining normal growth rates (Stephan et al., 2005). Deletion 
of M. smegmatis porin MspA, MspC, and MspD improves M. 
smegmatis survival in macrophages, by providing greater 
resistance of M. smegmatis to host-produced nitric oxide (NO; 
Fabrino et  al., 2009). Similarly, deletion of porins mmpA/B 
in M. abscessus also improves M. abscessus intracellular survival 
within phagocytic cells and bacterial persistence in SCID mice 
(de Moura et al., 2021). Porin knockout strain ΔmmpA displays 
reduced uptake of glucose, but mutants did not display varied 
uptake by macrophages, susceptibility to NO, or cell cytotoxicity. 
Of note, sequential samples taken from different early and 
late M. abscessus infections in CF patients show mutations 
within the mmp porin genes (Lewin et  al., 2021). However, 
phylogenetic analysis by de Moura et  al. could not establish 

a contributing role of porin mutations to enhanced virulence 
or transmission of dominant clinical M. abscessus isolates (de 
Moura et  al., 2021). This suggests that while this class of 
proteins are significant VFs of other species, porins possessed 
by mycobacterial species including M. abscessus may perform 
a role unrelated to virulence.

TOWARD THE DEVELOPMENT OF 
A MYCOBACTERIUM ABSCESSUS 
VACCINE: POSSIBILITIES AND 
CHALLENGES

The global incidence of NTM including M. abscessus is increasing, 
with disease prevalence within CF populations increasing from 
9% to 13% in studies conducted after 2000 (Marras et  al., 
2007; Qvist et  al., 2014, 2015; Bar-On et  al., 2015; Adjemian 
et  al., 2018). Chronic infection with M. abscessus leads to 
decreased lung function and is a significant contributor to 
morbidity and mortality of affected individuals (Esther et  al., 
2010; Qvist et  al., 2015). This combined with the extensive 
antibiotic resistance and large repertoire of VFs of this pathogen 

a

c

d

e

b

f

FIGURE 1 | Virulence factors of M. abscessus. M. abscessus uses an extensive range of virulence factors to facilitate survival within host cells. These include 
membrane bound proteins, pores and secretion systems (i); secreted proteins with a role in virulence (ii); transcriptional regulators and nucleic acid associated proteins 
(iii); proteins involved in the modification (iv) and transport (v) of cell surface components; and molecules that comprise the outer mycobacterial membrane (vi).
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(Figure  1; Table  1) emphasizes the need for prophylactic 
strategies to limit the global burden of M. abscessus. Given 
there is currently no vaccine available for M. abscessus and 
none in clinical development, there is a clear unmet need for 
the development of vaccines against this pathogen. However, 
development of a potential M. abscessus vaccine must consider 
target populations for vaccination, and specific challenges 
associated with immunizing these populations. This includes 
an understanding of immune correlates of protection against 
M. abscessus in both immunocompetent and 
immunocompromised individuals, in addition to gaining 
knowledge from efforts to develop a vaccine for M. tb.

Immune Responses to Mycobacterium 
abscessus Infection
A thorough understanding of the immune correlates of protection 
against M. abscessus infection is critical for the development 
of an effective M. abscessus vaccine. This is an area of ongoing 
research, primarily focused on the use of in vitro, zebrafish, 
and murine models (Bernut et  al., 2015, 2017; Caverly et  al., 
2015; Meir et al., 2018). Incorporating these different approaches 
has led to a greater knowledge of immune mechanisms involved 
in protection against this pathogen.

As with other members of the Mycobacterium genus, early 
and robust innate immune responses appear to play a critical 
role in shaping immune control of M. abscessus infection. 
Monocytes and macrophages are the most common cell subset 
infected by M. abscessus in human lung tissue (Ganbat et  al., 
2016). Both S and R morphotypes of M. abscessus are rapidly 
phagocytosed by macrophages early after infection and depletion 
of this subset substantially increases bacterial burden in zebrafish 
(Bernut et al., 2014a, 2019). ROS and NO are major bactericidal 
mechanisms employed by macrophages to kill M. abscessus, 
with production of NO and ROS strongly correlated with a 
protective effect across in vitro and animal models of M. 
abscessus infection (Kim et  al., 2014a; Lee et  al., 2017). 
Interestingly, NO production is enhanced by a type I interferon 
(TI IFN) response and prophylactic administration of rIFN-Β 
can promote bacterial clearance (Lee et  al., 2017). This is 
contrary to recent work on M. abscessus suggesting that TI 
IFNs promote macrophage apoptosis and bacterial spread from 
cell-to-cell (Zhang et  al., 2019). In humans, the role of NO 
and ROS in providing protection against M. abscessus is less 
clear. When used as an inhaled therapeutic, NO improves 
lung function and quality of life in CF patients, but this has 
not been definitively linked to reduction in M. abscessus burden 
(Bentur et  al., 2020). An oxidative environment within the 
macrophage also appears to enhance M. abscessus growth in 
an ex vivo setting (Oberley-Deegan et  al., 2010). Moreover, 
NOS2 knockout (Nos2−/−) mice do not display exacerbated 
bacterial burden compared to wild type (Obregón-Henao et al., 
2015). Taken together, these findings suggest a redundant or 
possibly detrimental role of ROS in protection against M. 
abscessus infection.

As early responders to pulmonary infection, neutrophils 
are  a prominent component of the immune response against 

M.  abscessus. Neutrophil accumulation is driven by TNF and 
IL-8 production by macrophages and alveolar epithelial cells, 
and this subset congregates within murine lungs following 
infection with both S and R morphotypes (Caverly et al., 2015; 
Bernut et al., 2016a; Malcolm et al., 2018). Despite the integral 
role of neutrophils in the formation of the granuloma, the 
efficacy of this subset in reducing bacterial burden remains 
unclear. Neutrophils phagocytose bacteria and employ neutrophil 
extracellular traps (NETs) and ROS production to eliminate 
M. abscessus, but neutrophil-derived ROS and LL-37 has limited 
killing activity against M. abscessus (Honda et al., 2015; Malcolm 
et  al., 2018). Extracellular DNA released in response to M. 
abscessus during NETosis may also contribute to biofilm formation 
in the CF lung (Malcolm et  al., 2013). Pulmonary infection 
with the more virulent R morphotype of M. abscessus is also 
accompanied by neutrophil accumulation in the bronchoalveolar 
lavage fluid, to a greater extent than that induced by the S 
morphotype (Caverly et  al., 2015). Given the inflammatory 
nature of this immune cell subset, excessive neutrophilia can 
be  extremely damaging to lung tissue and is a primary cause 
of tissue damage in CF (Downey et  al., 2009). How exactly 
this subset contributes to protection or pathology following 
chronic infection is an area of continued research.

A cornerstone of the immune response to mycobacterial 
infection is the formation of the granuloma, a cluster of 
recruited host immune cell subsets which form a physical 
structure to restrict bacteria (Figure  2A). In zebrafish, M. 
abscessus granulomas are primarily comprised of neutrophils 
and macrophages. The accumulation of these subsets is 
dependent on TNF, which is required for development of 
the granuloma structure and the containment of bacterial 
growth (Bernut et al., 2016a). However, granuloma formation 
is not always sufficient in containing M. abscessus infection—
the induction of macrophage cell death by M. abscessus 
releases extracellular bacteria, which form large serpentine 
cords that evade phagocytosis and resist immune defenses 
(Figure  2B; Bernut et  al., 2014a; Halloum et  al., 2016). 
Currently, the specific immunological factors differentiating 
protective granuloma formation from unrestrained bacterial 
growth are not known (Johansen et al., 2020). Murine models 
of M. abscessus infection also display granuloma formation 
in the lungs and spleen after aerosol or intravenous infection, 
respectively, and studies using TNF knockout (Tnf−/−) and 
IFN-γ knockout (Ifngr1−/− and GKO−/−) mice highlight the 
importance of these cytokines for maintenance of granuloma 
structure (Rottman et  al., 2007; Ordway et  al., 2008). Nude, 
severe combined immunodeficiency (SCID) and GMCSF 
knockout (GMCSF−/−) mice also develop progressive 
granulomatous lesions, making these useful models for 
preclinical drug testing but less suitable for understanding 
immune factors involved in granuloma formation (Obregón-
Henao et  al., 2015). While evidence from animal models 
points to a significant role of this structure in control of 
M. abscessus infection, the importance of granuloma formation 
in humans is less clear. Granuloma formation is well 
documented following cutaneous M. abscessus infection 
(Bartralot et  al., 2000; Kwon et  al., 2009), but fewer studies 
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TABLE 1 | Known virulence factors of Mycobacterium abscessus.

Name of 
virulence factor

Corresponding 
gene in 
reference strain

Distribution and 
biological function

Role of virulence factor in M. 
abscessus

Immunogenicity and/or 
protective efficacy

References

MgtC MAB_3953

Membrane bound ATPase, 
found in a range of CF and 
non-CF pathogens 
including Salmonella 
enterica, Burkholderia 
cenocepacea and M. tb

Required for optimal growth in magnesium 
poor media; upregulated upon intracellular 
macrophage infection

Ma-MgtC specific antibodies 
present within the serum of 
M. abscessus positive CF 
patients. DNA vaccination 
with MgtC plasmid reduces 
bacterial burden in ΔF508 
CFTR mice

Belon and Blanc-
Potard, 2016; Le 
Moigne et al., 
2016

PlcC MAB_0555

Phospholipase involved in 
virulence of numerous 
bacterial pathogens 
including P. aeruginosa, 
L. monocytogenes

Induces eukaryotic cell lysis and promotes 
M. abscessus intracellular survival in A. 
castellanni amoeba

DNA vaccination with M. 
abscessus-PLC induces anti-
PLC antibodies and significantly 
reduces bacterial burden in 
lungs of ΔF508 mice. Presence 
of anti-PLC antibodies in CF 
patients with M. abscessus and 
P. aeruginosa infection

Le Moigne et al., 
2015; N'Goma 
et al., 2015

eccB4 
(component of 
ESX-4)

MAB_3759c
Membrane component of 
the ESX-4 locus

Promotes M. abscessus survival within 
amoeba and macrophages by inhibition of 
phagosome acidification and promoting 
phagosome-cytosol contact

Induces IL-1β production by 
facilitating cytosolic contact

Laencina et al., 
2018

ESX-3
MAB_2224c-
MAB_2234c

ESX protein secretion 
system

Improves M. abscessus survival in the 
animal model of infection

ΔESX-3 causes reduced 
inflammatory cytokine 
production by macrophages, 
reduced cell infiltration to the 
lungs and production of COX2 
and iNOS and impaired NFκB 
activation in macrophages

Kim et al., 2017

MAB_4780 MAB_4780
Dehydratase, possibly 
involved in mycolic acid 
metabolism

Provides resistance to anti tubercular drug 
thiacetazone. Essential for extracellular 
cording of rough M. abscessus; involved in 
intracellular survival and granuloma 
formation within zebrafish model of 
infection

Not determined
Halloum et al., 
2016

Lsr2 MAB_0545

Nucleoid associated 
protein/ transcriptional 
regulator that binds AT-rich 
genomic regions. Present in 
other mycobacterial species 
and essential for growth of 
M. tb

Expressed at higher levels in rough 
variants; Absence of Lsr2 in R variants 
increases susceptibility to reactive oxides 
and reduces intracellular survival in A. 
castellani and macrophages. Enhances 
virulence in zebrafish and bacterial 
persistence in mice

Not determined
Le Moigne et al., 
2019

MmpL4b MAB_4115c

Membrane bound protein 
involved in facilitating 
gylcopeptidolipid transport 
to M. abscessus surface

Disruption of mmpL4b results in S to R 
transitioning, enhanced extracellular cord 
and abscess formation in the zebrafish 
model of protection. ΔmmpL4b M. 
abscessus also displays enhanced 
replication in macrophages

ΔmmpL4b S mutants induce 
TLR stimulation and production 
of TNF

Medjahed and 
Reyrat, 2009; 
Nessar et al., 
2011; Bernut 
et al., 2016b

MmpL8MAB MAB_0855

Large membrane permease 
involved in transport of 
glycolipids through the 
plasma membrane

Promotes intracellular survival and 
adherence to macrophages in S colony 
morphotype; mutants retain ability to cause 
phagosomal acidification but reduced 
ability to establish cytosolic contact

Induces IL-1β production by 
facilitating phagosome-cytosol 
contact

Dubois et al., 
2018

Pmt MAB_1122c

Protein-O-
mannosyltransferase 
responsible for glycosylation 
of lipoproteins in the 
mycobacterial cell envelope

Δpmt display increased antibiotic 
susceptibility to β-lactams and high 
molecular weight antibiotics, increased cell 
wall permeability and decreased 
intracellular survival

Not determined
Becker et al., 
2017

Fmt Not determined

Fatty acid 
O-methyltransferase 
responsible for 
methoxylation of fatty acyl 
chain of GPL

Δfmt displays reduced cell surface 
hydrophobicity and enhanced adherence to 
and invasion of THP-1 macrophages, but 
no change in intracellular survival

Not determined Daher et al., 2020

(Continued)
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characterize the granulomatous response following pulmonary 
infection (Jeong et  al., 2004; Okazaki et  al., 2013). 
Mycobacterium abscessus results in heterogeneous changes to 
pulmonary tissue following infection, including inflammatory 
infiltrate which may be  accompanied by the formation of 
necrotizing or non-necrotizing granulomas (Jeong et  al., 
2004). Based on what is known about other NTM infections, 
host immune responses, clinical isolate heterogeneity, and 

pathogen virulence may all contribute to the extent of 
granuloma formation and its ability to contain M. abscessus 
infection (Lammas et  al., 2002).

Most relevant for vaccine design is the contribution of 
adaptive immune subsets to M. abscessus pulmonary infection. 
CD4+ T helper (TH) cells appear to be  a key component of 
the protective response, with TH1 responses enabling control 
of mycobacterial dissemination and granuloma formation through 

TABLE 1 | Continued

Name of 
virulence factor

Corresponding 
gene in 
reference strain

Distribution and 
biological function

Role of virulence factor in M. 
abscessus

Immunogenicity and/or 
protective efficacy

References

MAB_3168c MAB_3168c Acetyltransferase

Defect in MAB_3168c results in transition 
from R to S morphotype, increased 
susceptibility to lysozyme and amikacin and 
reduced intracellular survival in 
macrophages

Not determined Tsai et al., 2013

GPL Various Surface glycopeptidolipids

Loss of GPL on M. abscessus surface 
causes smooth to rough transition; rough 
morphotype associated with increased 
virulence and inflammation.

GPL isolated from S 
morphotypes limit apoptosis, 
ROS production and 
cytochrome C release in 
macrophages. Surface bound 
GPL also limits TLR activation

Rhoades et al., 
2009; Davidson 
et al., 2011; 
Whang et al., 
2017; Gutiérrez 
et al., 2018

Polar 
mycobacterial 
lipids

Various
Secreted and/or surface 
bound

LL-37 (cathelicidin) loses antimicrobial 
activity when pre-incubated with 
M. abscessus derived polar 
mycobacterial lipids

Not determined
Honda et al., 
2015

Eis2 MAB_4532c

N-acetyl transferase, 
similarity to MmpL11 locus 
in M. tb with potential role in 
cell wall biogenesis

ΔEis2 has reduced intracellular survival, 
facilitates phagosome-cytosol escape, and 
shows greater sensitivity to ROS and H2O2

Not determined
Dubois et al., 
2019

MAB_2560 MAB_2560 Not determined Not determined

Induces DC maturation and 
co-stimulatory molecule 
expression in a TLR4 
dependent manner and through 
MAPK mediated signaling; 
MAB_2560 stimulated DCs 
induce T-cell maturation and 
Th1 polarization with OVA 
antigen

Lee et al., 2014

Ami1 MAB_0318c

N-acetylmuramyl-L-alanine 
amidase involved in the 
remodeling of 
peptidoglycans on 
mycobacterial surface

Overexpression of Ami1 enhances survival 
within THP-1 macrophages; further 
supplementation promotes this effect. Not 
required for virulence in zebrafish.

Not determined
Küssau et al., 
2020

RNAse J MAB_3083c

Gene encoding RNAse J 
homologue, involved in 
mRNA metabolism—
ribosomal maturation and 
mRNA stability

Knockout is involved in smooth to rough 
conversion, with MAB_3083c∷Tn 
displaying increased sliding motility and 
decreased aggregation; complementation 
causes reversion back to the rough form. 
Knockout does not have any effect on 
intracellular growth, H2O2 or lysozyme 
susceptibility

Not determined Liu et al., 2021

DpnM Not determined DNA methyltransferase

Knockout has differing expression of genes 
involved in stress response and 
intramacrophage survival; knockouts also 
display enhanced susceptibility to NO 
and amikacin, and reduced intracellular 
survival

Not determined
Bryant et al., 
2021

mmpA, mmpB
MAB_1080, 
MAB_1081

Porin involved in transport 
across cell membrane

Deletion of MmpA/B enhances virulence of 
M. abscessus in macrophages and SCID 
mice, does not affect cell cytotoxicity or 
macrophage uptake

Not determined
de Moura et al., 
2021
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their stimulation of innate immune subsets, such as macrophages 
and neutrophils (Rottman et  al., 2007; Bernut et al., 2016a). 
In a murine model of M. abscessus infection, bacterial clearance 
is preceded by an influx of IFN-γ producing CD4+ T cells, 
and it has been shown that M. abscessus infection persists in 
IFN-γ knockout GKO−/− mice (Ordway et  al., 2008; Obregón-
Henao et  al., 2015). High-dose infection models in GKO−/− 
mice display a heightened TH2 response resulting in an 
immunosuppressive phenotype, supporting the notion that TH1 
polarization is ideal for protection against intracellular 
mycobacteria (Ordway et  al., 2008). Similarly, individuals with 
deficiencies affecting T-cell function appear predisposed to M. 
abscessus infection (Lutzky et  al., 2018). Patients with active 
M. abscessus infection also display a dampened TH1/TH2 and 
heightened TH17 cytokine profile compared to healthy controls, 
suggestive of a link between TH1 polarization and a protective 
phenotype (Kim et  al., 2014b; Lake et  al., 2016). This is an 
especially important consideration in the design of subunit 
M. abscessus vaccines, where adjuvant choice affects 

T-cell  polarization and thus resulting protection (Knudsen 
et  al., 2016).

While robust T-cell responses are clearly essential for 
protection against M. abscessus, the contribution of the humoral 
response to protection against pulmonary M. abscessus infection 
is less established. Antibodies to M. abscessus are generated 
following infection or vaccination (Jeon et al., 2009; Le Moigne 
et  al., 2015) and B-cell deficiency in the murine model of 
infection promotes bacterial growth (Rottman et  al., 2007). 
While humoral responses in healthy individuals are considered 
a critical components for extracellular pathogens, such as P. 
aeruginosa, their efficacy appears limited in preventing bacterial 
colonization or eradicating infection in CF patients (Yonker 
et  al., 2015; Sainz-Mejías et  al., 2020). Humoral responses 
that target surface GPL of M. abscessus S morphotypes may 
also encourage the conversion to the more virulent R 
morphotype, thus proving detrimental to the host (Gutiérrez 
et  al., 2018). It is also unclear whether the extracellular stages 
of M. abscessus growth, such as biofilm formation during 
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FIGURE 2 | Immune responses to M. abscessus infection. M. abscessus infection is followed by an influx of neutrophils and macrophages surrounded by 
lymphocytes which work to contain bacteria in the granuloma (A). Cytokines TNF and IFN-γ produced by macrophages and CD4+ T cells are required for granuloma 
formation and induce macrophage effector function, such as phagosome acidification and reactive oxygen species (ROS) production, while type I IFN production 
promotes nitric oxide (NO) production. IL-8 attracts neutrophils which are responsible for phagocytosis, NET production and secretion of antimicrobial peptide LL-
37. However, release of M. abscessus into the extracellular space as a result of cell death leads to the formation of serpentine cords, which are resistant to innate 
immune defenses and leads to unchecked bacterial replication. M. abscessus also possesses numerous mechanisms of immune evasion to resist macrophage 
effector functions (B); these include bacterial escape from the phagosome to the cytosol through interference with the phagosomal membrane (i); prolonged survival 
within the phagosome by blocking phagosomal acidification and thereby preventing M. abscessus degradation (ii) and inhibition of macrophage TLR signaling which 
limits downstream immune cell activation and recruitment (iii). M. abscessus also persists in the extracellular environment by avoiding phagocytosis, which is 
enabled through adherence to macrophage phagocytic cups on the cell surface (iv) and by forming serpentine cords which are too large to be engulfed by 
macrophages (v).
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early infection, and extracellular cording following phagosome 
rupture would be effectively disrupted by neutralizing antibodies. 
Most vaccines currently approved for human use focus on the 
effective development of humoral responses, and development 
of vaccines targeting cell-mediated immunity appear more 
difficult to produce. As such, the contribution of this subset 
to M. abscessus protection will require continued investigation 
to inform development of an effective M. abscessus vaccine.

The Quest for a Mycobacterium 
abscessus Vaccine in Susceptible 
Populations
Mycobacterium abscessus infection primarily occurs in individuals 
with reduced pulmonary immune responses, including those 
with CF, COPD, and non-CF bronchiectasis (Ratnatunga et al., 
2020). The development of novel immunization strategies for 
this pathogen has the potential to dramatically reduce the 
M.  abscessus burden and improve quality of life for these 
susceptible populations. However, progress toward novel vaccines 
has been limited by an incomplete understanding of immune 
responses in these groups that perpetuate M. abscessus infection, 
and how this may impact the outcome of vaccination. While 
populations with COPD and non-CF bronchiectasis make up 
a significant proportion of M. abscessus cases, factors resulting 
in enhanced susceptibility of these populations to NTM infection 
have not yet been established (Griffith et  al., 2007; Ratnatunga 
et  al., 2020). It is speculated that structural damage within 
the lung in non-CF bronchiectasis permits bacterial colonization, 
but immune dysfunction, such as aberrant neutrophil migration 
and effector function, also perpetuates infection by preventing 
optimal clearance (Chalmers and Hill, 2013). Populations 
susceptible to NTM infection with no clear risk factors display 
reduced IFN in serum and altered adipokine levels, further 
suggesting an underlying link between immune responses and 
risk of infection (Kartalija et  al., 2013).

Given the frequency with which CF populations become 
infected with NTM, the consideration of immune responses 
in CF populations is of utmost importance when developing 
a vaccine for M. abscessus. As research into the area continues, 
we  are beginning to appreciate the profound impact of CFTR 
mutations within CF patients on immune cell functionality, 
and the implications of this for pulmonary bacterial clearance 
(Hartl et  al., 2012). The immune landscape of CF patients 
includes macrophages with a skewed hyperinflammatory profile 
(Bruscia and Bonfield, 2016), neutrophils with dysfunctional 
phagosomal maturation and effector functions (Zhou et  al., 
2013; Gifford and Chalmers, 2014), and an inflammatory milieu 
that may limit the ability of innate cells to clear infection 
(Roghanian et  al., 2006; Cockx et  al., 2018). Recent work by 
Bernut et al. also showed impaired ROS production in professional 
phagocytic cells following M. abscessus infection, using a zebrafish 
model of CF (Bernut et  al., 2019). While less is known about 
the implications of CFTR mutations on adaptive immune 
responses, lymphocytes from murine models of CF also display 
a predilection to the development of TH2 and TH17 responses 
(Mueller et al., 2011; Tiringer et al., 2013; Mulcahy et al., 2015). 

Cftr−/− mice also display dysregulated B-cell follicle formation, 
activation, and accumulation in the lung (Polverino et  al., 
2019). This adds to the complexity of vaccine development 
for M. abscessus, as immune responses may be harder to predict 
in target populations and could potentially be naturally skewed 
toward non-protective phenotypes (Kartalija et  al., 2013). The 
quality of immune responses within these populations will 
play a significant role in shaping the outcome of vaccination 
with an M. abscessus vaccine and is therefore a key area of 
continued research.

Research of potential therapeutic agents to protect against 
M. abscessus infection may greatly benefit from effective animal 
models that recapitulate the clinical presentation of M. abscessus 
lung disease. This has been a continual challenge for researchers, 
as animal genotypes that possess common CF mutations do 
not display the same pathological symptoms as humans (Guilbault 
et  al., 2007). For example, the ΔF508 mouse model possesses 
the most common mutation in the CFTR gene in humans 
but does not recapitulate the disease pathophysiology (Scholte 
et  al., 2004). Although some knockout strains show greater 
persistence of bacterial load compared to wild-type littermates, 
none of these models develop spontaneous colonization or 
persistent infection by CF pathogens in the lung, such as in 
human patients (McMorran et  al., 2001; Guilbault et  al., 2005, 
2007; Ordway et  al., 2008; Bernut et al., 2014b). This problem 
has been circumvented by the use of immunocompromised 
strains (Lerat et  al., 2014), corticosteroid administration 
(Maggioncalda et  al., 2020), or infection with thrombin and 
fibrinogen plugs; a strategy similar to the agarose bead infection 
model used for P. aeruginosa (Facchini et  al., 2014; Caverly 
et al., 2015). In addition to zebrafish and A. castellanni models, 
these have provided us with snapshots of the immune response 
to M. abscessus infection; however, an in-depth understanding 
of correlates of protection is best achieved with immune 
competent models which recapitulate the immune response to 
M. abscessus infection in humans.

The discovery of VF acquisition by M. abscessus from other 
CF pathogens highlights the continued evolutionary potential 
of this pathogen and reinforces the urgent need for vaccines 
to provide robust protection to susceptible groups. Suggestions 
that the CF lung provides an environment that may enhance 
M. abscessus virulence is particularly worrisome; however, shared 
VFs across different bacterial species could allow the development 
of protein vaccine candidates that target multiple CF pathogens 
(Ripoll et  al., 2009; Bryant et  al., 2021). For instance, PlcC 
antibodies from CF patients infected with P. aeruginosa are 
cross-reactive with M. abscessus PlcC (Le Moigne et  al., 2015). 
Cross-protective vaccines are clearly advantageous in terms of 
research and development costs; however, no M. abscessus 
vaccine study to date has confirmed a protective effect of 
cross-reactive immune responses induced by vaccination (Le 
Moigne et  al., 2016). Given the number of VFs acquired from 
non-mycobacterial species in the M. abscessus genome, this is 
a noteworthy area of continued research (Ripoll et  al., 2009).

In addition to the development of vaccines for CF pathogens, 
there is interest in development of an M. abscessus vaccine to 
provide protection against different mycobacterial species. 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ferrell et al. Mycobacterium abscessus Virulence Factors

Frontiers in Microbiology | www.frontiersin.org 13 March 2022 | Volume 13 | Article 842017

Lower  incidence rates of Mycobacterium avium infection in 
HIV-positive individuals with prior M. tb infection suggest a 
degree of protection afforded by mycobacterial exposure 
(Horsburgh et  al., 1996). This has encouraged interest in 
repurposing the current M. tb vaccine, Mycobacterium bovis 
Bacille Calmette–Guérin (BCG), to be  used for protection 
against NTM infection in susceptible populations (World Health 
Organization, 2020). While lower incidences of NTM infection 
in BCG-vaccinated children support the notion of BCG vaccine-
induced cross-protection, there is a paucity of information in 
the literature specifically referring to protection against M. 
abscessus (Trnka et  al., 1994; Zimmermann et  al., 2018). T 
cells isolated from peripheral blood of latent-TB-infected or 
BCG-vaccinated individuals produce IFN-γ and granzyme A 
in response to M. avium restimulation, and these cross-reactive 
T cells restrict growth of M. avium or M. abscessus in monocytes. 
BCG vaccination of mice also generates a population of T 
cells that secrete cytokines upon NTM restimulation; however, 
the effect of vaccination on bacterial burden was not determined 
in this study (Abate et  al., 2019). As there are clear advantages 
of repurposing a currently approved and widely distributed 
vaccine, the role of BCG vaccination in providing protection 
against M. abscessus infection requires further investigation.

Lessons Learned From TB Vaccination 
Efforts
Despite being heavily researched since its discovery, M. tb is 
still a leading cause of death by infectious disease worldwide. 
In 2020, a quarter of the world’s population was estimated to 
be  infected with M. tb with 10 million new infections in 2019 
alone (Chakaya et  al., 2021). The protection afforded by the 
current vaccine available, BCG, is extremely variable across 
different age groups, latitudes, and to those with previous 
infection or mycobacterial exposure (Mangtani et  al., 2014; 
Ahmed et  al., 2021). While numerous candidates for novel 
TB vaccines are currently in the developmental pipeline, none 
have been able to provide sufficient protection to replace BCG. 
However, we can learn from decades of TB research and vaccine 
development about factors to consider in the pursuit of an 
M. abscessus vaccine, in addition to identifying unique challenges 
specific to this pathogen.

A robust understanding of immune responses required for 
protection is essential in the development of novel M. abscessus 
vaccines. In the case of vaccines against M. tb, efforts have 
been consistently stalled by our incomplete knowledge of 
immune correlates of protection against M. tb (Counoupas 
et al., 2019). This was exemplified in the results of the Modified 
Vaccinia Ankara 85A (MVA85A) vaccine in Phase IIb clinical 
trials, which had been a leading candidate to replace BCG. 
While earlier studies had shown strong T-cell-mediated immune 
responses following vaccination, this vaccine did not show 
protective efficacy in infants (Scriba et al., 2010; Tameris et al., 
2013). TH1 helper subsets and cytokines IFN-γ and TNF also 
appear to be  important for protection against M. abscessus, 
but whether these subsets are predictive of protection afforded 
by vaccination has not yet been established (Rottman et al., 2007; 

Bernut et al., 2016a). The difficulty in determining immune 
correlates of protection against M. abscessus is exacerbated by 
the diverse growth stages of this microorganism, with extracellular 
biofilm formation and colonization preceding the emergence 
of invasive intracellular variants which form chronic infection 
in the lung (Howard et  al., 2006; Gutiérrez et  al., 2018; Bryant 
et  al., 2021). There is currently a paucity of information on 
how different branches of the immune response (namely, humoral 
and cell-mediated subsets) contribute to effective bacterial 
clearance across different infection stages. Diverse vaccination 
strategies can be  aimed at preventing colonization by inducing 
a strong humoral response or at enhancing clearance of persistent 
infection by inducing a strong cell-mediated immune response. 
As with M. tb infection, it is also unclear what impact natural 
immunity from prior M. abscessus infection has on the risk 
of reinfection (Verver et al., 2005; McIvor et al., 2017). Recurrence 
of M. abscessus infection has been attributed to poor antimicrobial 
efficacy, particularly the inefficacy of macrolide treatments to 
fully eradicate infection (Pasipanodya et  al., 2017). However, 
it has been noted that reinfection with NTM, such as M. 
abscessus, frequently occurs with strains of different genotype, 
suggesting that M. abscessus antigenic variability has an impact 
on protective immune responses (Koh et  al., 2017). A 
comprehensive understanding of the importance of natural 
immunity over the duration of M. abscessus infection will 
be critical to dictate the trajectory of novel vaccine development.

Potential Vaccination Strategies for 
Mycobacterium abscessus
There is an enormous array of strategies that may be  used in 
the development of a novel M. abscessus vaccine, each with 
different advantages and drawbacks. These include whole-cell 
(live attenuated or heat-killed), nucleic acid vaccines, and subunit 
(viral vectored or protein and adjuvant) vaccines.

Live attenuated vaccines have an enormous advantage in 
that they possess an extremely diverse repertoire of proteins 
that may be recognized by the immune system, thereby inducing 
a more diverse immune response. Beyond attenuation, whole-
cell vaccines may also be modified to further enhance antigenic 
visibility to the immune system. VPM1002, for example, is a 
modified form of the BCG vaccine containing protein Listeriolysin 
O, which allows BCG escape into the cytosol (Grode et  al., 
2013). This facilitates antigen presentation to CD8+ T cells, 
thereby activating an additional component of the immune 
response to the vaccine (Grode et  al., 2005). However, live 
attenuated vaccines pose an inherent risk of vaccine-associated 
disease for immunocompromised individuals or those on 
immunosuppressants, such as individuals with CF (Burroughs 
and Moscona, 2000; Malfroot et  al., 2005). Heat-killed whole-
cell vaccines are advantageous for these populations because 
there is no risk of vaccine dissemination and have been 
particularly successful in the TB field. One such example is 
Vaccae™, a whole-cell vaccine of inactivated environmental 
mycobacteria Mycobacterium vaccae (Fatima et al., 2020). Given 
the shared epitopes of M. vaccae with NTM and M. tb, this 
is a potential vaccine candidate that could be  repurposed for 
M. abscessus.
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Novel vaccine candidates with the potential of incorporating 
VFs also include nucleic acid-based vaccines, such as DNA 
vaccines. These comprise plasmids encoding antigen/s of interest 
and employ host cells to synthesize proteins which are recognized 
by the immune system. Nucleic acid vaccines are advantageous 
due to the relative ease of design, production and scalability. 
However, no DNA vaccines have progressed beyond preclinical 
study within the M. tb field—this may be  because of their 
poorly immunogenic nature, or the more complex requirements 
for vaccine delivery to enter the nucleus and prevent plasmid 
degradation (Lee et al., 2018; Sefidi-Heris et al., 2020). Recently 
however, the use of tetrafunctional block copolymers to enhance 
cell uptake of exogenous nucleic acid has improved our ability 
to effectively deliver DNA vaccines (Richard-Fiardo et al., 2015). 
Both preclinical vaccines for M. abscessus are DNA formulated 
with tetrafunctional block polymers, one targeting M. abscessus 
VF PlcC and another targeting MgtC (McIlroy et  al., 2009; 
Le Moigne et  al., 2015, 2016). DNA vaccination against M. 
abscessus PlcC appears to provide marginally superior protection 
to protein-based vaccination, although the immunological 
mechanisms driving this trend are unclear (Le Moigne et  al., 
2015). However, both PlcC and MgtC DNA vaccination have 
a limited ability to consistently reduce bacterial burden by an 
appreciable level in both ΔF508 and WT mice across the course 
of M. abscessus infection (Le Moigne et al., 2015, 2016). Recent 
successes in mRNA vaccination for the Coronavirus Disease 
2019 (COVID-19) has also promoted interest in mRNA as a 
vaccination strategy. This is due to the ease of manufacturing 
ability and the ability to induce activation of immune cells 
by multiple cellular pathways in response to mRNA (Brisse 
et  al., 2020). As this area of vaccine design is relatively new, 
it is likely that continued research will be  required to improve 
the potential of this formulation before use against M. abscessus.

Subunit vaccines comprise antigenic proteins from the target 
species, delivered either through viral vector or with an adjuvant 
to promote induction of an immune response. The selection 
of appropriate antigen is a critical consideration for subunit 
vaccines and may determine the protective outcome. Highly 
expressed VFs are ideal vaccine candidates, and have been 
targets for multiple TB vaccines in development (Chakaya et al., 
2021). Importantly, antigenic expression for M. tb varies over 
the course of chronic infection and subunit vaccines targeting 
antigens only expressed at specific stages of infection may lack 
efficacy (Shi et  al., 2004; Rogerson et  al., 2006). CF pathogens, 
such as P. aeruginosa, also show marked change in physiology 
following adaptation to the CF lung, such as development of 
a mucoid phenotype, reduced VF expression, and loss of motility, 
suggesting this is a possibility for M. abscessus (Winstanley 
et  al., 2016). This obstacle may be  overcome through the 
incorporation of “early” and “late” stage antigens to target a 
pathogen’s full antigenic repertoire. One such example is CysVac2, 
a subunit vaccine which combines the secreted mycolyltransferase 
Ag85B with CysD, a component of the sulfate assimilation 
pathway expressed highly during chronic infection (Pinto et al., 
2013; Counoupas et  al., 2016). This highlights the importance 
of understanding M. abscessus antigen expression during infection, 
which may inform vaccine design.

A particular advantage of subunit vaccines is that the quality 
and type of the immune response may be more easily modulated 
through the selection of an adjuvant. Adjuvants, such as these, 
are most effectively used when their selection is tailored to the 
variety of immune response generated, which is often independent 
of the co-administered antigen (Knudsen et al., 2016). A diverse 
range of adjuvants are currently used in clinical TB vaccine 
candidates, including TLR agonists and liposomal formulations, 
such as IC31 and GLA-SE (Stewart et  al., 2019; Enriquez et  al., 
2021). Most of the adjuvants being used in clinical trials for 
TB encourage the generation of protective TH1 and/or TH17 
immune responses (Stewart et  al., 2019). Given this is thought 
to be  an immune correlate of protection against M. abscessus, 
these adjuvants may be  useful components of an M. abscessus 
vaccine. Appropriate selection of adjuvant (such as one with a 
minimal inflammatory profile) may also facilitate non-parenteral 
vaccine administration, such as vaccine delivery directly to the 
respiratory mucosa (Ferrell et al., 2021). There is renewed interest 
in pulmonary vaccination for TB, whereby delivery of the vaccine 
directly to the lung induces tissue-resident populations capable 
of rapid response to M. tb (Counoupas et  al., 2020). Similarly, 
intranasal vaccination with BCG provides superior protection 
against M. tb infection to subcutaneous vaccination (Perdomo 
et  al., 2016). As our knowledge of immune responses correlated 
with M. abscessus protection increases, this may be  a valuable 
avenue of investigation.

Reverse Vaccinology for the Development 
of an Mycobacterium abscessus Vaccine
As the field of vaccinology has advanced, so too has the use of 
bioinformatics approaches to aid vaccination efforts. Increases in 
genomic sequencing of pathogenic species has given rise to the 
field of “reverse vaccinology” whereby potential VFs and antigenic 
targets are discovered through in silico analysis of a pathogen’s 
genome and predicted proteome (Rappuoli, 2000). This method 
has been relatively underutilized for M. tb, likely due to the 
wealth of in vitro knowledge that has emerged from decades of 
research. A pathogen, such as M. abscessus, is an excellent candidate 
for reverse vaccinology approaches to streamline the identification 
of potential vaccine candidates, given the continual and growing 
need for a vaccine against this pathogen. There are numerous 
studies using pangenome analysis to identify shared VFs across 
clinical isolates of M. abscessus, and this is an ideal starting point 
for a reverse vaccinology approach (Choo et  al., 2014; Davidson 
et  al., 2014; Bryant et  al., 2021; Lewin et  al., 2021). There is also 
an extensive range of protein pathway mapping, MHC-II binding 
prediction, and epitope mapping software currently available which 
provides greater insight into those proteins likely to yield 
immunogenic vaccine candidates (Heinson et al., 2015). The reverse 
vaccinology approach has most recently been used to identify 
potential VFs and therapeutic targets of M. abscessus by development 
of a novel hierarchical approach; the development of such workflows 
is beneficial because they may be  applied to other pathogens in 
future (Dar et  al., 2021). There is also enormous advantage in 
a synergistic approach using wet-lab based and in silico techniques 
as a starting point for vaccine candidate identification, as this is 
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based upon the confirmed proteome or secretome of different 
species. This was recently used by Steindor et  al. to identify 
immunogenic proteins across different clinical isolates of M. 
abscessus and yielded many potential VFs that could be  suitable 
vaccine targets (Steindor et  al., 2019). However, current studies 
on M. abscessus reverse vaccinology lack experimental verification 
of protein immunogenicity; this will be  a critical area of future 
research to determine the best candidates for progression. As 
we continue to build on our knowledge of this emerging pathogen, 
reverse vaccinology will become an essential tool in antigenic 
discovery for the development of subunit vaccines.

CONCLUSION

In recent years, we  have elevated our understanding of M. 
abscessus from a relatively innocuous environmental organism 
to a formidable evolving true pathogen with a range of immune 
modulatory mechanisms to facilitate its survival within the 
host. These include VFs with homology to well-known 
mycobacterial VFs in pathogenic species, such as M. tb, in 
addition to non-mycobacterial VFs which bear striking 
resemblance to those present within other CF species, such 
as B. cenocepacea and P. aeruginosa. These VFs have a range 
of immune modulatory mechanisms to enhance M. abscessus 
survival within the host: promoting phagosomal escape, 
restriction of phagosomal acidification, enhancement of bacterial 
cording, and immune masking to escape detection. These, in 
conjunction with the extensive antibiotic resistance of this 

pathogen, have likely contributed to the increasing global 
incidence and severity of pulmonary M. abscessus. However, 
through increased understanding of M. abscessus virulence, 
we have uncovered potential vaccine candidates and novel drug 
targets, bringing us closer to novel prevention and eradication 
strategies for this pathogen. Development of a vaccine may 
also be  guided effectively by lessons learned from decades of 
research into other pathogenic Mycobacteria, such as M. tb. 
Continued research into the virulence and immune correlates 
of protection in M. abscessus pathogenesis using biologically 
relevant animal models will provide insight into the best 
strategies to adopt for the development of an M. abscessus 
vaccine, to improve the quality of life of susceptible populations.
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