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Abstract: Colorectal cancer is one of the most common types of cancer, and it can have a high
mortality rate if left untreated or undiagnosed. The fact that CRC becomes symptomatic at advanced
stages highlights the importance of early screening. The reference screening method for CRC is
colonoscopy, an invasive, time-consuming procedure that requires sedation or anesthesia and is
recommended from a certain age and above. The aim of this study was to build a machine learning
classifier that can distinguish cancer from non-cancer samples. For this, circulating tumor cells
were enumerated using flow cytometry. Their numbers were used as a training set for building an
optimized SVM classifier that was subsequently used on a blind set. The SVM classifier’s accuracy
on the blind samples was found to be 90.0%, sensitivity was 80.0%, specificity was 100.0%, precision
was 100.0% and AUC was 0.98. Finally, in order to test the generalizability of our method, we also
compared the performances of different classifiers developed by various machine learning models,
using over-sampling datasets generated by the SMOTE algorithm. The results showed that SVM
achieved the best performances according to the validation accuracy metric. Overall, our results
demonstrate that CTCs enumerated by flow cytometry can provide significant information, which can
be used in machine learning algorithms to successfully discriminate between healthy and colorectal
cancer patients. The clinical significance of this method could be the development of a simple, fast,
non-invasive cancer screening tool based on blood CTC enumeration by flow cytometry and machine
learning algorithms.
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1. Introduction

Cancer is extremely complex and heterogeneous. It includes various processes (e.g.,
evading growth suppressors, resisting cell death, replicative immortality), which manifest
as cancer’s irregular dynamics in multi-level spatio-temporal scales. In particular, at the
molecular level, a large number of interacting molecules (proteins, lipids and ions) con-
stitute a complex network, which results in complex intracellular signaling, non-linear
reaction kinetics, gene mutations and dysregulations, regulatory circuits, pathway cross-
talks and others [1–4]. The processes are non-linear, and the formation of the hierar-
chies themselves may be discontinuous [5]. In addition, cancer has many (more than
100 distinct types) incarnations. Different categories of cancer exist such as carcinoma,
sarcoma, leukemia, lymphoma and myeloma and central nervous system cancers, all
depending on where carcinogenesis was initiated (e.g., skin, bone, blood, brain), as well
as different types such as bladder, breast, colon and rectal, endometrial, lung, pancreatic,
prostate, etc. All these types and/or categories are characterized by unique features and
growth dynamics, increasing the already high levels of complexity needed to be confronted
by scientists for dealing with carcinogenesis in prevention, early detection, treatment
management and screening post-treatment.
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Colorectal cancer (CRC) is one of the most common types of cancer, and it can have a
high mortality rate if left untreated or undiagnosed. It is estimated that 10% of all annually
diagnosed cancers are CRC [6]. Risk factors include both environmental and genetic ones.
Apart from age, obesity, lack of exercise, smoking, alcohol consumption and dietary habits
are also implicated [7]. Family history can be a contributing factor in 10–20% of CRC
cases [8]. Hereditary CRC syndromes include polyps, Lynch syndrome, inflammatory
bowel syndrome and type 2 diabetes. Colon cancer survival rates are poor if diagnosed late.
Furthermore, the disease becomes symptomatic mainly at advanced stages. This highlights
the importance of early screening. At present, guidelines do not recommend screening for
CRC at ages lower than 50, unless there is a family history [9]. However, the fact that CRC
incidences show an increase in younger age groups has prompted the re-consideration
of the guidelines. Colonoscopy is the current reference method for CRC screening. It is
an invasive procedure and requires the use of sedation or anesthesia. CRC biomarkers
detected in blood could be an attractive alternative. Although a few prognostic biomarkers
are known, such as carcinoembryonic antigen (CEA), microsatellite instability (MSI) and
BRAF mutation, there are no diagnostic biomarkers available in clinical practice.

Despite the significant advances in the field, colorectal cancer therapy, recurrence
and metastasis continue to face difficulties and new challenges due to cancer’s inherent
complexity. Therefore, detailed biological information (e.g., differences between cancer
states and healthy states and/or between cancer subtypes) and the utilization of advanced
mathematical methods are of great importance [10–14]. Specifically, in the last two decades
there has been an exponential growth of Machine Learning (ML) algorithms utilized for
addressing difficult healthcare challenges including complex biological abnormalities such
as cancer [15–19]. ML has introduced novel biomarkers for cancer diagnosis, designed
novel personalized drugs and delivered potential treatment strategies [20–23]. For achiev-
ing these targets, scientists analyze various types of input data [15], such as genomic
(SNPs, mutations, microarrays), proteomic (specific protein biomarkers, 2D gel data, mass
spectral analyses), clinical (histology, tumor staging, tumor size, age, weight, risk behavior,
etc.), high-resolution images (which are involved almost in every cancer diagnosis), de-
mographic, epidemiological or combinations of some of these. The analyses were based
on a variety of ML techniques utilized for the development of predictive models. These
include Artificial Neural Networks (ANNs), Deep Learning (DL), Bayesian Networks (Bns),
Support Vector Machines (SVMs), Decision Trees (Dts) and others [16].

In this direction, [24] developed a deep learning-based method to measure the simi-
larity between CRC tumors and cancer cell lines. The datasets considered contained copy
number alterations, gene expression and point mutations. The model learns latent factors
that represent clinically relevant patterns and explains the variability of molecular profiles
across tumors and cell lines, providing best-matching cell lines to different cancer subtypes.
In addition, [25] developed a multi-parameterized ANN to score the risk of colorectal
cancer based solely on personal health data from the National Health Interview Survey
(NHIS). The ANN was tested per Transparent Reporting of Multivariable Prediction Model
for Individual Prognosis or Diagnosis (TRIPOD) level 2a and level 2b protocols. The result
showed that the ANN is comparable to current methods of scoring CRC risk (including
those using biomarkers). Another example is given by [26]. In this comparative study,
seven ML algorithms were evaluated in combination with six imputation methods for
missing data, all trained and cross-tested with the NHIS and PLCO datasets concerning
CRC. The optimal model was an ANN with Gaussian expectation-maximization imputa-
tion, which can be used as a non-invasive and cost-effective tool to screen the CRC risk
in large populations effectively using only personal health data. Finally, a state-of-the-art
transfer-learned deep convolutional neural network was developed recently by [27], who
proposed a novel patch aggregation strategy for clinic CRC diagnosis using weakly labeled
pathological whole-slide image (WSI) patches. This approach yielded promising results,
often even better than most of the experienced expert pathologists when tested in diagnos-
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ing CRC. For more information on CRC screening, diagnosis and treatment based on other
AI applications, the interested reader can refer to a very thorough review by [28].

In this study, we built an ML classifier for discriminating colorectal cancer samples
from non-cancer, healthy samples. The ML classifier was based on Support Vector Ma-
chines (SVM), which were chosen as an appropriate approach for classifying colorectal
cancer and non-cancer/healthy samples. We used SVM since they are among the most
commonly applied ML algorithms within the field of cancer research and more generally
in computational biology [29–33], exhibiting accurate predictive performance. SVM can be
used to overcome classification problems concerning datasets with small sample size, high
dimensionality and nonlinearity with good generalization capability. In this direction, the
SVM classifier was also compared with other classifiers, developed by methods frequently
utilized in ML applications, using larger over-sampling datasets generated by the SMOTE
algorithm [34].

As a dataset, we used experimental data derived from circulating tumor cells (CTCs) [35]
detected by flow cytometry, which can be promising prognostic biomarkers in CRC [36].
In particular, circulating CTCs are cancer cells that are shed from the tumor and travel in
blood circulation. CTCs actively leave the tumor tissue and invade the blood stream using
a process known as epithelial-to-mesenchymal transition (EMT). During EMT, cancer cells
lose their epithelial characteristics and acquire mesenchymal ones. This allows them to
become mobile and migrate from the primary to the metastatic site [37]. Today, there is
only one FDA-approved detection technique for CTCs. It relies on EpCam-positive and
CD45-negative immunoselection of fixed cells. CTCs are then detected using high-resolution
imaging combined with immunocytofluorescent staining [38]. The system therefore detects
CTCs by counting cells positive for fluorescent signal co-localization in an image captured by
a camera. However, EpCam, being an epithelial marker, limits the ability to evaluate CTCs
from tumors that have no EpCam expression, or cancer cells that have undergone EMT [39].
More importantly, today’s technologies for CTC determination rely mainly on traditional
microscopy imaging and therefore suffer from the same limitations. Well focused images
are imperative for image analysis; ideally, images should be viewed under different light
sources, phase contrast, bright-field and fluorescence, and finally, there is a limitation to the
pixel information a microscope can deliver [40]. On the other hand, flow cytometry is a
powerful and sensitive cell analysis technique that detects fluorescent signals as cells pass one
by one in front of a light source. If the cytometer is a sorter, cells can also be isolated alive and
cultured for downstream analyses. We have developed a method for CTC determination in
whole blood using flow cytometry. CTCs were defined as CD45-negative, CD31-negative and
pan-cytokeratin-positive cells in peripheral blood cells. It was found that our method of CTC
detection by flow cytometry had a sensitivity of 86.2% and specificity of 83.9% [41].

The aim of this study was, firstly, to validate our method for CTC determination, and
secondly, to use these data to perform binary classification between colorectal cancer and
healthy samples. The clinical significance of this method could be the development of a
non-invasive cancer screening tool based on blood CTC enumeration by flow cytometry
and ML.

2. Materials and Methods
2.1. Sample Collection

This study was not a clinical trial and did not include any interventions. The study
was reviewed and approved by our institutional ethics committee. Informed consent was
obtained from all patients. Blood samples from a total of 41 healthy individuals/non-
cancer patients and 41 CRC patients were collected in sterilized 50-mL falcon tubes con-
taining 7 mL 0.02 M EDTA as an anti-coagulant. Healthy individuals were identified as
healthy/non-cancer by their physicians.
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2.2. Sample Preparation

A total of 2 mL of blood was mixed with 2 mL of fetal bovine serum in 15-mL centrifuge
tubes to regain the cells’ shape. The samples were then centrifuged at 1200 rpm for 10 min
at room temperature and the supernatant was discarded. A total of 100 µL of sample was
transferred to round-bottom tubes for flow cytometry analysis.

2.3. Antibodies and Staining Procedure

Antibodies used were CD45-PE/Cy7, CD31-RPE and pan CK-PE/Cy5. Samples were
fixed and permeabilized using LEUCOPERM according to the manufacturer’s instructions.
Briefly, first samples were stained with surface antibodies for 20 min (CD45 and CD31,
5 µg/mL each), washed with PBS and then fixed with 100 µL Leucoperm Reagent A,
washed with PBS, permeabilized with 100 µL Reagent B and stained intracellularly with
5 µg/mL pan-CK antibodies for 20 min and washed again with PBS. After the last wash,
cells were re-suspended in 500 µL PBS and were ready for acquisition in a Beckman Coulter
FC500 cytometer.

2.4. Sample Blinding

A total of 31 healthy and 31 cancer samples were known to the investigators and were
used for the training and validation of the algorithm. Twenty samples were blinded by
using 5-digit codes and were used for prediction (test) analysis.

2.5. Sample Acquisition and FCS Data Analysis

Circulating tumor cells were defined as CD45-negative, CD31-negative and pan-
cytokeratin-positive cell populations. Non-hematological cells were gated out using a
CD45-negative selection. The endothelial cells were then removed using a CD31-negative
gating selection. Tumor cells were identified by pan-CK-positive selection. Unstained
samples were used as a negative control for gating. FCS Express software was used for
fcs data analysis. Figure 1 shows the gating strategy in FCS Express, where the CD31-
negative gate is set as a CD45-negative sub-gate, and the pan-CK-positive gate is set as a
CD31-negative sub-gate.
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2.6. Mathematical Analysis
2.6.1. Two-Sample Kolmogorov–Smirnov Test

The two-sample Kolmogorov–Smirnov test [42] is a nonparametric hypothesis test
that evaluates the difference between the Cumulative Distribution Functions (CDFs) of the
two samples over the range of x in each dataset. The two-sided test uses the maximum
absolute difference between the CDFs of the distributions of the two samples. The test
statistic is:

D∗ = max
∗

(|F̂1(x)− F̂2(x)|), (1)

where F̂1(x) is the proportion of x1 values less than or equal to x, and F̂2(x) is the proportion
of x2 values less than or equal to x.

2.6.2. Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is a nonparametric test for two populations [43]. In
particular, this test examines the null hypothesis that two samples are drawn from contin-
uous distributions with equal medians, against the alternative hypothesis that they are
not. The test assumes that the two samples are independent. The Wilcoxon rank sum test
is equivalent to the Mann–Whitney U-test, which is a nonparametric test for equality of
population medians of two independent samples X and Y. Specifically, the Mann–Whitney
U-test statistic, U, is the number of times a y precedes an x in an ordered arrangement of
the elements in the two independent samples X and Y. It is related to the Wilcoxon rank
sum statistic in the following way: If X is a sample of size nx, then:

U = W − nx(nx + 1)
2

(2)

2.6.3. Support Vector Machines

In this paper, in order to solve this binary classification problem, we apply a powerful
classifier, the support vector machine (SVM). SVM aims to create a decision boundary
between two classes in order to predict the labels from one or more feature vectors [44,45].
This decision boundary is known as the hyperplane. Its orientation is crucial for the best
separation of the closest data points from each of the classes. These closest points are called
support vectors. In particular, for given a labeled training dataset:

(x1, y1), . . . , (xn, yn), xi ∈ Rd ∧ yi ∈ (−1, 1), (3)

where xi is a feature vector representation and yi is the class label (negative or positive) of
a training compound i, and the optimal hyperplane can be defined as:

wxT + b = 0, (4)

where w is the weight vector, x is the input feature vector and b is the bias. In the best
case scenario, w and b would satisfy the following inequalities for all elements of the
training set:

wxT
i + b ≥ 1 i f yi = 1, (5)

wxT
i + b ≤ −1 i f yi = −1. (6)

Therefore, the objective of training an SVM model is to find the proper w and b so that
the hyperplane separates the data and maximizes the margin 1/‖w‖2.

However, many binary classification problems do not have a simple hyperplane as a
useful separating criterion. For such problems, instead of using a linear SVM classifier, we
can alternatively use the kernel method. This method enables us to model higher dimen-
sional, non-linear models, while retaining nearly all the simplicity of an SVM separating
hyperplane. Specifically, the kernel method transforms the data into higher dimensional
spaces to make the data separable.
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In general, a kernel function is defined as:

G(x, y) = < f (x), f (y) >, (7)

where G is the kernel function, x and y are n dimensional inputs and f is used to map the
input from n dimensional to m dimensional space. Finally, the term < x, y > denotes the
dot product. This class of functions includes polynomials and Radial Basis Function (RBF).
In particular, polynomials (e.g., linear, quadratic, cubic) are defined as:

G(x, y) =
(
1 + x′y

)p, (8)

where p is some positive integer, while RBF kernel is defined as:

G(x, y) = exp(−‖x− y‖2). (9)

Of course, the choice of kernel function, among other parameters, can greatly influence
the performance (e.g., reduce or increase the classification probability error) of an SVM
model. One can choose between the available kernels through trials and, depending on
the nature of the problem, select the best one. One way to find the optimal kernel in a
statistically rigorous fashion is by using cross-validation.

Particularly, cross-validation is a procedure used to avoid under- and overfitting [46].
It is a process in which the dataset is randomly partitioned into a training and a test set. In
this paper, we used a k-fold cross validation procedure. In particular, this method splits the
data randomly into k equal (or almost equal) parts. Then, the algorithm runs k times, using
k-1 of the parts as a training set and the remaining part as a test set. Each time the algorithm
runs, a different test set is used, so that over the k runs of the algorithm, all the instances
in the dataset are used as a test set. The success of the algorithm is the sum of the correct
classification over each of the runs. However, even cross-validation can overestimate the
prospective performance of ML methods. Therefore, we also conducted a truly blind test
in order to demonstrate the prospective capabilities of our cross-validated model [20].

2.6.4. Comparison between Different Classifiers

One drawback of this study is the relatively small dataset, which can lead to biased
models that are not generalizable. Therefore, in order to further test the generalizability
of our method, we also compared the performances of many classifiers, in addition to the
SVM classifier, developed by methods frequently utilized in ML applications. In particular,
we developed optimizable models from classification trees [47], discriminant analysis [48],
logistic regression [49], naïve Bayes [50], k-nearest neighbor (kNN) [51] and ensemble
methods, including boosted trees, bagged trees (random forest), subspace discriminant,
subspace kNN and RUSBoosted trees [50–53]. The hyperparameter search range for the
different classifiers was: (a) Classification trees: Maximum number of splits: 1–163, Split
criterion: Gini’s diversity index, Maximum deviance reduction. (b) Discriminant Analysis:
Linear, Quadratic, Diagonal Linear, Diagonal Quadratic. (c) Naïve Bayes: Distribution names:
Gaussian, Kernel, Kernel type: Gaussian, Box, Epanechnikov, Triangle. (d) SVM: Multiclass
method: One-vs.-All, One-vs.-One, Box constraint level: 0.001–1000, Kernel scale: 0.001–1000,
Kernel function: Gaussian, Linear, Quadratic, Cubic, Standardize data: true, false. (e) kNN:
Number of neighbors: 1–82, Distance metric: City block, Chebyshev, Correlation, Cosine,
Euclidean, Hamming, Jaccard, Mahalanobis, Minkowski (cubic), Spearman, Distance
weight: Equal, Inverse, Squared inverse, Standardize data: true, false. (f) Ensemble: Method:
Bag, GentleBoost, LogitBoost, AdaBoost, RUSBoost, Number of learners: 10–500, Learning
rate: 0.001–1, Maximum number of splits: 1–163, Number of predictors to sample: 1–2.

In order to perform the comparison, since the dataset is small, we updated the original
dataset, generating over-sampling datasets. Therefore, we tested the performance of all the
above classifiers using the over-sampling datasets. In order to create the over-sampling
datasets, we used a robust method named Synthetic Minority Over-sampling Technique
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(SMOTE) [34,54]. This is an over-sampling approach that creates synthetic minority class
samples. This technique is widely used and performs better than simple over-sampling. In
particular, the SMOTE samples are linear combinations of two similar samples from the
minority class (x and xR) and are defined as:

s = x + u ∗ (xR − x), (10)

where u is randomly chosen from U(0, 1) and differs for each SMOTE sample. This
guarantees that a SMOTE sample lies on the line joining the two original samples used to
generate it [34,54]. For more information on SMOTE and its updates, the interested reader
can refer to [55].

2.6.5. Performance Measures for Binary Classifiers

The performance analysis of the model can be measured in terms of sensitivity, speci-
ficity, accuracy and area under the curve (AUC). They are all based on true positives (TP,
correctly predicted positive (cancer) samples); true negatives (TN, correctly predicted nega-
tive (non-cancer/healthy) samples), false positives (FP, normal samples wrongly predicted
as being cancer samples) and false negatives (FN, cancer samples wrongly predicted as
non-cancer/healthy) [56].

In particular, Accuracy is the percentage of correctly predicted samples, and is
defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (11)

and is used for estimating the overall performance of the classifier.
Sensitivity or True Positive Rate (TPR) is the percentage of samples correctly predicted

as cancer samples, and is defined as:

Sensitivity =
TP

TP + FN
× 100%. (12)

The opposite of sensitivity is called False Negative Rate (FNR) or Miss Rate and is
equal to FNR = 1 − TPR.

Specificity or True Negative Rate (TNR) is the percentage of samples correctly pre-
dicted as non-cancer/healthy samples, and is defined as:

Speci f icity =
TN

TN + FP
× 100%. (13)

Precision or Positive Predictive Value (PPV) is the percentage of samples correctly
predicted as cancer from all positive predictions, and is defined as:

Precision =
TP

TP + FP
× 100% (14)

The opposite of Precision is False Discovery Rate (FDR) equal to FDR = 1 − PPV.
Area under the Curve (AUC) is a measure of the model’s overall performance. AUC

for binary classification [56] is given by:

AUC =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
(15)

The maximum AUC is 1, which corresponds to a perfect classifier, while for a classifier
that randomly assigns observations to classes, AUC = 0.5. Larger AUC values indicate
better classifier performance. A rough rule of thumb is that the accuracy of tests with AUCs
between 0.50 and 0.70 is low; between 0.70 and 0.90, the accuracy is moderate; and it is
high for AUCs over 0.90 [57].
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AUC is the primary statistic we obtain from a Receiver Operating Characteristics
(ROC) curve [58], which plots the tradeoffs between sensitivity and 1-specificity. In particu-
lar, ROC graphs are two-dimensional graphs in which sensitivity (TPR) is plotted on the
Y-axis and FPR (1-TNR) on the X-axis, for different thresholds of the classifier output. They
are useful for organizing classifiers and visualizing their performance. In such a graph, the
point (0, 1) represents perfect classification.

3. Results

After data acquisition, CTCs from the 31 cancer and 31 healthy samples were calcu-
lated using FCS Express. Figure 2 shows a healthy sample analysis. No CTCs were found
as it is denoted by the column # of Events (number of Events). Figure 3 shows a cancer
sample. Five CTCs were found using the same method.
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3.1. Statistical Tests

Before we built the classifier, we tested for differences between the cancer and
non-cancer/healthy distributions and their medians. This was achieved using two non-
parametric hypothesis tests, namely the two-sample Kolmogorov–Smirnov (KS) test and
the Wilcoxon rank sum (WRS) test. Both tests revealed significant statistical differences in
terms of distributions and medians. In particular, the KS test rejected the null hypothesis,
namely that the data are from the same continuous distribution with a p-value equal to
1.85−6 � 0.05. In addition, the WRS test rejected the null hypothesis, namely that the data
are samples from continuous distributions with equal medians with a p-value equal to
2.86−7 � 0.05 . Therefore, the cancer and non-cancer/healthy samples have significant
statistical differences, both in terms of their distributions as well as their medians. This
information indicates that an efficient classifier can be built based on this dataset. All
computations for the statistical tests were performed in MATLAB [59], using the Statistics
and Machine Learning Toolbox.

3.2. SVM Classifier

We used a 5-fold cross validation and MATLAB’s Bayesian Optimization function
bayesopt to find the best (optimized) classification SVM model. In particular, the hyperpa-
rameter search range included box constraint level: 0.001–1000, kernel_scale: 0.001–1000 and
kernel_function: Gaussian, linear, quadratic, cubic. The optimized SVM model consisted of
a quadratic kernel function (scale = 1, order = 3) and box constraint level equal to 3.0685. The
data were standardized.

The results of the optimized SVM are shown in the confusion matrix (Figure 4). In
particular, in this figure the total number of observations in each cell is presented (central
panel). The rows correspond to the true class, and the columns correspond to the predicted
class. Diagonal and off-diagonal cells correspond to correctly and incorrectly classified
observations, respectively. As it can be seen in this panel, considering the cancer samples
as positives, the true positives (TP) were found equal to 23, true negatives (TN) = 28, false
positives (FP) = 3 and false negatives (FN) = 8. Based on these values, we estimated the
performance measures using Equations (11)–(14). In particular, the accuracy of the classifier
was found to be 51/62 × 100% = 82.3%.
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panel, second column. Additionally, the precision (PPV) is shown in bottom panel, first row and false discovery rate (FDR)
in the bottom panel, second row.
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In addition, in the right panel, the row summary displays the percentages of correctly
and incorrectly classified observations for each true class. This panel shows that the
sensitivity (TPR) is equal to 23/31 × 100% = 74.2% and the miss rate (FNR) is equal
to 8/31 × 100% = 25.8%. This means that 23 samples were correctly classified as cancer
samples and eight samples were falsely classified as non-cancer/healthy (false negatives)
out of 31 cancer samples. Similarly, the specificity (TNR) is 28/31 × 100% = 90.3%, while
3/31 × 100% = 9.7% were falsely classified as cancer samples.

Finally, the bottom panel displays a summary of the percentages of correctly and
incorrectly classified observations for each predicted class. Specifically, this panel shows
the results concerning the precision (PPV) and False Discovery Rate (FDR) of the op-
timized SVM model. As it is shown, PPV is equal to 23/26 × 100% = 88.5% for the
cancer samples and 28/36 × 100% = 77.8% for the non-cancer/healthy samples. The
FDR is 100% − 88.5% = 11.5% for the cancer samples and 100% − 77.8% = 22.2% for the
non-cancer/healthy samples, respectively.

In Figure 5, the ROC curve for the optimized SVM is shown. In the same figure, the
AUC, the optimal point for the current classifier (orange dot) and the ROC curve for a
random classifier (diagonal red dotted line) are also shown. The random classifier identifies
an equal amount of positives and negatives correctly. Therefore, the AUC for a random
classifier is 0.5. Any classifier that appears in the lower right triangle performs worse than
random guessing. As it can be seen, in Figure 5, the AUC of the optimized classifier is
0.85 >> 0.5, indicating a moderate-to-high accuracy classifier [57].
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In addition, as it is shown, the optimal point (the point that will result in the lowest
number of overall errors: FN + FP) for the classifier is found for TPR = 0.74 and FPR = 0.10,
near the Y-axis. Classifiers appearing on the left-hand side of an ROC graph are rather “con-
servative”, namely they make positive classifications only with strong evidence, making
few false positive errors [58].
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3.3. Blind Set

In order to further test the performance of the optimized SVM classifier, we examined
its performance in a totally blind set. As mentioned, this set includes 10 cancer and
10 non-cancer/healthy samples. The results are summarized in Figure 6 and reveal that TP
= 8, TN = 10, FP = 0 and FN = 2. Therefore, the accuracy in the blind set was found to be
18/20 × 100% = 90.0%. Moreover, the sensitivity (TPR) was found equal to 80.0%, the miss
rate equal to 20.0%, the specificity equal to 100% and the precision equal to 100.0%. Finally,
the AUC for the blind set was found equal to 0.98. All computations were performed in
MATLAB [59] using the Statistics and Machine Learning Toolbox.
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Overall, the results demonstrate that the SVM classifier, based on CTCs enumerated
by flow cytometry, can successfully discriminate between healthy and colorectal cancer
patients with high values of performance measures.

3.4. Comparison between Different Classifiers

In order to further test the generality of our results, we compared different classifiers
developed by models frequently utilized in ML applications. All computations were per-
formed in MATLAB [59] using the Statistics and Machine Learning Toolbox. The classifiers
were developed on SMOTE-generated over-sampling datasets, using the MATLAB package
smote [60]. This function synthesizes new observations based on existing (input) data and a
K-nearest neighbor approach.

In addition, for the generation of the over-sampling datasets, both the training as well as
the blind sets were taken into consideration. In particular, we generated six new datasets by
varying both the amount of over-sampling (N) as well as the number of considered nearest
neighbors (K). We considered N = 1 (2-fold observations), N = 3 (3-fold observations) and
N = 10 (10-fold observations), and K = 5, 10, 20, 30. Therefore, since the initial set (including both
the training and blind sets) consists of 41 colon cancer samples and 41 healthy samples, the
resulting datasets contained: D1(N = 1, K = 5) = 164 samples, D2(N = 1, K = 10) = 164 samples,
D3(N = 3, K = 10) = 328 samples, D4(N = 3, K = 20) = 328 samples, D5(N = 10, K = 20) = 902
samples and D6(N = 10, K = 30) = 902 samples.

The results of the performances of the classifiers are shown in Tables 1 and 2. Specifi-
cally, in Table 1 we show the validation accuracy of the optimized models (the optimization
of the models was performed using a 5-fold cross validation and MATLAB’s Bayesian
Optimization function bayesopt). As it can be seen, all models achieved high validation
accuracies, above 84%, while the differences are not so big, even for the linear benchmark
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method of logistic regression. This is expected, since we only have one feature as an
input. The highest validation accuracies (%) were found for the classifiers based on SVM
(D1—86.0, D2—89.0, D3—89.6, D4—87.2), for on ensemble classifiers (D1—86.0, D4—87.2,
D6—88.2) and for on classification trees (D1—86.0, D5—87.6).

Table 1. Validation accuracy of the optimized models, for datasets generated using SMOTE technique,
using various parameters such as N = 1, 3, 10 and K = 5, 10, 20, 30.

D1 D2 D3 D4 D5 D6

N = 1 N = 1 N = 3 N = 3 N = 10 N = 10

K = 5 K = 10 K = 10 K = 20 K = 20 K = 30

Trees 86.0 88.4 88.4 85.1 87.6 88.1
Discriminant 84.1 87.2 85.7 86.0 86.7 88.0
Logistic
Regression 84.1 86.0 86.0 86.6 87.1 87.8

Naïve
Bayes 84.1 86.6 85.7 86.0 86.9 88.1

SVM 86.0 89.0 89.6 87.2 87.3 88.0
KNN 85.4 87.8 89.6 85.7 84.4 87.9
Ensemble 86.0 88.4 88.4 87.2 86.9 88.2

Table 2. Estimated Area Under Curve (AUC) of the optimized models, for datasets generated using
SMOTE technique, using various parameters such as N = 1, 3, 10 and K = 5, 10, 20, 30.

D1 D2 D3 D4 D5 D6

N = 1 N = 1 N = 3 N = 3 N = 10 N = 10

K = 5 K = 10 K = 10 K = 20 K = 20 K = 30

Trees 0.89 0.88 0.92 0.88 0.94 0.86
Discriminant 0.89 0.88 0.91 0.92 0.94 0.93
Logistic
Regression 0.89 0.88 0.91 0.92 0.94 0.95

Naïve
Bayes 0.88 0.88 0.89 0.92 0.94 0.94

SVM 0.84 0.89 0.88 0.89 0.94 0.95
KNN 0.89 0.88 0.91 0.92 0.94 0.92
Ensemble 0.89 0.89 0.92 0.92 0.94 0.94

We also estimated the AUC for each of the optimized models and the results are
presented in Table 2. As it can be seen, all models achieved high values of AUC (≥0.84).
In this case, the highest values were achieved by ensemble methods and in particular
by Gentle Adaptive Boosting (GentleBoost) [61] for four datasets (D1—0.89, D2—0.89,
D4—0.92, D5—0.94), and the Bootstrap Aggregation and Random Forest (Bag) [62] for
one dataset (D3—0.92). Logistic regression also yielded the highest AUC for four datasets
(D1—0.89, D4—0.92, D5—0.94, D6—0.95), whereas the other classifiers attained the highest
performances for fewer datasets.

Taking into account the results concerning validation accuracies as well as AUC, it
can be concluded that, even though all ML classifiers yielded high performances, SVM
performed better according to the validation accuracy metric, while ensemble methods
performed better according to the AUC metric. However, compared to AUC, accuracy is
simpler and easier to interpret, while it is mostly used for evaluating supervised binary
classifiers with balanced classes, taking into account both true positive as well as true
negative predictions. Therefore, based on accuracy results, in this study, we chose SVM for
developing efficient and robust ML classifiers.
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4. Discussion

In the present study, we developed an SVM classifier for performing binary classi-
fication between colorectal cancer and non-cancer/healthy samples. The main feature
used for the classification is the number of CTCs from cancer and non-cancer/healthy
samples, as obtained from flow cytometry. In this study, 31 colorectal cancer and 31 non-
cancer/healthy samples were used for the development of the SVM classifier. In addition,
the SVM classifier was tested in a blind test set, which included 10 cancer samples and
10 non-cancer/healthy samples. Finally, in order to further test the efficiency and generaliz-
ability of the proposed method, we generated various over-sampling datasets by applying
the SMOTE algorithm and used these datasets in order to develop and compare various
ML classifiers.

The results of this study revealed the efficiency of the developed SVM classifier both on
the training set as well as on the blind set. In particular, for the training set, the performance
measures of the SVM classifier were found to be: accuracy equal to 82.3%, sensitivity (TPR)
equal to 74.2%, miss rate (FNR) equal to 25.8%, specificity (TNR) equal to 90.3%, precision
(PPV) equal to 88.5% and AUC equal to 0.85. For the blind set, the performance measures
of the SVM classifier were found to be: accuracy equal to 90.0%, sensitivity (TPR) equal to
80.0%, miss rate (FNR) equal to 20.0%, specificity (TNR) equal to 100.0%, precision (PPV)
equal to 100.0% and AUC equal to 0.98.

One drawback of this study was the relatively small dataset, which can result in
misclassifications, while the estimators may produce unstable and biased models, which
can fail to generalize efficiently. However, the analysis of over-sampling SMOTE-generated
datasets revealed that ML classifiers can also be effective for much bigger (up to 10-fold)
datasets. In particular, the estimation of the performance measures of the optimized
classifiers showed that all classifiers exhibited very good performances, yielding values
above 0.84 for validation accuracy and above 0.84 for AUC. Additionally, SVM performed
better according to the validation accuracy metric, while ensemble methods performed
better according to the AUC metric. Considering accuracy as a more relevant metric for
this supervised binary with balanced classes study, SVM was the selected method.

Therefore, as the results of this study demonstrate, the drawback of the small dataset
size is surpassed by the dataset quality, namely the careful feature selection (e.g., CTCs),
which provides significant information for the development of effective ML classifiers. In
particular, our results indicate that flow cytometry, using the gating strategy described, can
be a valuable tool for CTC enumeration with high sensitivity and specificity. In addition
to the accuracy of the method, other advantages are also present. Additional markers can
also be studied. Immunophenotyping CTCs, that is, the determination of the expression of
markers related to steaminess or metastasis, could provide useful clinical information that
can aid in cancer prognosis and/or treatment decisions. Additionally, using flow cytometry
and sorting, CTCs can be isolated alive and cultured for downstream applications.

Overall, the results show that CTCs enumerated by flow cytometry can provide sig-
nificant information, which when “fed” into ML algorithms can successfully discriminate
between non-cancer/healthy and colorectal cancer patient subjects. Even though the
results seem promising, more experiments have to take place in order to obtain larger
datasets, while the exploitation of more sophisticated classification techniques is needed
to verify and extend the results of this study. ML algorithms are not static products, and
can continue to change and improve even once deployed, as new training data become
available. However, these issues will be addressed in following studies. In conclusion,
the results of this study are promising towards the development of a simple, fast and
non-invasive screening method for cancer, using CTC enumeration by flow cytometry from
blood samples and machine learning.
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