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Summary
Background Ross River virus (RRV), Australia’s most notifiable vector-borne disease transmitted through mosquito
bites, has seen increased transmission due to rising temperatures. Quantifying the burden of RRV infection
attributable to increasing temperatures (both current and future) is pivotal to inform prevention strategies in the
context of climate change.

Methods As RRV-related deaths are rare in Australia, we utilised years lived with disability (YLDs) associated with
RRV infection data from the Australian Institute of Health and Welfare (AIHW) Burden of Disease database
between 2003 and 2018. We obtained relative risks per 1 ◦C temperature increase in RRV infection from a
previous meta-analysis. Exposure distributions for each Köppen-Geiger climate zone were calculated separately
and compared with the theoretical-minimum-risk exposure distribution to calculate RRV burden attributable to
increasing temperatures during the baseline period (2003–2018), and projected future burdens for the 2030s and
2050s under two greenhouse gas emission scenarios (Representative Concentration Pathways, RCP 4.5 and RCP
8.5), two adaptation scenarios, and different population growth series.

Findings During the baseline period (2003–2018), increasing mean temperatures contributed to 35.8 (±0.5) YLDs
(19.1%) of the observed RRV burden in Australia. The mean temperature attributable RRV burden varied across
climate zones and jurisdictions. Under both RCP scenarios, the projected RRV burden is estimated to increase in the
future despite adaptation scenarios. By the 2050s, without adaptation, the RRV burden could reach 45.8 YLDs under
RCP4.5 and 51.1 YLDs under RCP8.5. Implementing a 10% adaptation strategy could reduce RRV burden to 41.8 and
46.4 YLDs, respectively.

Interpretation These findings provide scientific evidence for informing policy decisions and guiding resource allo-
cation for mitigating the future RRV burden. The current findings underscore the need to develop location-specific
adaptation strategies for climate-sensitive disease control and prevention.
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Research in context

Evidence before this study
Epidemiological studies have shown that temperature plays a
crucial role in the transmission of Ross River Virus infection
(RRV), the most notified vector-borne disease in Australia,
Western Pacific Region. However, these studies have mainly
focused on disease incidence and have not provided evidence
on the years of life lost (YLL) and years lived with disability
(YLD) caused by RRV infection, nor future burden projections
through our comprehensive literature search.

Added value of this study
To the best of our knowledge, this is the first international
study to quantify the current and future burden of RRV
attributed to increasing temperature at national level, using
Global Burden of Disease approach. We estimated the burden
of RRV attributed to increasing temperature across different
climate zones and jurisdictions in Australia, considering future
population changes and adaptation scenarios. Our findings
revealed substantial geographical variations, with the highest
burden observed in tropical climates. Additionally, our results
demonstrated that rising temperatures increased the burden
of RRV infection, with varying impacts depending on the

climate zone and jurisdiction in Australia. Furthermore, the
magnitude of this change depends on the demographic and
climate change scenarios. Notably, the change in population
size and adaptation scenarios led to a significant variation in
the temperature-attributable burden, as compared to the
differences resulting from changes in emission scenarios.

Implications of all the available evidence
Our study shows the impact of increasing temperatures on
the burden of RRV in various climate zones and jurisdictions
across Australia. Such findings will enhance our understanding
of how rising temperatures contribute to the burden of RRV
and facilitate the development of public health policies to
address the challenges posed by climate change. Additionally,
this study not only examines the variations in RRV burden
associated with temperature across different climatic zones
but also analyses the influence of adaptation scenarios and
changes in population size. These findings will provide crucial
evidence in climate change mitigation and adaptation policies
and assist in formulating regional and location-specific
adaptation strategies to reduce the burden of RRV in the
context of climate change.
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Introduction
Climate change poses a significant threat to human
health, including through the amplification of vector-
borne diseases.1,2 Ongoing climate change is causing
global shifts in temperature and precipitation patterns,
profoundly impacting the incidence, severity and dura-
tion of these diseases.3–9 The relationship between
temperature and transmission of vector-borne diseases
has been an increasing public health concern.8–10 One
such vector-borne disease that exemplifies the interplay
between climatic factors and disease transmission is
Ross River virus (RRV) infection, the most prevalent
mosquito-borne disease in Australia.7

RRV is transmitted to humans primarily through
bites of an infected mosquito and, while rarely fatal, can
result in long-term disability, impacting quality of life
for those affected.11,12, The incidence of RRV infection is
sensitive to fluctuations in climatic factors such as
temperature, rainfall and relative humidity.5,13

Epidemiological studies have demonstrated that
temperature is an important environmental determi-
nant in the transmission of RRV.14–16 Multiple studies
revealed that global warming can increase the trans-
mission and risk of RRV infection.7,17,18 Understanding
how temperature variations, especially in the context of
climate change, influence the burden of RRV infection
is important for public health preparedness and
response.5,7 However, most studies have focused on
disease incidence, overlooking years of life lost (YLL)
and years lived with disability (YLD) related to RRV
infection. Quantifying the disease burden attributed to
increasing temperature is pivotal for informing pre-
vention strategies and assessing health-related losses.19,20

While there is substantial evidence pointing to direct
influence of climatic patterns (including fluctuations in
temperature and rainfall) on the transmission of vector-
borne diseases, uncertainties persist in reliably fore-
casting the future impact of climate change on these
diseases.21 Therefore, we explore the temperature-
attributable burden of RRV infection, using health in-
dicators consistent with the Global Burden of Disease
study.22,23 The research highlights geographical dispar-
ities by estimating the burden of disease across multiple
climate zones and jurisdictions. Additionally, the study
projects the potential future impact of increasing tem-
perature on the burden of RRV under different climate,
demographic and adaptation scenarios for the 2030s and
2050s in Australia.
Methods
Burden of disease data
Data on the annual burden of RRV infection were ob-
tained from the Australian Institute of Health and
Welfare (AIHW), an official national health outcome
data custodian in Australia.12 Given the rarity of deaths
related to RRV infection in Australia, our analysis
focused solely on years lived with disability (YLDs).
YLDs represent the amount of time equivalent to one
full year of healthy life that is lost due to disability or ill
health.22,23 The AIHW provided estimates of national-
level YLD estimates for the years 2003, 2011, 2015 and
www.thelancet.com Vol 48 July, 2024
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2018. State and Territory level estimates were available
for those years (except 2003 due to data availability). For
the intervening years between 2003 and 2018, state and
territory YLDs were obtained using linear interpolation
approach, and the annual average YLDs were then
calculated for the baseline period (2003–2018). We
further disaggregated the YLD at State/Territory level to
climate zones level using the proportion of RRV cases
and population distribution in each climate zone and
jurisdiction (State and Territory), assuming the number
of cases is proportional to the number of YLD
(Table S1). The total numbers of RRV cases for the
baseline period (2003–2018) in each climate zone and
jurisdiction were sourced from the Australian National
Notifiable Diseases Surveillance System (NNDSS) pub-
lic datasets and Department of Health and aged care.24

Historical and future temperature data
Historical and future daily gridded minimum and
maximum temperature data were obtained from
Queensland Government’s Long Paddock website
which hosts the Scientific Information for Land Owners
interpolated climate datasets.25 The data presented as a
raster dataset in NetCDF (network Common Data Form)
format with a spatial resolution of 5 km by 5 km.26 The
raster data was spatially overlaid on top of the Australian
Bureau of Statistics (ABS) Statistical Area Level 2 (SA2),
which represents medium-sized general-purpose areas
where communities interact socially and economically.27

This overlay included Köppen-Geiger climate zone
maps of Australia to acquire temperature data at the
climate zone level.

Temperature projections based on Representative
Concentration Pathways (RCPs), which are greenhouse
gas concentration trajectories adopted by the IPCC, were
used.28 Specifically, RCP 4.5 and RCP 8.5, representing
the intermediate/medium and high greenhouse gases
emission scenarios, were selected for this study.28,29

Projected temperatures for the periods 2016 to 2045
centred on the 2030s, and 2046 to 2065 centred on the
2050s, were obtained from 5 km daily gridded “appli-
cation ready” data available using eight global scale
climate models (GCMs) including Access 1.0, CESM1-
CAM5, CNRM-CM5, GFDL-ESM2M, HadGEM2-CC,
CanESM2, MIROC5, NorESM1-M). Each climate pro-
jection model included daily maximum and minimum
temperatures, and the mean value was calculated from
each model. To account for variability among different
GCMs, we averaged the mean temperatures across all
eight GCMs.30,31

Population data
Population data were acquired from the ABS.32 The
baseline population for 2003–2018 was retrieved at SA2
level and summed to obtain the population in each
State/Territory and climate zone. The future population
projection based on low, medium and high growth
www.thelancet.com Vol 48 July, 2024
series for each State and Territory was also acquired
from the ABS.33 We divided the future projected popu-
lation by the baseline population for each State/Territory
to obtain the population growth factor. Subsequently,
this factor was applied to estimate the future population
size in specific climate zones within each State/
Territory.

Temperature-RRV infection relationships
Identifying the association of a disease with increased
prevalence of exposure is the initial step in estimating
attributable burden of a disease to a certain risk factor.19

The association between temperature and incidence of
RRV infection has been explored in several
studies.14,15,34–37 For this study, we used an established
association from our previously published meta-anal-
ysis.17 Briefly, the relative risks (RRs) from published
studies were standardized per 1 ◦C change in temper-
ature and a log-linear exposure–response function was
derived from these studies using random-effect meta-
analysis to describe the association between tempera-
ture and RRV infection.17 Given the likely modifying
effect of other climatic factors, we included only those
studies that accounted for potential covariates including
humidity and rainfall. In the meta-analysis, the RRs of
RRV infection per 1 ◦C increase in temperature were
analysed based on 12 Koppen-Geiger climate zones in
Australia. This approach yielded effect estimates for five
climate zones including Humid subtropical climate,
Cold semi-arid climate, Oceanic climate, Warm sum-
mer Mediterranean climate and Tropical savanna
climate. For the remaining climate zones (n = 7), we
used RRs from adjacent climate zones with a similar
annual temperature as a proxy indicator for the risk of
RRV infection associated with non-optimal tempera-
tures due to limited published studies in these zones.

Data analysis
Population attributable fraction and disease burden
The comparative risk assessment (CRA) framework,
which uses a counterfactual risk exposure, was applied
considering temperature as a monotonically increasing
risk factor with a baseline threshold or theoretical
minimum risk exposure distribution (TMRED).38 For
this study, the TMRED is the temperature at which the
RR would be the lowest in an exposure-response curve
or the exposure distribution that minimizes risk for the
population. The mean annual temperature of each
climate zone was assumed to be the TMRED. As studies
included in the systematic review and meta-analysis
used different threshold values and temperature met-
rics (minimum, maximum and mean temperature), we
chose the mean temperature as a representative metric
for this analysis. The daily mean temperatures for the
baseline period (2003–2018) and projected years (2030s
and 2050s) were arranged in increasing order and fre-
quencies were calculated using a class width of 1 ◦C.
3
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The prevalence of increasing mean temperature expo-
sure to the risk factor was calculated for each climate
zone as a proportion of days within a year having a
temperature value above the TMRED.19

After determining the TMRED, the population
attributable fraction (PAF) was calculated by assuming a
log-linear function to calculate the change in RRs above
TMRED.19 The choice of the log-linear function was
based on the observed relationship among included
studies in the meta-analysis.17

Considering different climate zones, exposure cate-
gories (c), RR specific to the climate zone, and the preva-
lence of exposure to a risk factor in each climate zone (P),
the PAF is calculated by the following generalized form39,40:

PAF= ∑ cPc (RR − 1)
∑ cPc (RR − 1) + 1

× 100..........equation (1)

where,
∑c is the sum of the proportion of the year above the

TMRED for each categorised value of temperature in the
distribution and the corresponding calculated RR (from
the log linear function) for climate zones.

RR = exp(βΔT); where RR is the calculated relative risk
of RRV infection above TMRED, ΔT is the change in
temperature above TMRED and β is the natural log of
the relative risk at TMRED. The parameter β represents
log (RR) of RRV risks associated with temperature
exposure and obtained from the meta-analysis.

The attributable disease burden for the baseline
period, 2030s and 2050s was estimated by multiplying
the PAF by the corresponding YLDs. The climate zone-
specific future temperature-attributable YLDs under
different temperature and population projections were
calculated as follows:

YLDtemp = p ∗∑(PAFi ∗ YLDi).........equation (2)

where YLDtemp, PAFi and YLDi were temperature-
attributable YLDs, PAFs and weighted YLDs at each
climate zone level, respectively and p represents the
population growth rate.

The state, territory and national attributable burdens
of RRV infection due to increasing mean temperature
were calculated by summing the subsets of temperature
attributable burden from each climate zone. Finally, to
facilitate a meaningful comparison of RRV burden
attributable to temperature across climate zones and
jurisdictions in Australia, we applied a population-
standardized YLD rate per million population.

Modelling adaptation
Considering ongoing possible intervention or socio-
economic adaptations in RRV infection control possible
adaptations scenarios are considered in this study.7,41,42

Although there are several approaches in modelling
adaptation scenarios, we chose the exposure–response
function (ERF) slope reduction approach due to its
empirical evidence base.41,42 The adaptation scenario was
developed based on exposure–response function (ERF)
slope reduction using the change in relative risk across
decades among studies included in the meta-analysis. We
divided the studies based on study period into three de-
cades and pooled the RR using random effect meta-
analysis for each decade. By pooling RRs across each
decade to obtain a single estimate per decade, our anal-
ysis showed a 5.9% reduction in the slope from the first
to the last decade.42 Based on this evidence and consid-
ering the confidence interval associated with this esti-
mate, we applied a 5% and 10% slope reduction in ERF
across all climate zones to account for adaptation as
scenario analysis, and subsequently calculated the future
PAF as mentioned earlier.

Sensitivity analysis
We ran several sensitivity analyses to test whether the
results were robust to changes in the exposure or
response of temperature-RRV curve. Temperature met-
rics, including the median of the mean temperature, the
most frequent temperatures (MFT) and the mean tem-
perature range of 17–32 ◦C, were used as TMREDs. The
choice of 17–32 ◦C aligns with the temperature range
favourable for mosquito-vectors in RRV transmission,
as described in previous studies.13 In addition, we
assumed a future non-linear exposure-response and
applied log-quadratic and log-cubic functions to calcu-
late the RR above TMRED. Furthermore, we also
considered the low and high population projection se-
ries. All analyses were performed using Microsoft Excel
and the Python 2 programming language.19,43

Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report.

Results
Descriptive analysis
Table 1 presents statistics on the baseline associations
between temperature and RRV infection, the number of
RRV infection cases, YLDs related to RRV infection, and
temperature data. The average annual mean tempera-
ture varies across climate zones in Australia, ranging
from 14.2 ± 4.3 ◦C in regions with an Oceanic climate
(Cfb) to 26.1 ± 2.3 ◦C in areas with a Tropical savanna
climate (Aw) (Figure S1). From 2003 to 2018, a total of
77,949 cases of RRV infection were reported, resulting
in an annual average of 187.7 ± 33.7 YLDs per year. The
highest rate of RRV cases (2626 cases per 100,000
population) and burden (80.3 YLDs per million) were
www.thelancet.com Vol 48 July, 2024
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Climate zones RR (95% CI)17 Number of cases Mean YLD(SD)a TMREDs

Mean (SD) ◦C Median ◦C MFT
◦C

17–32 ◦Cb

Af (Tropical rainforest) 1.24 (1.18–1.30)c 589 1.8 (0.4) 23.2 (2.6) 23.4 25.4 18.4

Am (Tropical monsoon) 1.24 (1.18–1.30)c 1894 5.8 (1.2) 24.7 (2.4) 24.9 27.1 20.1

Aw (Tropical savanna) 1.24 (1.18–1.30) 8585 23.3 (5.1) 26.1 (2.3) 27.0 27.7 21.7

BSk (Semi-Arid, cold desert) 1.02 (0.77–1.35) 6303 16.3 (0.3) 16.4 (4.9) 16.5 9.9 17.0

BSh (Semi-Arid, hot desert) 1.02 (0.77–1.35)d 4679 11.2 (0.9) 22.1 (4.9) 22.9 27.2 17.0

BWh (Arid, hot desert) 1.02 (0.77–1.35)d 2045 2.7 (1.6) 22.2 (5.5) 23.0 28.2 17.0

BWk (Arid, cold desert) 1.02 (0.77–1.35)d 1346 3.8 (0.5) 17.6 (5.5) 17.5 10.2 17.0

Cfa (Humid subtropical, hot summer) 1.11 (1.03–1.19) 34,617 94.8 (2.2) 19.3 (3.9) 19.7 13.2 17.0

Cfb (Oceanic, warm summer) 1.11 (1.03–1.19)e 4051 11.7 (3.4) 14.2 (4.3) 14.2 10.3 17.0

Cwa (Humid subtropical dry-winter) 1.11 (1.03–1.19)e 1277 3.9 (0.7) 22.7 (3.4) 23.4 7.8 17.0

Csb (Mediterranean, warm summer) 1.08 (1.05–1.11) 2750 4.6 (0.5) 15.6 (3.9) 15.3 22.8 17.0

Csa (Mediterranean hot summer) 1.08 (1.05–1.11)f 9813 7.8 (0.9) 18.5 (4.3) 18.2 25.8 17.0

RR, Relative risk; CI, Confidence interval; SD, Standard deviation; MFT, Most frequent temperature. aThe mean YLD is the annual average across baseline period (2003–2018)
for each jurisdiction. bThe observed lowest value in the range 17-32 ◦C. cAw relative risk used as proxy. dBSk relative risk used as proxy. eCfa relative risk used as proxy. fCsb
relative risk used as proxy.

Table 1: Relative Risks (RR) per 1 ◦C increase in temperature, RRV infection cases, mean annual YLD and theoretical minimum risk exposure
distribution (TMREDs) by Köppen-Geiger climate zone in Australia, 2003–2018.

Articles
observed in the Af climate zone, while the lowest rate (67
cases per 100,000) and burden (1.9 YLDs per million)
were recorded in the Cfb climate zone (Table S2). At the
jurisdiction level, the Northern Territory (NT) had the
highest burden, with 41.7 YLDs per million, followed by
Queensland (QLD) with 25.7 YLDs per million. Notably,
despite the occurrence of RRV cases, YLDs related to
RRV infection were non-existent in the Australian Capital
Territory (ACT) and Tasmania (TAS) (Table 2).

Temperature-RRV infection association
As shown in Table 1, there was an increase in the risk of
RRV infection associated with a rise in temperature
across all climate zones, although the association had a
wider confidence interval in BWh, BWk, BSh, BSk
climate zones. The largest significant association was
State and territory Population YLDs (rate per million) % of nation

NSW 7,203,978 23.5 (3.3) 12.5

VIC 5,554,022 22.7 (2.1) 12.1

QLD 4,408,955 113.1 (5.7) 60.3

WA 2,305,735 10.1 (1.4) 5.4

SA 1,630,083 8.8 (1.4) 4.7

TAS 505,773 0.0 (0.0) 0.0

NT 227,968 9.5 (1.7) 5.1

ACT 368,306 0.0 (0.0) 0.0

National 22,204,820 187.7 (1.5) 100

YLDs: Years lived with disability; NSW: New South Wales; VIC: Victoria; QLD: Queenslan
Territory; ACT: Australian Capital Territory.

Table 2: Temperature-attributable YLD due to RRV infection by state and te

www.thelancet.com Vol 48 July, 2024
observed in tropical climate zones including Aw, Am,
and Af with an RR of 1.24 (95% CI: 1.18–1.30).

Population attributable fraction and temperature
attributable burden of RRV infection
We estimated the PAF and YLDs attributable to
increasing mean temperature in different climate zones
and jurisdictions (Fig. 1 and Table 2). The PAF of RRV
infection associated with increasing mean temperature
varied considerably across climate zones. Tropical
climate zones including Am, Aw and Af had the highest
PAF with 28.8%, 28.0% and 24.4%, respectively
(Table S2).

Nationally, 35.8 (±0.5) YLDs equivalent to 1.6 YLDs
per million population were attributed to increasing
mean temperature in Australia. This accounted for
al YLDs Temperature attributable YLDs

YLDs (SD) % of state YLDs YLDs per million population

4.1 (0.2) 17.4 (0.7) 0.57 (0.1)

3.2 (0.2) 14.1 (0.7) 0.58 (0.1)

23.7 (0.8) 21.0 (1.0) 5.40 (1.2)

1.5 (0.1) 14.9 (0.8) 0.65 (0.2)

0.8 (0.1) 9.1 (0.8) 0.50 (0.1)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

2.5 (0.2) 26.3 (1.0) 10.9 (1.4)

0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

35.8 (0.5) - 1.6 (0.4)

d; WA: Western Australia; SA: South Australia; TAS: Tasmania; NT: Northern

rritory in Australia, 2003–2018.

5
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Fig. 1: Distribution of estimated population attributable fraction related to RRV infection by Koppen-Geiger climate zones in Australia across the
baseline period 2003–2018.
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19.1% of the total YLDs related to RRV infection being
attributable to increasing mean temperature. At climate
zone level, the highest and the lowest YLDs attributable
burden to increasing mean temperature per million
individuals was observed in Af (19.9 YLDs per million)
and BSk (0.4 YLDs per million) climate zones, respec-
tively (Table S2).

Further analysis at the jurisdiction level revealed that
Queensland (QLD) had the highest proportion of
temperature-attributable burden, accounting for 23.8
YLDs, which is 21% of the total YLD in the state (Table 2).
Excluding ACT and Tasmania, where the YLD was nil,
South Australia (SA) had the lowest proportion of
temperature-attributable YLDs, with 0.8 YLDs, which is
9.1% of the SA total YLD. When considering the popu-
lation size of each state, the attributable burden per
million population ranged from 0.5 to 10.9 YLDs across
states and territories. The temperature-attributable burden
per million population at the state and territory levels was
below the national average in all states except the North-
ern Territory (NT) and QLD. In NT and QLD, the burden
was approximately seven and three times as high,
respectively, as the national average YLDs per million
population (Table 2).

Fig. 2 depicts the percentage distribution of YLDs
per million population based on climate zone across
states and territories. It is evident that the Aw climate
zone accounted for the highest proportion of YLDs per
million population in the Northern Territory (NT) and
Western Australia (WA), with percentages of 94.1% and
64.2% respectively. Conversely, in QLD, more than one-
third of the temperature-attributable burden was linked
to the Af climate zone. Additionally, the BWk, Cfa, and
BSh climate zones in SA, VIC, and NSW respectively
registered the highest temperature-attributable YLDs
per million population.

Projected temperature and future attributable
YLDs under population change and adaptation
scenarios
Compared to the baseline period, the mean annual
temperature is projected to increase under both RCP 4.5
and RCP 8.5 scenarios in the 2030s and 2050s, with
distinct differences in the extent of temperature change
across climate zones. In the 2030s, the highest mean
annual temperature was observed in the Aw climate
zone, with an average of 27.1 ◦C ± 2.3 under RCP 4.5
and 27.3 ◦C ± 2.3 under RCP 8.5. Similarly, for the
2050s, the projected mean annual temperature for the
Aw climate zone was 27.4 ◦C ± 2.3 under RCP 4.5 and
27.8 ◦C ± 2.3 under RCP 8.5. In the other climate zones,
the projected average annual mean temperature anom-
aly ranges from 0.9 ◦C to 2.3 ◦C under RCP 4.5 and
1.3 ◦C–2.8 ◦C under RCP 8.5 in the 2050s, compared to
the baseline period (Supplementary Material, Table S1).

The PAF for each climate zone under selected RCPs
(RCP4.5 and RCP8.5) and adaptation scenarios (5% and
10% slope reduction in ERF) is presented in the
www.thelancet.com Vol 48 July, 2024
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Supplementary Material (Figures S2 and S3). Despite
applying adaptation scenarios, a gradual increase in
PAFs was observed across climate zones in future pe-
riods with the rise in temperature.

Table 3 presents the overall projected mean
temperature-attributable YLDs under two population
and two adaptation scenarios. The details for each
jurisdiction are presented in the Supplementary
Material (Table S3). Fig. 3 shows projected YLDs per
million population and the percentage change compared
to the baseline period across different climate zones.
Assuming a constant exposure-response function and
TMRED, if the baseline population of Australia is
exposed to the projected change in temperature by the
Adaptation scenarios RCP Temperature attri
(SD)a under consta

2030

Without adaptation 4.5 41.5 (0.5)
(16.5%)

8.5 43.3 (0.5)
(21.8%)

Adaptation (5%) 4.5 39.6 (0.4)
(9.8%)

8.5 41.3 (0.4)
(15.9%)

Adaptation (10%) 4.5 37.3 (0.4)
(5.3%)

8.5 39.2 (0.4)
(10.1%)

aTemperature attributable YLDs (percent change compared to the baseline period).

Table 3: Projected temperature attributable YLDs in 2030s and 2050s under s
two representative concentration pathways (RCP4.5, RCP8.5) and two adap

www.thelancet.com Vol 48 July, 2024
2050s under RCP 4.5 and RCP 8.5, the mean
temperature-attributable YLDs would increase by 29.3%
(from 35.8 YLDs to 45.8 YLDs) and by 46.6% (from 35.8
YLDs to 51.1 YLDs), respectively. In the same period
and under both RCP scenarios, applying a 5% and 10%
adaptation scenario would result in a lower temperature-
attributable burden (Table 3). For example, with a 10%
adaptation scenario, the temperature-attributable
burden in 2050s would increase by 16.7% (from 35.8
YLDs to 41.8 YLDs) and 29.6% (from 35.8 YLDs to 46.4
YLDs) under RCP 4.5 and RCP 8.5, respectively (Ta-
ble 4). Although the overall temperature-attributable
YLDs increased in both the 2030s and 2050s under
both emission scenarios, applying a 10% adaptation
butable YLDs
nt population

Temperature attributable YLDs (SD)a

under Medium population growth

2050 2030 2050

45.8 (0.5)
(29.3%)

55.5 (0.5)
(55.0%)

76.3 (0.6)
(113.4%)

51.1 (0.6)
(46.6%)

58.5 (0.5)
(62.3%)

85.4 (0.6)
(141.9%)

43.7 (0.4)
(23.5%)

53.3 (0.4)
(47.8%)

72.9 (0.4)
(103.6%)

48.8 (0.5)
(39.9%)

55.9 (0.4)
(54.5%)

81.5 (0.5)
(130%)

41.8 (0.4)
(16.7%)

50.6 (0.4)
(40.5%)

69.8 90.4)
(94.1%)

46.4 (0.5)
(29.6%)

53.1 (0.4)
(46.9%)

77.6 (0.4)
(119.8%)

cenarios of constant population and medium population growth series,
tation scenarios (5% and 10% slope reduction in the ERF).
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Fig. 3: (A) Projected YLDs per million and (B) percent changes of temperature-attributable YLDs in the 2030s and 2050s compared with the
baseline period (2003–2018) under RCP 4.5 and RCP 8.5 emission scenarios in Australia.
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scenario in the 2030s under RCP 4.5 reduced the
temperature-attributable YLDs across most climate
zones and resulted in the same YLD as the baseline
period (Fig. 3 and Table S4).

A change in population size resulted in significant
differences in the temperature attributable burden. For
a constant population, the national temperature-
attributable burden is projected to increase by 21.8%
and 46.6% under RCP 8.5 in the 2030s and 2050s,
respectively. In contrast under the same RCP 8.5 sce-
nario, if the projected changes in temperature are
combined with 10% adaptation scenarios and projected
population growth, the temperature attributable YLDs
would increase by 62.3% and 141.9% % in 2030s and
2050s, respectively (Table 3).

Sensitivity analysis
We compared the differences in temperature attribut-
able YLDs arising from the choice of TMRED, forms of
exposure-response functions and population projection
series. The results of sensitivity analyses showed vari-
ations in increasing temperature attributable YLDs due
to a change in TMRED. Our findings showed that the
results obtained from both average mean and median
temperatures were nearly identical (Table S5). Mean-
while, MFT and 17–32 ◦C TMREDs resulted in large
difference in temperature attributable YLDs compared
to the average mean annual temperature (Tables S6
and S7). In four of the 12 climate zones, change in
TMRED, particularly the use of MFT resulted in a
larger change in temperature attributable YLDs than a
change caused by any of the other TMREDs. Changing
the exposure-response function from linear to
quadratic or cubic functions also resulted in a change
in high temperature attributable YLDs but typically
smaller than the observed variation from a change in
TMRED (Table S8). Changing the population size to
low and high projection series also resulted in a sub-
stantial change in temperature attributable YLDs
compared to the baseline period or under the medium
population projection series (Table S9). The sensitivity
analyses showed a change in TMRED can lead to
substantial differences in the PAF compared to altering
the exposure-response function.
Discussion
Using YLD as an indicator, we quantified the current
and future burden of RRV infection attributed to
increasing mean temperature in Australia, and found
that, during the baseline period, 19.1% of YLDs were
attributed to increasing mean temperatures, with varia-
tions across different climate zones and jurisdictions.
The Northern Territory had the highest attributable
burden rate at 10.9 YLD per million population, fol-
lowed by Queensland at 5.4 YLD per million. These
rates were higher compared to the national average of
1.6 YLD per million. On the other hand, South Australia
(excluding Tasmania and ACT with no burden) had the
lowest attributable burden. Additionally, the tropical
climate zones Af, Aw, and Am had higher attributable
burden rates at 19.9, 12.8, and 9.2 YLD per million,
respectively. The observed higher temperature attribut-
able burden rates in the Northern Territory and
www.thelancet.com Vol 48 July, 2024
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Queensland are consistent with the overall RRV burden
estimated by the Australian Burden of Disease Study
2011, 2015, and 2018 studies, which showed that NT
and QLD had a 50% greater burden of RRV infection
compared to the national average.12

Although the relative risks per degree increase in
temperature were higher than one across most climate
zones, there was variation in temperature attributable
YLD between jurisdictions. This was particularly notice-
able in Tasmania and ACT, with nil burden related to
RRV infection despite being located in climate zones with
a large PAF. In contrast, only, some parts of the NT and
QLD are located in tropical climate zones with the highest
PAF, but showed higher burden rates at both states. The
observed variation could be attributed to the complex
interplay of factors such as population size, human
behaviour and community health knowledge, access to
health care, socioeconomic conditions, remoteness,
adaptive capacities, and regional susceptibility.

We projected future temperature attributable burden
of RRV under two RCP scenarios for the 2030s and
2050s, while considering two adaptation scenarios and
changes in population size. The findings showed that
the YLDs related to increasing mean temperature are
projected to increase under both RCP emission sce-
narios, even with adaptation considered. The observed
increase in YLDs attributable to increasing mean tem-
perature aligns with the increase in projected tempera-
ture anomaly under RCP4.5 and RCP8.5 for 2016–2045
and 2046–2060.44 However, the extent of change in
temperature attributable burden showed substantial
differences under different adaptation and population
size changes. Without adaptation, under RCP8.5 and
constant population, the temperature attributable
burden is estimated to increase by 21.8% and 46.6% in
2030 and 2050, respectively.

Meanwhile, accounting with a 10% adaptation,
resulted a maximum increase of 33.2% by 2050 under
RCP8.5. The findings indicate that failure to consider
adaptation would result in a substantial future burden
associated with temperature, highlighting the need for
early preventive measures.

We also found that the change in temperature
attributable YLDs was greater when considering a
change in population size, compared to the difference
observed between RCP emission scenarios. For
example, in the 2030s, the observed temperature
attributable YLDs difference between RCP4.5 and
RCP8.5 was only 1.8 YLDs (from 37.3 to 39.2 YLDs)
under constant population and 10% adaptation. How-
ever, during the same period, under RCP 4.5 and 10%
adaptation, a medium population growth resulted in an
additional 13.3 YLDs (from 37.3 to 50.6 YLDs)
compared to the baseline period. This highlights the
significant importance of accounting for population
projection when estimating the future burden of dis-
ease.45 It is important to interpret the results cautiously,
www.thelancet.com Vol 48 July, 2024
as the increase correlates with a change in population
size.

The results of sensitivity analyses showed significant
variations in high temperature attributable burden due
to alternative choices of TMRED. These findings vali-
date the results observed in previous research, which
consistently showed the importance of choosing
TMREDs when calculating temperature attributable
fractions for various health outcomes.46 The significant
variation from MFT could be due to the fact that MFT
values across most climate zones including BWk, BWh,
Cfa, Cfb, Csb were far below 17 ◦C (Table S6) which is
considered the minimum temperature for transmission
of RRV. It supports a preference for mean temperature
over MFT based on the proximity of the mean temper-
ature values to the minimum critical threshold (17 ◦C)
for transmission of RRV. Considering the intricate
transmission cycle of the virus and the vectors, we
employed quadratic and cubic functions to explore the
non-linear relationship between temperature and RRV
incidence in our analysis. While differences in
temperature-attributable YLDs were observed, they were
minor compared to the differences observed between
TMREDs.

This study had several limitations. Firstly, the
absence of studies from specific climate zones necessi-
tates relying on a single estimate to represent multiple
climate zones. This becomes particularly challenging
when we use a single effect estimate from one study to
represent three tropical climates which could introduce
a significant amount of uncertainty.

Secondly, this study focuses on the aspect of climate
change specifically related to rising temperatures.
However, it is important to recognize the significance of
other climatic factors, particularly the impacts of
altering rainfall patterns as highlighted in previous
studies.7,47 Further research is needed to understand the
influence of climate change on rainfall patterns and its
connection with RRV transmission.

Moreover, Given the complex relationship between
the host, vectors and human, transmission of RRV
disease by diverse mosquito species in varying climates
and environmental conditions, forecasting the disease
using a single set of variables will introduce further
uncertainty. To fully comprehend the risks and dy-
namics of RRV transmission, regional climate change
models must consider additional variables beyond
temperature, considering the variation in RRV trans-
mission across different regions.18

Thirdly, we assumed that the TMRED and the popu-
lation growth at each SA2 level would remain constant
throughout the future period. However, this assumption
could potentially result in an underestimation or over-
estimation of the future burden. Population increases in
high-risk areas, such as those adjacent to waterways or
coastal marshes, may lead to a higher burden attributable
to temperature than population increases in other areas.
9
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Fourthly, due to the lack of RRs based on age
and socioeconomic characteristics from the previous
studies, we were not able to investigate the burden
variations by age and socioeconomic groups. Moreover,
when calculating the mean YLD for the baseline period,
we utilized YLD data from different periods and
implemented linear interpolation to fill missing data
between years. This method assumes a consistent rate
of change between the observed data points. However, it
is crucial to acknowledge that this approach may not
accurately reflect the actual underlying trend for those
periods with missing data. Moreover, the limited data
available for those periods made it challenging to sepa-
rate the data for both calculation and validation
purposes.

Lastly, our estimation of adaptation was based on
empirical data, that assumed a similar slope reduction
in ERF across all climate zones, which could potentially
lead to an over or underestimation of future YLDs in
some climate zones.

This study has several strengths. Firstly, we used
YLDs related to RRV infection instead of RRV inci-
dence. This approach allows for a direct comparison of
the burden associated with RRV to other diseases for
further intervention. Secondly, we investigated the
attributable burden at the subnational level (states and
territories) and across different climate zones, which is
key to formulate effective region-specific adaptation
strategies.48 Thirdly, the use of daily temperature data to
calculate the prevalence of exposure is another strength
of this study. Daily data offers the highest temporal
resolution compared to weekly or monthly data,
enhancing the ability to detect short-term changes.49,50

Considering the impact of temperature on various as-
pects of RRV transmission, the daily temperature data
capture all the temporal delays in disease incidence,
including the life-history, characteristics of disease vec-
tors and hosts, contact rates, disease transmission dy-
namics, viral replication, and the duration between
infection and the reporting of cases. Fourthly, we
considered the variability in projected future increasing
temperature attributable YLDs resulting from alterna-
tive TMREDs, exposure-response function, adaptation
scenarios and population size. This approach enabled us
to capture the uncertainty inherent in estimating the
burden attributed to increasing temperature, accounting
for fluctuations in the factors used in estimating future
burden. Lastly, we have considered the future popula-
tion size and possible adaptation scenarios. Applying
both scenarios would minimize, potential over-
estimation or under estimation of future temperature
attributable burden. This further provides public health
authorities with the information needed to inform de-
cisions, target action and develop sustainable health
systems capable of meeting the challenges posed by
climate change.
This study presented the current and future burden
of RRV infection attributed to increasing mean tem-
perature using YLDs as an indicator of the burden of
disease. Overall, rising temperature increases the
burden of RRV infection but varies across different
climate zones and judications in Australia with higher
burden in tropical climate zones. Moreover, the extent
of change depends on the population size and adapta-
tion scenarios considered. The change in population
size and adaptation scenarios resulted a significant
change in temperature attributable burden compared to
a change resulted from a difference in emission
scenarios.

The results clearly demonstrate that it is crucial to
incorporate adaptation scenarios and population
changes in future projections of the burden of disease
associated with climate change. These findings provide
valuable evidence to support policy decisions and guide
the allocation of resources towards mitigating the future
impact of RRV in the context of climate change.
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