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Abstract

Blood Concentrates (BCs) are autologous non-transfusional therapeutical preparations with

biological properties applied in tissue regeneration. These BCs differ in the preparation

method, in fibrin network architecture, growth factors release as well as in platelet/cell con-

tent. Methodological changes result in distinct matrices that can compromise their clinical

effectiveness. The present study evaluated the influence of different g-forces and types of

tubes in the release of vascular endothelial growth factor (VEGF) from platelet-rich fibrin

(PRF) as a function of time. The PRF-like samples were obtained with three g-forces (200,

400, and 800 x g) for 10 minutes in pure glass tubes or in polystyrene-clot activator tubes.

Scanning and Transmission electron microscopy was used to morphometric analyzes of

PRF’s specimens and flow cytometry was used to quantify VEGF slow release until 7 days.

Our results showed that platelets were intact and adhered to the fibrin network, emitting

pseudopods and in degranulation. The fibrin network was rough and twisted with exosomic

granulations impregnated on its surface. An increase in the concentration of VEGF in the

PRF supernatant was observed until 7 days for all g forces (200, 400 or 800 xg), with the

highest concentrations observed with 200 x g, in both tubes, glass or plastic. Morphological

analyzes showed a reduction in the diameter of the PRF fibers after 7 days. Our results

showed that g-force interferes with the shape of the fibrin network in the PRF, as well as

affect the release of VEGF stored into platelets. This finding may be useful in applying PRF

to skin lesions, in which the rapid release of growth factors can favor the tissue repair pro-

cess. Our observations point to a greater clarification on the methodological variations

related to obtaining PRF matrices, as they can generate products with different characteris-

tics and degrees of effectiveness in specific applications.

Introduction

The fibrin matrix is a natural clot that acts as a primordial scaffold for the conduction of tissue

repair [1, 2]; it is a polymeric three-dimensional network formed after fibrinogen activation by
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enzymatic peptide cleavage [3]. The polymerization occurs instantly by contact with tissue gly-

coproteins or by thixotropic oxidation in exogenous mechanisms [4].

The biological basis of hemostasis and tissue repair served for the development of obtaining

operational methodologies for non-transfusion therapeutic blood concentrates. These meth-

odologies provide a selective concentration of platelets, mononuclear leukocytes, and glyco-

proteins in the fibrin matrix, elements that are directly related to regenerative responses [5].

These blood concentrates have been used in dentistry and medicine as a surgical adjuvant to

provide early tissue repair [6, 7].

Low-speed centrifugation methods generated blood concentrates enriched with platelets

from selective blood separation, and methodological advances have provided platelet-rich

fibrin (PRF) from blood samples without anticoagulant, which is characterized by elasticity

and mechanical resistance and for concentrating mononuclear leukocytes, glycoproteins and

growth factors [8, 9].

Currently, platelet concentrates have been the focus of many basic and clinical studies, [10],

with the majority of scientific articles mainly addressing its therapeutic potential as a surgical

adjuvant in dentistry, such as peri-implantology and maxillofacial surgery [11–14]. Besides,

further studies on the treatment of chronic wounds and muscle-tendinous lesions in humans

have introduced the topic in the medical field as a promising therapeutic potential [15–21].

The autologous blood concentrates obtained by PRF Standard [22], A-PRF™ [23, 24],

Intraspin L-PRF™ [25, 26] CGF™ [27–30], PRGF™ [31, 32], Fibrin System™ [33] and others [34–

39] show methodological variations in centrifugation time, g-force, type of rotor and model of

the centrifuge, as well as in the types of tubes for blood collection. All together, these methods

for obtaining platelet concentrates show differences in the organization of the fibrin matrix

and in the release kinetics of growth factors [40–42].

Considering that methodological variations may imply the morphological and biochemical

characteristics of PRF, the present study aimed to describe the morphology and the influence

of g-force on VEGF release up to seven days after its production.

Materials and methods

Individuals and ethical aspects

The participants were healthy, non-smoker, adult women (n = 5) who agreed to donate 120

mL of blood to the study. The present study observed all ethical standards for scientific

research with humans in conformity with the Declaration of Helsinki (World Medical Associ-

ation Recommendation 2013). The Research Ethics Committee approved the study of the

Medical School of the University of Brasilia, Brazil, under number 055468/2015.

Formation of blood concentrates from whole blood

In order, blood samples were obtained pure glass tubes type 10 mL (Montserrat, Brazil) and

polystyrene clot activator tubes (Greiner Bio-One, Brazil) by vacuum collection. Samples’

blood was collected and immediately transferred to 25o rotor fixed-angle centrifuge Fibrin-

Fuge25 (Monserrat, Brazil) centrifugated with 200, 400, and 800 x g at 10 minutes.

Ultrastructural analyses by scanning electron microscopy

PRF clot’s fragment obtained by 200, 400, and 800 x g / 10 minutes were separated and condi-

tioned in plastic tubes free of additives (Greiner Bio-One, Brazil). Immediately after PRF pro-

duction and after 7, 14 or 21 days at 37 oC, the specimens were sectioned (body, buffy coat and

proximal sediment) and fixed in 2% glutaraldehyde solution and 2% paraformaldehyde in
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0.1M sodium cacodylate buffer, pH 7.2. After being fixed, they were washed in 0.1M sodium

cacodylate buffer, post-fixed in osmium tetroxide (1%) in sodium cacodylate buffer, then the

specimens were dehydrated for 15 minutes in solutions with increasing concentrations of ace-

tone (30%, 50%, 70%, 90% and 3x 100%). Then, the specimens were dried to the critical point

with CO2 and metalized with gold. For analyzes by scanning electron microscopy (JEOL

7001F, Tokyo, Japan), the images (20 to 20000 x of magnification) were analyzed using GIMP

2.10 software (Cockroach Labs, USA). To the morphometric study we evaluated the diameter

of twenty fibers using the digital planimeter of Autocad software (Autodesk, USA).

Ultrastructural analyses by transmission electron microscopy

For transmission electron microscopy, analyzes PRF fragments in the buffy coat region were

fixed and processed as previously reported. After being impregnated with PolyBed 812 resin

(PolySciences, USA) the fragments were sectioned on an ultramicrotome to obtain the images

(Jeol 100CXII, Japan). Qualitative analyzes where performed in digital images using the GIMP

2.10 software (Cockroach Labs, USA).

VEGF quantification

The PRF of individuals were maintained up to 7 days at 37˚C and after 0, 1, 2, 3, 4, 5, 6 or 7

days an aliquot of the serum (200 μL) was cryopreserved (-80˚ C) until analyzes. Quantifica-

tion of VEGF was performed using the bead array (CBA) cytometry method, used in the com-

mercial kit (VEGF Flex Set human kit and BD ™ CBA cell signaling main kit, USA), according

to the manufacturer’s specifications on the flow cytometer LSR Fortessa ™ (BD ™, USA). FCAP

Array ™ software version 3.0 (BD ™, USA) was used to calculate the concentration of VEGF

based on a curve of the pattern of this growth factor. Results were expressed in pg/mL.

Statistical analyzes

The statistical analysis used Bartlett’s test for equal variances and the Kolmogorov–Smirnov

test for normal distribution before comparative tests. The analyzes were performed by the

pared t test or Wilcoxon to compare samples of normally or non-normally distributed data,

respectively, and linear regression. The GraphPadPrism 8.0 software package (GraphPad,

USA) was employed for statistical tests and graphical presentation of the data. Differences with

a two-tailed value of p< 0.05 were considered statistically significant.

Results

Morphological analyzes

The qualitative analyzes represented in Fig 1, showed that the PRF (Fig 1A) is divided into

three distinct regions, the upper part being formed by a fibrin network (B), the intermediate

part (medium body) containing platelets immersed in the fibrin network (C) and the lower

part (buffy coat) containing the largest fraction of platelets and leukocytes (D).

The platelets were intact and adhered to the fibrin network, emitting pseudopods and in

degranulation, as shown in Fig 1E, 1F, 1G and 1H. On the surface of the platelets were

observed rough and agglomerated bodies with dimensions of 3.0 ± 2.0 μm. Leukocytes were

closely associated with platelets and presented a rough surface. The fibrin network exhibited

variations in its three-dimensional organization, were rough and twisted, in addition to exhib-

iting polymeric chains with exosomatic granulations impregnated on the surface (Fig 1I and

1J).
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Fig 1. Photography showing in A the macroscopy of three regions of PRF (upper body, medium body and buffy coat) and

eletrocmicrographs (B to M). Observe the ultrastructural arrangements of the three regions of PRF (B, C, D), activated platelet (E) with

pseudopods and degranulation process (F, G, H). Also, observe the fibrin surface with polymeric chains and impregnated superficial

nanoparticles (I, J). In K, L, M are shown interspersed plankton diatoms frustules in PRF matrix obtained by Vacuette™ plastic tube with a

clot activator.

https://doi.org/10.1371/journal.pone.0240134.g001
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Fig 1K, 1L and 1M show the PRF obtained with the SiO2 platelet activator in which the

planktonic diatoms frustoles are interspersed in the matrix.

Quantification of VEGF

Our results showed an increase in the concentration of VEGF in the PRF supernatant over the

7 days of evaluation and for all g forces (200, 400 or 800 x g), with the highest concentrations

observed with 200 x g, in both tubes, glass (linear regression, r2 > 0.96, p< 0.0001) or plastic

(linear regression, r2 > 0.86, p< 0.001) (Fig 2A and 2B). However, the morphometric analyzes

showed a reduction in the diameter of the PRF fibers after 7 days at 37˚ C (Fig 2C and 2D) and

qualitatively, these analyzes indicated a decrease in the density of the fibrin network after the 7

days (Fig 2E2, 2F2 and 2G).

Discussion

The study of fibrinolysis has two strands of high relevance. Within the vessels, this physiologi-

cal process quickly prevents thromboembolism, while in the extravascular environment this

process is slow because fibrin acts structurally in the injured tissue [43, 44]. Considering the

application of PRF in tissue repair, the elucidation of how fibrinolysis occurs in the extravascu-

lar environment can favor its therapeutic application.

For the investigation of fibrinolysis, qualitative and quantitative methods of high relevance

in the clinical sphere are available to differentiate pathological conditions and indicate the

appropriate therapy, which commonly involve anti-fibrinolytics, such as α2-antiplasmin and

α2-macroglobulin [45–49]. In this study, the objective was to understand the kinetic of fibrino-

lysis obtained with different g forces in vitro.

Our results showed that the variation in g-force for the production of PRF interferes with

the shape of the fibrin network and in the VEGF release. Considering that the platelet granules

were attached on the surface of the fibrin fibers, as shown in the images obtained by SEM, it is

speculated that the lower g force applied (200 x g) is sufficient to promote the platelet activa-

tion and the exosomes release. Furthermore, the lower g-force promote highest concentration

of VEGF and decrease of the fibrin fibers diameter. This finding may be useful in applying

PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair pro-

cess. Besides, this fibrin network can be used as a drug system delivery [50, 51], acting to differ-

ent therapeutic applications.

It has been reported that the slow release of growth factors from the PRF is fundamental to

support the therapeutic application of this platelet concentrate [52, 53]. Other studies have

shown that the concentration of growth factors varies according to the production protocol of

PRF [54, 55], mainly related to the g-force and the type of tube used.

Our results demonstrated that the use of the glass tube provided higher concentrations of

VEGF released in all g-force bands, especially after 72 hours, when compared to those obtained

in plastic tubes with clot activator. Bonazza et al., 2016 [29] when comparing the effects of

three different types of tubes in the PRF matrix, obtained by the CGF™ method, showed differ-

ence in the platelets and leukocytes dispersion and the fibrin density mesh observable by

immunohistochemical assays. The fibrinolysis experiment demonstrated that the concentra-

tion of growth factors increases as the fibrin fibers reduce their thickness and demonstrate

detachment of particles from their surface. Thus, the lower concentration of VEGF in the exu-

date can have two meanings; 1) the peptide was degraded early; 2) the peptide is firmly adhered

and protected in the fibrin matrix bed.

The present experiment reproduced the immunoassay methodologies reported in the litera-

ture and served to demonstrate that PRF matrices have supraphysiological concentrations of
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Fig 2. Kinetics of VEGF release from the fibrin network to the PRF supernatant obtained in a glass (A) or plastic (B) tube over 7 days. In C

and D are observed the paired analyzes of the total VEGF concentration (C) and the diameter of the fibrin fibers (D). In E, F, G are observed

the fibrin network images obtained with 200 x g (E), 400 x g (F) or 800 x g (G) at t0 and t7, indicating a decrease in the density of the fibrin

network after 7 days. (E2, F2, G2). The results showed greater VEGF release (linear regression) and smaller diameter of fibrin fibers after 7

days of PRF at 37˚C (paired analyzes).

https://doi.org/10.1371/journal.pone.0240134.g002
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growth factors. In vitro experiments are very limited since they are performed under con-

trolled environmental and metabolic conditions, unlike in vivo behavior.

Activated platelets and leukocytes release growth factors in the medium where they are

inserted. In this way, SEM in large increases was able to demonstrate the impregnation of

nanometric particles attached to fibrin fibers. Dohan, et al., 2010 [7] presented the concept of

the three-dimensional model of the fibrin matrix that accommodates growth factors by adhe-

sion. In Fig 2, we identified this configuration in a real model by SEM micrographs.

The relationship between the PRF’s morphology and the VEGF release showed the interde-

pendence of these processes. However, the released concentration, by itself, does not constitute

any intrinsic advantage of the method of obtaining since the cell signaling resulting from

growth factors is performed in the three-dimensional bed itself. The highest concentrations

observed in vitro occurred precisely in the period of fibrinolysis [48]. It is also worth consider-

ing that these concentrations released from the matrix in vitro do not faithfully reproduce

what occurs in tissue beds in vivo, where the action of enzymes, oxidizing agents, and migra-

tory cells interfere with the physiological activity of these growth factors. Even because the

fibrin matrix exerts a proteolytic protection mechanism on these proteins, keeping them func-

tionally adhered for the cellular signaling that is fundamental during tissue repair [49].

Another important microscopic observation was the impregnation of different particles of

silica in the PRF matrix obtained in plastic tubes with clot activators. Tubes from commercial

brands presented silicon extracts from algalic sources, one of them being a composition of dia-

tom shells. Clot activators act as oxidizing agents for in vitro diagnostic purposes [56–58].

In Vitro Devices (IVDs), despite being sterile to ensure the reliability of laboratory tests,

they have limitations for medical use. According to international health standards, processed

products, including blood and blood products, as well as handling devices, must have a Medi-

cal Device (MD) classification [8]. In Europe, the EU regulation 2017/745 of the European Par-

liament and the Council already recommends the disuse of tubes manufactured for laboratory

purposes and the adoption of devices with MD classification.

The company Silfradent in Santa Sofia, Italy, is one of the pioneers in this adaptation and

already has these devices with such classification. However, despite this international sanitary

adequacy, there have been no reports of cytotoxicity or therapeutic failures in the literature

over the past 20 years that could be associated with the use of IVD tubes [57, 59, 60]. Tsujino

et al., 2019 [58] indicated potential risks for the use of tubes containing amorphous silica as a

clot activator [52], and Kawase et al., 2020 [60] demonstrated cytotoxicity in periosteal cells by

contact with the silica impregnated in the tubes. There is a strong trend towards standardiza-

tion for the use of tubes that are free of chemical additives.

The manufacture of plastic tubes with clot activators supplied a demand for biosafety in the

field of laboratory diagnosis [61]. The glass tubes serve to accelerate the clot retraction; how-

ever, they are susceptible to breakage during handling and centrifugation, increasing the risk

of accidents at work. In this way, the use of plastic tubes with clot activators, in laboratory

logistics, accelerate the formation of the clot and reduce the risks of these accidents [4].

Bowen and Remaley, 2014 [62] clarified that laboratory analytical methods are susceptible to

variations in additives used in the manufacture of tubes for in vitro diagnostics, thus interfering

with the results of the analyzes. Contaminating agents such as lead and other heavy metals present

in the rubbers and lubricants used to close the tubes can affect the accuracy of laboratory tests.

Some companies involved in the sale of centrifuges and supplies for obtaining blood con-

centrates, in compliance with international health regulations, already have in their sterile

portfolio tubes in specific packages with the indicative description for in vivo use [28].

Despite this international health trend regarding the indication of equipment and supplies

classified as a medical device (MD), there is no indication in the international literature of
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inefficiency, toxic or immunogenic implications due to the use of IVD tubes containing clot

activators in obtaining PRF matrices.

Due to the glass tube presented the better kinetic pattern in the slow release of VEGF, it can

be indicated for obtaining the PRF matrices for non-transfusion therapeutic use with safety.

Studies using experimental models in vivo and in vitro are necessary to clarify the cytotoxic

potential of these activators.

Conclusion

The microscopic and flow cytometric experiments showed the effect of the different experi-

mental conditions, where the smallest g-forces were more promising concerning cell composi-

tion and VEGF release. Our results showed that g-force interferes with the shape of the fibrin

network in the PRF, as well as affect the VEGF release. This finding may be useful in applying

PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair pro-

cess. Our observations point to a greater clarification on the methodological variations related

to obtaining PRF matrices.
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