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Abstract: A Quantitative Structure-Activity Relationship (QSAR) approach for classification 

was used for the prediction of compounds as active/inactive relatively to overall biological 

activity, antitumor and antibiotic activities using a data set of 1746 compounds from 

PubChem with empirical CDK descriptors and semi-empirical quantum-chemical 

descriptors. A data set of 183 active pharmaceutical ingredients was additionally used for 

the external validation of the best models. The best classification models for antibiotic and 

antitumor activities were used to screen a data set of marine and microbial natural products 

from the AntiMarin database—25 and four lead compounds for antibiotic and antitumor 

drug design were proposed, respectively. The present work enables the presentation of a 

new set of possible lead like bioactive compounds and corroborates the results of our 

previous investigations. By other side it is shown the usefulness of quantum-chemical 

descriptors in the discrimination of biologically active and inactive compounds. None of 

the compounds suggested by our approach have assigned non-antibiotic and non-antitumor 

activities in the AntiMarin database and almost all were lately reported as being active in 

the literature. 
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1. Introduction 

Natural products (NPs), or synthetic products inspired by NPs, have been the single most productive 

source leads for the development of drugs. In fact, more than half of the approved drugs from 1981 to 

2010 were based on NPs [1]. From the detection of the antibiotics properties of penicillin by Fleming 

in 1929, through “the Golden Age of Antibiotics” when almost all groups of important antibacterial 

antibiotics (e.g., tetracyclines cephalosporins, aminoglycosides, and macrolides) were discovered and 

into the late 20th century, the promise of unprecedented structural diversity and potent biological activity 

from microbial secondary metabolites remained a powerful force driving to pharmaceutical discovery. 

Microbes are the most prolific source of bioactive metabolites with a rate of 44%–46% comparing with 

the overall rate of 20%–25% for all NPs sources [2]. Furthermore bacteria are an exceptional source of 

small molecule chemical diversity. Although the terrestrial bacteria had been more studied in the past, 

a growing interest in its distribution and ecological role in the marine environment has been observed. 

The oceans are a highly complex microbiological environment with typical microbial abundances of 

106 and 109 per ml in seawater and ocean-bottom sediments, respectively [3]. For instances, the rare 

and complex densely functionalized γ-lactam-β-lactone pharmacophore, salinosporamide A (trade 

name Marizomib, NPI-0052), from the seawater-obligate marine actinomycete bacteria, Salinispora 

tropica, is heading for phase II clinical trials against cancer, but may not be a clinical candidate due to 

the demise of Nereus Pharmaceuticals in late 2013 [4]. As marine organisms are an important source 

of structurally diverse and biologically active secondary metabolites, a new branch of NPs chemistry 

had been fully established—Marine Natural Products (MNPs). The current success rate of discovery 

from the marine world: seven clinically approved drugs [5], (four anticancer, one antiviral, one pain 

control, and one hypertriglyceridemia), from 22,000 discovered molecular entities [6] (e.g., one drug 

per 3140 NPs described) approximately 1.7- to 3.3-fold better than the industry average (one in  

5000–10,000 tested compounds) [7]. 

Currently, there are facilities for high-throughput screening available both in academic labs as well 

as in drug pharmaceutical companies, but the cost of random screening for very large collections of 

compounds can nevertheless be prohibitive. Thus it makes sense to use chemoinformatics approaches 

for the virtual screening of the most probable active compounds. Although, in the last years few 

computational approaches have been applied for in silico screening of NPs [8–16]. This is a field that can 

be significantly improved by the modeling of data from large databases containing information relatively 

to biological activities, which are becoming available to the scientific community. AntiMarin [17] is a 

good example of a powerful database, which contains approximately 50,000 compounds from marine 

macroorganisms and both marine and terrestrial microorganisms. This database is, in fact, the result of 

a fusion between AntiBase [18] (a database of all terrestrial and marine microbial NPs) and MarinLit [6] 



Molecules 2015, 20 4850 

 

 

(a database of MNPs literature). Therefore, besides MNPs we will refer the NP derived from microbial 

source as microbial natural products MbNPs, accounting for those of terrestrial origin. 

In the last years quantum-chemical descriptors have been used with success in a great variety of 

SPR/QSPR and SAR/QSAR applications from prediction of chemical reactivities, physicochemical 

properties, partition coefficients, chromatographic retention indexes, and biological activities [19].  

In the context of QSAR studies quantum-chemical descriptors, e.g., net atomic charges, HOMO and 

LUMO energies, hardness, chemical potential, electrophilicity index, have been shown to be useful  

in the estimation of various biological activities, for example in studies related with estimation of 

toxicity, mutagenicity and carcinogenicity as well as in studies of their mechanisms of action [20–22]. 

The usefulness of these descriptors was also been demonstrated by the estimation and study of 

antioxidant, antitumor or antibacterial activities. Theoretical studies of the electronic properties and 

chemical reactivity of quercetin [23], catechin and epicatechin [24] were as well reported. In other 

studies, the electrophilicity index was related to the ability of the NPs isoprekinamycin, kinamycins 

and lomaiviticin A acting as antitumor and antibacterial agents [25], to study the antileukaemic activity 

of phenol [26], and in suppression of breast cancer by chemical modulation of vulnerable zinc fingers 

in estrogen receptors [27]. Quantum-chemical descriptors have also been used in the analysis of the 

relations between the structural properties and the antitumoral activity of synthetic chalcones [28]. The 

antimicrobial activity of N-phenylbenzamide derivatives [29] and the antiparasitic activity of the 

nifurtimox analogues [30] are also correlated with electrophilicity index. In our group the combination 

of quantum chemical and empirical descriptors were used in the past to establish QSRR models for the 

estimation of Mayr electrophilicity with great success [31]. 

The present study focuses on the application of machine learning (ML) techniques to exploit  

lead-like molecules en route to antitumor and antibiotic drugs from 418 MNPs and MbNPs (extracted 

from the AntiMarin database, AntiMarin set). The models were developed using 1746 active and  

non-active compounds from the PubChem database. State-of-the-art ML algorithms, such as Support 

Vector Machines (SVMs), Random Forests (Rfs) and Classification Tree (CTs), were compared to 

predict the two classes (i.e., active and non-active compounds) in the following classification tasks:  

(1) the overall biological activity; (2) the antitumor activity; and (3) the antibiotic activities. For each 

task three models were built using: 232 CDK descriptors, eight semi-empirical quantum-chemical 

descriptors calculated by the PM6 method (PM6 descriptors) and finally using simultaneously CDK 

descriptors and PM6 descriptors. Using internal (cross-validation and out-of-bag estimation on the 

training set) and external validation (on two external data sets from PubChem, test set I comprises of 

863 compounds and test set II comprises of 183 active pharmaceutical ingredients) tests all of these 

QSAR models have been validated. In addition, a further test set (AntiMarin set) extracted from the 

AntiMarin database was used but not with the main purpose of external model validation. The results 

obtained with these three approaches were compared with our recently published work using only 

CDK descriptors [15]. 
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2. Results and Discussion 

2.1. Establishment of QSAR Classification Models 

The results for internal validation (ten-fold cross-validation with SVM and out-of-bag estimation 

with Rf on the training set) and external validation (on test set I) for each task (i.e., overall biological 

activity, antitumor and antibiotic activities) are presented in Tables 1–3. 

Table 1. Comparison of different ML techniques and descriptors for building overall 

biological activity classification models. 

 SVM a CT Rf b 

Training set/Test Set I/AntiMarin Set 

Descriptors Class Size 

Correct Predictions 

Sensitivity c 

Specificity d 

G-mean e 

CDK f 

Active 
1612/798/315  

Non-active 
134/65/103 

Active 
1199/646/242 

Non-active 
79/34/30 

Active 
1599/782/312 

Non-active 
32/5/1 

Active 
1114/566/251 

Non-active 
93/53/33 

0.74/0.81/0.77 0.99/0.98/0.99 0.69/0.71/0.80 

0.59/0.52/0.29 0.24/0.08/0.01 0.69/0.82/0.32 

0.66/0.65/0.47 0.49/0.27/0.10 0.69/0.76/0.51 

PM6 g 

Active 
1043/535/252 

Non-active 
60/40/23 

Active 
1603/795/311 

Non-active 
14/3/1 

Active 
1061/532/248 

Non-active 
63/38/23 

0.65/0.67/0.80 0.99/1.00/0.99 0.66/0.67/0.79 

0.45/0.62/0.22 0.10/0.05/0.01 0.47/0.58/0.22 

0.54/0.64/0.42 0.32/0.21/0.10 0.56/0.62/0.42 

CDK+PM6 

Active 
1244/649/236 

Non-active 
75/37/29 

Active 
1598/764/305 

Non-active 
49/13/3 

Active 
1124/577/256 

Non-active 
89/50/27 

0.77/0.81/0.75 0.99/0.96/0.97 0.70/0.72/0.81 

0.56/0.57/0.28 0.37/0.20/003 0.66/0.77/0.26 

0.66/0.68/0.46 0.60/0.44//0.17 0.68/0.75/0.46 

Notes: a Ten-fold cross-validation; b Out-of-bag; c The ratio of true positives to the sum of true positives and 

false negatives; d The ratio of true negatives to the sum of true negatives and false positives; e The square root 

of the product of sensitivity and specificity; f QSAR model built using 232 CDK descriptors; g QSAR model 

built using 8 quantum-mechanical descriptors calculated by the semi-empirical method PM6. 
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Table 2. Comparison of different ML techniques and descriptors for building antitumor 

activity classification models. 

 SVM a CT Rf b 

Training set/Test Set I/AntiMarin Set 

Descriptors Class Size 

Correct Predictions 

Sensitivity c 

Specificity d 

G-mean e 

CDK f 

Active 
880/438/58 
Non-active 

866/425/360 

Active 
707/352/15 
Non-active 

556/291/220 

Active 
735/354/12 
Non-active 

631/296/245 

Active 
763/366/22 
Non-active 

675/348/247 

0.80/0.80/0.26 0.84/0.81/0.17 0.87/0.84/0.38 

0.64/0.68/0.61 0.73/0.70/0.68 0.78/0.82/0.69 

0.72/0.74/0.40 0.78/0.75//0.34 0.82/0.83/0.51 

PM6 g 

Active 
533/256/23 
Non-active 

511/255/209 

Active 
663/306/30 
Non-active 

475/204/157 

Active 
543/273/22 
Non-active 

507/247/188 

0.61/0.58/0.40 0.75/0.70/0.52 0.62/0.62/0.38 

0.59/0.60/0.58 0.55/0.48/0.44 0.59/0.58/0.52 

0.60/0.59/0.48 0.64/0.58/0.48 0.60/0.60/0.44 

CDK+PM6 

Active 
689/344/12 
Non-active 

620/313/244 

Active 
735/354/12 
Non-active 

631/296/245 

Active 
763/374/18 
Non-active 

679/344/256 

0.78/0.79/0.21 0.84/0.81/0.17 0.87/0.85/0.31 

0.72/0.74/0.68 0.73/0.70/0.68 0.78/0.81/0.71 

0.75/0.76/0.37 0.78/0.75//0.34 0.82/0.83/0.47 

Notes: a Ten-fold cross-validation; b Out-of-bag; c The ratio of true positives to the sum of true positives and 

false negatives; d The ratio of true negatives to the sum of true negatives and false positives; e The square root 

of the product of sensitivity and specificity; f QSAR model built using 232 CDK descriptors; g QSAR model 

built using 8 quantum-mechanical descriptors calculated by the semi-empirical method PM6. 

An additional test set (AntiMarin set) extracted from the AntiMarin database was also used but not 

with the main purpose of external model validation. The AntiMarin data set was screened by the 

developed models to find lead-like molecules en route to antitumor and antibiotic drugs, which, 

indeed, is the core of the presented. Moreover, the inclusion of quantum-chemical descriptors, which 

have been long used in QSAR studies in biochemistry, allows the opportunity of evaluating their 

importance in the modeling of overall biological, antitumor, and antibiotic activities. 

The best model was accomplished for each task with Rfs that showed a better performance when 

compared to a single CT and SVMs in the prediction of the overall biological, antitumor, and antibiotic 

activities for test set I using both the 232 CDK descriptors and the 8 PM6 descriptors, taking into 

account the value of the G-mean (Tables 1–3). The predictions obtained from these models using 

simultaneously the CDK and PM6 descriptors are slightly better than those using only the CDK 
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descriptors, Tables 1–3. However, for all tasks, the performance of the models built only with PM6 

descriptors is worse than that obtained using only the CDK descriptors. As expected the predictive 

power (taking into account the value of the G-mean for test set I) of CT is lower than that obtained for 

the other two ML techniques for almost all the activity models in the different approaches (i.e., CDK, 

PM6, and CDK+PM6 models). However a CT has the advantage of establish a few simple rules that 

can provide insights into the properties drug profile with a given biological activity. 

Table 3. Comparison of different ML techniques and descriptors for building antibiotic 

activity classification models. 

 SVM a CT Rf b 

Training set/Test Set I/AntiMarin Set 

Descriptors Class Size 

Correct Predictions 

Sensitivity c 

Specificity d 

G-mean e 

CDK f 

Active 
642/326/228 
Non-active 

1104/537/190 

Active 
483/236/159 
Non-active 

997/485/126 

Active 
514/246/150 
Non-active 

1049/484/123 

Active 
535/268/163 
Non-active 

1045/502/118 

0.75/0.72/0.70 0.80/0.76/0.66 0.83/0.82/0.71 

0.90/0.90/0.66 0.95/0.90/0.65 0.95/0.93/0.62 

0.82/0.81/0.68 0.87/0.83//0.65 0.89/0.88/0.67 

PM6 g 

Active 
440/227/144 
Non-active 
642/302/64 

Active 
182/83/48 
Non-active 

995/484/153 

Active 
432/229/136 
Non-active 
668/307/66 

0.69/0.70/0.63 0.28/0.26/0.21 0.67/0.70/0.60 

0.58/0.56/0.34 0.90/0.90/0.81 0.60/0.57/0.35 

0.63/0.63/0.46 0.50/0.48/0.41 0.64/0.63/0.46 

CDK+PM6 

Active 
485/236/161 
Non-active 

994/485/124 

Active 
514/246/150 
Non-active 

1049/484/123 

Active 
536/266/161 
Non-active 

1047/504/120 

0.76/0.72/0.71 0.80/0.76/0.66 0.83/0.82/0.71 

0.90/0.90/0.65 0.95/0.90/0.65 0.95/0.94/0.63 

0.82/0.81/0.68 0.87/0.83//0.65 0.89/0.88/0.67 

Notes: a Ten-fold cross-validation; b Out-of-bag; c The ratio of true positives to the sum of true positives and 

false negatives; d The ratio of true negatives to the sum of true negatives and false positives; e The square root 

of the product of sensitivity and specificity; f QSAR model built using 232 CDK descriptors; g QSAR model 

built using 8 quantum-mechanical descriptors calculated by the semi-empirical method PM6. 

Moreover, the best Rfs models were further validated using a test set II comprising 183 active 

pharmaceutical ingredients (APIs) also extracted from PubChem. The results are shown in Table 4. 

Although, the predictions obtained for the test set II using the CDK and PM6 descriptors are, in 

general, better than those obtained using only the CDK or PM6 descriptors, it appears that the 
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importance of the PM6 descriptors is greater, for this data set, than that for the test set I. These results 

will be discussed in leading topics presented in the following sections.  

Table 4. Rfs predictions of the overall biological activity, antitumor and antibiotic 

activities for the test set II. 

 CDK a PM6 b CDK+PM6 

Model Class Size 

Correct Predictions 

Sensitivity c 

Specificity d 

G-mean e 

Overall 

Active 
183 

Non-active 
0 

Active 
114 

Non-active 
69 

Active 
148 

Non-active 
35 

Active 
121 

Non-active 
62 

0.62 0.81 0.66 

na f na na 

0.79 0.90 0.81 

Antitumor 

Active 
68 

Non-active 
115 

Active 
55 

Non-active 
26 

Active 
41 

Non-active 
41 

Active 
56 

Non-active 
26 

0.81 0.60 0.82 

0.23 0.36 0.23 

0.43 0.46 0.43 

Antibiotic 

Active 
29 

Non-active 
154 

Active 
17 

Non-active 
150 

Active 
27 

Non-active 
68 

Active 
18 

Non-active 
149 

0.59 0.93 0.62 

0.97 0.44 0.97 

0.76 0.64 0.77 

Notes: a QSAR model built using 232 CDK descriptors; b QSAR model built using 8 quantum-mechanical 

descriptors calculated by the semi-empirical method PM6; c The ratio of true positives to the sum of true 

positives and false negatives; d The ratio of true negatives to the sum of true negatives and false positives;  
e The square root of the product of sensitivity and specificity; f Not applicable. 

One of the most-widely used multivariate exploratory techniques is the Principal Component 

Analysis (PCA) [32,33]. It is able to detect similarities among data sets of compounds providing a 

statistically reliable criterion to classify the compounds upon their different physicochemical property 

pattern against different biological activities. To obtain a general impression of all data set that were 

used for modeling (i.e., training, test set I, test set II from PubChem and AntiMarin set), a PCA model 

was derived from the CDK and PM6 descriptors, which describe a range of electronic, steric, 

geometrical, and quantum properties of the compounds. The first two components (respectively 

accounting for 37% and 8% of the variance in the descriptor matrix) are shown in Figure 1. Results 

obtained from the PCA score plots in Figure 1 shows that no clearly defined separation exists between 
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the four data sets based upon the major source of variation within their electronic, steric, geometrical, 

and quantum property profiles. 
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Training set Test set I AntiMarin set Test se II  

Figure 1. PCA score plot derived from CDK and PM6 descriptors, PC1 (t[1]) versus PC2 

(t[2]). The bottom plot is the amplification of the cluster highlighted as 1. 

Moreover, approximately 93% of all the compounds in the four data sets are well clustered together 

in the cluster highlighted as 1 (Figure 1). Therefore, the predictions for all the test sets may be 

considered reliable since their compounds fall within a chemical-space domain defined by the training 

set compounds used to build the QSAR models. 
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2.1.1. Overall Biological Activity Model 

For the overall biological activity models the data are imbalanced in what concerns the active and 

non-active classes, and hence cause a problem for the CT method, which is not able to balance the  

two classes, as has been done with the other two methods (i.e., by adjusting the weight of each class). 

As it was expected the overall CT biological models using the CDK, PM6 and CDK+PM6 approaches 

show poor predictions accuracy—a G-mean of 0.27, 0.21 and 0.44 for test set I, respectively, Table 1. 

However, it appears to be an improve in the prediction power of the CT model with inclusion of PM6 

descriptors since the CT overall biological model using only the CDK descriptors shows a lower 

prediction accuracy (a G-mean of 0.27 for test set I). 

With the overall biological activity models, we intended to improve the precision of lead-like 

profiling by compensating for the lack of bioactivity records in the 418 compounds extracted from  

the AntiMarin database as we had done in our previous work and as well as compare the selected lead 

bioactive compounds proposed by the two approaches. In the AniMarin database, as almost all 

databases, each molecule has been tested for only a few activities chosen by the researchers or grant 

programs, so there are almost certainly many bioactive molecules that lack an activity record. There 

are probably compounds that were classified as non-active against one given biological activity only 

because they have never been tested against that biological assay. Therefore, we would expect that the 

difficulty with this model was actually the false positives (FPs) for the AntiMarin set. In fact, we 

obtained a large number of FPs for the AntiMarin set, as shown by the low specificity value of  

0.26 obtained for the best model (Rf using CDK+PM6) compared with the high specificity value of 

0.77 obtained for the test set I, Table 1. The analysis of the results obtained from the best Rf model has 

shown that there are 76 and 15 FPs for the AntiMarin set and test set I, respectively. For these FPs, it 

was obtained an average probability of being active (Avg.Probactive) in the best Rf model of 0.66  

(30 FPs have a Avg.Probactive ≥ 0.7), and 0.61 (2 FPs have a Avg.Probactive ≥ 0.7) for the AntiMarin set 

and test set I, respectively. 

Many authors have tried to rationalize the drug-like and lead-like nature of compounds,  

Waldmann et al. [10] suggested through a statistical analysis of the structural classification of NPs that 

the lead-like molecules must have a scaffold with two, three, or four rings, and their van der Waals 

volumes must match the lower end of the majority of the protein cavities (i.e., van der Waals volume 

between 300 and 800 Å3). Indeed, as recently reported [15], the analysis of the active and non-active 

profiles of the van der Waals volume of the training set and test sets from PubChem and AntiMarin set 

from AntiMarin revealed there is a correlation between active compounds and 3-, 4-ringed compounds 

with a van der Waals volume between 300 and 800 Å3. In the AntiMarin set, there are 87 compounds 

with these specifications. From those only 68 compounds (i.e., approximately 78%) are active as 

compared with approximately 96% of active compounds from the test set I compounds (PubChem) 

with the same specifications. Moreover, from those with the same specifications 59 and 14 compounds 

were predicted as true positives (TPs) and FPs with an Avg.Probactive of 0.73 and 0.70, respectively, 

using the best Rf model for the AntiMarin set. In the test set II, approximately 75% of the APIs with 

these specifications were predicted to be active by the best Rf model. The energy of the highest occupied 

molecular orbital (εHOMO) is the first and second descriptor selected to build the overall biological 

activity classification tree models using PM6 and CDK+PM6 descriptors, respectively, see Table 5. 
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Table 5. Comparison of descriptors selected with descriptor importance using to build QSAR models. 

Models CDK Descriptors PM6 Descriptors CDK+PM6 Descriptors 

Overall 

biological 

activity 

SVM a 

20D: ALogp2; BCUTc-1l; BCUTp-1h; PPSA-2; DPSA-3;  

FPSA-3; TPSA; Wlambda2.unity; Weta1.unity; ATSc3;  

SCH-5; SP-6; VP-7; khs.ssCH2; khs.dsCH; khs.sssCH;  

khs.aaaC; khs.sNH2; MDEC-33; TopoPSA 

8D: εHOMO; εLUMO; Mulliken electronegativity (χ); 

Parr & Pople absolute hardness; Schuurmann MO 

shift alpha; hardness (η); chemical potential (μ); 

electrophilicity index (ω) 

21D: ALogp2; BCUTc-1l; BCUTp-1h; PPSA-2; DPSA-3; FPSA-3; TPSA; 

Wlambda2.unity; Weta1.unity; ATSc3; SCH-5; SP-6; VP-7; khs.ssCH2; 

khs.dsCH; khs.sssCH; khs.aaaC; khs.sNH2; MDEC-33; TopoPSA; εHOMO 

Rfs b 

c 
FMF; BCUTp-1l; BCUTw-1h; khs.sF; Weta1.unity; VCH-7; 

HybRatio; FPSA-1; BCUTc-1h; LOBMAX 

η; Parr & Pople absolute hardness; ω; χ; εLUMO; 

Schuurmann MO shift alpha; εHOMO; μ 

khs.sssCH; MDEO-12; XlogP; TopoPSA; MDEO-11; VC-6;  

FMF; ATSc5; VCH-7; VC-5 

d 
Weta1.unity; MDEC-33; TPSA; ATSc3; khs.sssCH;  

Weta2.unity; TopoPSA; PPSA-3; geomShape; ALogp2 

εHOMO; εLUMO; ω ; η; Parr & Pople absolute 

hardness; χ; Schuurmann MO shift alpha; μ 

TopoPSA; MDEO-12; ATSc1; FPSA-2; khs.sssCH; XlogP; RNCG; 

nHBAcc; AMR; DPSA-2 

CT 
8D: SP-6; BCUTc-1h; Weta1.unity; Wnu1.unity; MDEC-11;  

SC-5; VP-7; MDEC-22 
3D: εHOMO; Parr & Pople absolute hardness; εLUMO 

11D: SP-6; εHOMO; BCUTc-1h; Wnu1.unity; FNSA-3; THSA; 

Wlambda2.unity; MDEC-33; FPSA-3; ATSp5; ω 

Antitumor 

activity 

SVM 

42D: ALogp2; AMR; BCUTw-1h; BCUTp-1l; PNSA-3; FPSA-3; 

FNSA-2; WNSA-3; THSA; TPSA; naAromAtom; nAromBond; 

ATSc2; ATSc3; ATSc4; ATSc5; bpol; C1SP2; C2SP2; SCH-4; 

SCH-5; VCH-4; VCH-7; VC-6; SPC-5; FMF; HybRatio; 

khs.dsCH; khs.aaCH; khs.sssCH; khs.tsC; khs.sNH2; khs.dO; 

khs.ssO; khs.sF; MDEC-12; MDEC-13; MDEC-22; MDEO-11; 

MDEO-12; MDEO-22; TopoPSA 

8D: εHOMO; εLUMO; χ; Parr & Pople absolute 

hardness; Schuurmann MO shift alpha; η; μ; ω 

44D: ALogp2; AMR; BCUTw-1h; BCUTp-1l; PNSA-3; FPSA-3;  

FNSA-2; WNSA-3; THSA; TPSA; Wnu1.unity; naAromAtom; 

nAromBond; ATSc2; ATSc3; ATSc4; ATSc5; bpol; C1SP2; C2SP2;  

SCH-4; SCH-5; VCH-4; VCH-7; VC-6; SPC-5; FMF; HybRatio; 

khs.dsCH; khs.aaCH; khs.sssCH; khs.tsC; khs.sNH2; khs.dO;  

khs.ssO; khs.sF; MDEC-12; MDEC-13; MDEC-22; MDEO-11;  

MDEO-12; MDEO-22; TopoPSA; εHOMO 

Rfs 

c 
khs.sssCH; BCUTp-1l; TopoPSA; VC-5; FMF; MDEO-12;  

VC-6; RNCS; VCH-7; BCUTw-1l 

Parr & Pople absolute hardness; η; εLUMO; εHOMO; 

χ; Schuurmann MO shift alpha; μ; ω 

khs.sssCH; MDEO-12; XlogP; TopoPSA; MDEO-11; VC-6; FMF; ATSc5; 

VCH-7; VC-5 

d 
TopoPSA; MDEO-12; ATSc1; khs.sssCH; XlogP; AMR;  

FPSA-2; MDEO-11; nHBAcc; Weta3.unity 

εHOMO; εLUMO; η; Parr & Pople absolute hardness; 

ω; χ; μ; Schuurmann MO shift alpha 

TopoPSA; MDEO-12; ATSc1; FPSA-2; khs.sssCH; XlogP; RNCG; 

nHBAcc; AMR; DPSA-2 

CT 
9D: MDEO-12; Khs.sssCH; MDEO-11; SCH-7; nAromBond; 

VC-6; BCUTc-1h; C2SP2; BCUTp-1l 

4D: εHOMO; Parr & Pople absolute hardness;  

εLUMO; χ; 

9D: MDEO-12; Khs.sssCH; MDEO-11; SCH-7; nAromBond; VC-6; 

BCUTc-1h; C2SP2; BCUTp-1l 
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Table 5. Cont. 

Models CDK Descriptors PM6 Descriptors CDK+PM6 Descriptors 

Antibiotic 

activity 

SVM 

41D: ALogP; BCUTw-1h; BCUTp-1l; DPSA-3; FPSA-3;  

RPCG; RNCS; TPSA; Wnu1.unity; nAromBond; ATSc1; 

ATSc3; ATSc5; ATSm1; ATSm5; nBase; C2SP2; C3SP3;  

SCH-4; SCH-5; VCH-4; VCH-7; SC-4; SC-5; VPC-5;  

nHBAcc; khs.sssCH; khs.tsC; khs.dssC; khs.sOH; khs.ssO; 

khs.sF; nAtomLC; MDEC-13; MDEC-22; MDEO-11;  

MDEO-12; MDEO-22; MOMI-XZ; TopoPSA; XlogP 

8D: εHOMO; εLUMO; χ; Parr & Pople absolute 

hardness; Schuurmann MO shift alpha; η; μ; ω 

42D: ALogP; BCUTw-1h; BCUTp-1l; DPSA-3; FPSA-3; RPCG; RNCS; 

TPSA; Wnu1.unity; nAromBond; ATSc1; ATSc3; ATSc5; ATSm1; 

ATSm5; nBase; C2SP2; C3SP3; SCH-4; SCH-5; VCH-4; VCH-7; SC-5; 

VPC-5; nHBAcc; khs.sssCH; khs.tsC; khs.dssC; khs.sOH; khs.ssO;  

khs.sF; nAtomLC; MDEC-13; MDEC-22; MDEC-24; MDEO-11;  

MDEO-12; MDEO-22; MOMI-XZ; TopoPSA; XlogP; εHOMO 

Rfs 

c 
MDEC-22; MDEO-12; C2SP2; TopoPSA; khs.dsCH; khs.sssCH; 

FMF; VC-5; C4SP3; MDEC-33 

Parr_&_Pople_absolute_hardness; η; εLUMO; 

εHOMO; χ; Schuurmann MO shift alpha; μ; ω 

MDEC-22; MDEO-12; C2SP2; khs.sssCH; khs.dsCH; TopoPSA; 

khs.dssC; MDEC-33; FMF; C4SP3 

d 
TopoPSA; ATSc1; FPSA-2; MDEC-22; MDEO-12; RNCG; 

C2SP2; VC-5; khs.sssCH; khs.dssC 

εHOMO; εLUMO; η; Parr & Pople absolute hardness; 

ω; χ; μ; Schuurmann MO shift alpha 

TopoPSA; ATSc1; FPSA-2; RNCG; MDEO-12; MDEC-22;  

nHBAcc; khs.sssCH; C2SP2; khs.dssC 

CT 

16D: TopoPSA; C2SP2; VC-5; MDEC-22; XlogP; BCUTp-1h; 

VP-0; SCH-7; DPSA-1; Khs.dssC; MDEC-12; Khs.sssCH; 

THSA; MDEO-12; C2SP3; HybRatio 

3D: εHOMO; Parr & Pople absolute hardness; εLUMO 

16D: TopoPSA; C2SP2; VC-5; MDEC-22; XlogP; BCUTp-1h; VP-0; 

SCH-7; DPSA-1; Khs.dssC; MDEC-12; Khs.sssCH; THSA;  

MDEO-12; C2SP3; HybRatio 

Notes: a The selection of the descriptors was with the CFS (correlation-based feature subset selection) filter from Weka; b The mean decrease in accuracy and the mean 

decrease in Gini are two measures of importance for the descriptors using the Rf; c MeanDecreaseAccuracy; d MeanDecreaseGini. 
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Furthermore, the εHOMO is the most important descriptor for MeanDecreaseGini measure in the PM6 

RF model and it is as well selected to build the CDK+PM6 SVM model (see Table 5). Using the first 

rule of the overall biological activity classification tree PM6 (εHOMO ≥ −10.42 eV for active compounds) 

it was possible to correctly discriminate as active 1577 compounds, corresponding to ~98% of the 

training set, 774 compounds, corresponding to ~97% of the test set I, and 181 compounds, corresponding 

to ~99% of the test set II. It is known that the εHOMO and the energy of the lowest unoccupied 

molecular orbital (εLUMO) of a molecule play important roles in intermolecular interactions [34], 

through the interaction between the εHOMO of the drug with the εLUMO of the receptor and vice versa. 

Increasing εHOMO and decreasing εLUMO in the drug molecule lead to enhancement of stabilizing 

interactions, and consequently, binding with the receptor [34]. The remarkable performance of this 

descriptor in discriminating lead-like or drug-like compounds has never been reported, however it was 

reported that the εHOMO could be used to predict the potency of H2 blockers such as famotidine, 

ranitidine, and nizatidine and the authors found a positive correlation between the εHOMO and the 

potency of the drugs [35]. As can be seen in Table 4, the performance of the PM6 Rf model is even 

better than the CDK+PM6 Rf model for the test set II with a G-mean of 0.90 and 0.81, respectively. 

Fourteen MNPs and MbNPs (Scheme 1) were listed as having a probability of being active (Probactivity) 

greater than or equal to 0.8 using the best Rf activity model. For the test set I, only active compounds 

were predicted with a Probactivity greater than or equal to 0.8 using the best Rf activity model. We propose 

these MNPs and MbNPs as lead bioactive compounds and consider that they have been misclassified as 

non-active compounds in the AntiMarin database.  

Additionally, eleven out of the fourteen proposed lead bioactive compounds were also proposed by 

us using a CDK Rf model [15]. The other three FPs were proposed as lead antibiotic compounds in the 

Rf antibiotic model using the CDK descriptors and they were predicted as active with a Probactivity 

greater than or equal to 0.77 in our previously CDK Rf overall biological activity model [15]. 

Interestingly, only one compound, the aklavinone glycoside (ID 860) of those fourteen proposed 

MNPs and MbNPs lead bioactive compounds has a εHOMO value lower than −10.42 eV. Some of these 

lead bioactive MNPs and MbNPs from AntiMarin database were more recently reported as being active 

in the literature. For instance, the 1-N-acyl derivative of the arbekacin (ID 573 see Scheme 1), was 

identified as being resistant to many inactivating enzymes while retaining most of the intrinsic antibiotic 

activity of the unsubstituted molecules against susceptible strains [36]. Bleomycins are currently known 

as a complex of related glycopeptide antibiotics produced by the bacterium Streptomyces verticillus [37] 

and are clinically used for treatment of certain cancer types [38]. As far as we know the specific 

bioactivities of the bleomycin derivatives (IDs 585 and 586) from AntiMarin database have never been 

recorded, although the N-(3-methylsulfinyl)propyl bleomycin is employed clinically in combination 

with a number of other agents for the treatment of several types of tumors, e.g., notably squamous cell 

carcinomas and malignant lymphomas [38]. 
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Scheme 1. Fourteen selected lead bioactive MNPs and MbNPs from the AntiMarin 

database using the best Rf activity model. 

2.1.2. Antitumor Activity Model 

For the best antitumor model (CDK+PM6 Rf model) we obtained a large number of FPs as well as 

FNs for the AntiMarin set, as revealed by the low sensitivity and specificity values of 0.31 and 0.71, 
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respectively. These values could be compared with the sensitivity and specificity values of 0.85 and 

0.81 obtained for the test set I, respectively Table 2. The analysis of the predictions obtained for  

the AntiMarin set has shown that there are 18 TPs with an average probability of being antitumor 

(Avg.Probantitumor) of 0.60, as compared with an Avg.Probantitumor of 0.62 obtained for the 104 FPs 

predicted. In our opinion, these FPs are not all misclassifications by the antitumor model. Instead those 

with high probability of being antitumor (Probantitumor) are lead-like antitumor MNPs and MbNPs, 

which have been misclassified as non-antitumor compounds in the AntiMarin database. Although, 

there was obtained a high sensitivity value of 0.82 for the external test set II, was also achieved a low 

specificity value of 0.23. For the test set II were used the biological activity reported in the 

pharmacological classification of each API. However for this data set in the PubChem were reported 

an average value of 445 tested bioassays and for those an average value of 43 active bioassays. 

Therefore, we obtained 28 TPs and 46 FPs with a Probantitumor greater than or equal to 0.8. The analysis 

of the eleven FPs with higher Probantitumor (i.e., Avg.Probantitumor of 0.93) has shown that they all have at 

least one positive bioassay against cancer (available as Supplementary Material—Table S5). These 

conclusions were also supported by the low percentage of misclassifications as FPs (1.04%) obtained 

for the test set I compounds with a Probantitumor greater than or equal to 0.8 using the best Rf antitumor 

model. In the Scheme 2 were listed the 4 FPs with a Probantitumor greater than or equal to 0.8 using the 

best Rf antitumor model. Two out of the four proposed lead antitumor compounds were also proposed 

by us using a CDK Rf model in our recently published work [15]. The other two FPs were similarly 

predicted as antitumor with a Probantitumor greater than or equal to 0.75 in the CDK Rf antitumor activity 

model [15]. Moreover, there are eight (IDs 78, 163, 449, 670, 918, 974, 1070, and 1102) out of sixteen 

proposed as lead antitumor MNPs and MbNPs from the AntiMarin database in our previous work that 

are not present in the currently study. The other five lead antitumor compounds (IDs 567, 580, 1066, 

1071, and 1100) that had been recently highlighted in our studies are also predicted as antitumor 

compounds by the best Rf model with a Probantitumor of 0.78, 0.71, 0.55, 0.63, and 0.68, respectively. 

However, antitumor activity was reported more recently, for almost all of the 4 FPs that we obtained, 

namely (see Scheme 2): the phenazine derivatives ID 1032 as a light-activated tumor cytotoxic 

compound [39], the oxime derivative ID 662 against several NCI human tumor cells [40], and the 

nitrosohydrazone derivative ID 976 enhances the etoposide-induced cell death of human glioma cells 

through a synergistic effect with antitumor drugs by acting as inhibitor of acetyl-coenzyme A 

synthetase [41]. The antifungal brominated phenylpyrrole derivative, ID 1042 (Scheme 2), is related to 

the chlorinated pyrrolnitrin, an antibiotic and antifungal MNP from test set I (CID 13916, see Scheme 3) 

that was recently reported as active in screenings for potential anti-tumor activity [42]. 

Moreover both phenylpyrrole derivatives (i.e., ID 1042 from AntiMarin set and CID 13916 from 

test set I) were predicted as being antitumor by the Rf model with a Probantitumor of 0.82 and 0.90, 

respectively. With respect to FNs, the analysis of the predictions obtained for the AntiMarin set has 

shown that there are 256 TNs with an Avg.Probantitumor of 0.25, compared with an Avg.Probantitumor of 

0.28 obtained for the 40 FNs predicted. From these 40 FNs only six MbNPs were predicted with a 

Probantitumor lower than 0.15. Interestingly four of these compounds (IDs 447, 448, 542, and 862) belong 

to the class of anthracycline antibiotics, one of the most widely used classes of antitumor antibiotics. 
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Scheme 2. The selected 4 lead antitumor MNPs and MbNPs from the AntiMarin database 

using the best Rf antitumor model. 
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Scheme 3. The chlorinated pyrrolnitrin from the test set (CID 13916). 

2.1.3. Antibiotic Activity Model 

The best antibiotic model (CDK+PM6 Rf model) yielded a large number of FPs as well as FNs for 

the AntiMarin set, as shown by the low sensitivity and specificity values of 0.71 and 0.63 obtained, 

respectively. These values could be compared with the sensitivity and specificity values of 0.82 and 

0.94 obtained, respectively, for the test set I, Table 3. The analysis of the predictions obtained for the 

AntiMarin set has shown that there are 161 TPs with an average probability of being antibiotic 

(Avg.Probantibiotic) of 0.83, as compared with an Avg.Probantibiotic of 0.72 obtained for the 70 FPs 

predicted. In our opinion, these FPs are not all misclassifications by the antibiotic model but instead 

those with high probability of being antibiotic (Probantibiotic) may be lead-like antibiotic MNP and 

MbNP, which have been misclassified as non-antibiotic compounds in the AntiMarin database. As we 

had done for the antitumor and biological overall models, we proposed 25 FPs with a Probantibiotic 

greater than or equal to 0.8 for the AntiMarin set as lead antibiotic compounds Table S1, given in 

Supplementary Material. The analysis of the predictions obtained for AntiMarin set has shown that 

there are seven FPs with a Probantibiotic greater than or equal to 0.9. From those seven FPs, four FPs 
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(IDs 585, 586, 573, and 860) have been already analyzed in the overall biological model (Scheme 1). 

The other three FPs (IDs 695, 704, and 712) were reported before by us [15] as lead-like antibiotic 

compounds with a Probantibiotic greater than or equal to 0.9. Additionally, twenty one out of the twenty 

five proposed lead antibiotic compounds were as well proposed by us using the CDK Rf model [15]. 

The other four FPs (IDs 308, 527, 953, and 48363) were classified as antibiotic compounds in the Rf 

antibiotic model using the CDK descriptors and they were predicted as antibiotic with a Probactivity 

greater than or equal to 0.68 in the CDK Rf overall biological activity model [15]. From those 25  

lead-like antibiotic MNP and MbNP, seven (IDs 484, 735, 742, 861, 959, 739, and 741) have been 

already analyzed in the overall biological model (Scheme 1). Scheme 4 illustrates the 15 FPs with a 

Probantibiotic greater than or equal to 0.8, which have not yet been reported in this work. As recently 

described from our team [15], several cephalosporin analogs that appear in the AntiMarin database 

without activity records, were classified as actives by the overall activity and antibiotic models 

indicating that the cephalosporin core structure appears to be relevant to the antibiotic activity. The 

structures could be seen in Scheme 1 (IDs 735, 739, 741, and 742) and Scheme 4 (IDs 695, 704, 712 

and 938). However, it is not a surprising outcome, since penicillin and cephalosporin are well known 

antibiotic drugs and the earliest antibiotics discovered. A penicillin analog was also classified as FP, 

ID 493 in Scheme 4. Among other relevant types of antibiotics that were classified as FPs in both 

models are the aminoglycoside (ID 573) and the anthracycline antibiotics (IDs 860 and 861). Two unique 

cyclic peptides that incorporate unusual λ-amino acids such as 4-amino-5-hydroxypenta-2-enoic acid, 

4-amino-3,5-dihydroxypentanoic acid, and 4-amino-3-hydroxy-5-phenylpentanoic acid (IDs 48362 and 

48363) were also classified as being antibiotic. As far we know the antibiotic activity of these 

compounds has never been recorded, but they were reported as shown immunosuppressive activity in 

an interleukin-5 production inhibition assay [43]. 

Three large macrocyclic lactone and lactam ring derivatives (IDs 484, 827, 953) were also classified 

as being antibiotic. Although the lack of reported antibiotic activity for these derivatives, the antibiotic 

activity of the macrolides (a class of compounds with a large macrocyclic lactone ring) is well known. 

2.2. Analysis of Empirical and Quantum Descriptors Identified as Relevant for Modeling Overall 

Biological Activity, Antitumor and Antibiotic Activities 

The sets of descriptors selected by the CFS filter to develop the models were presented in Table 5. 

All CDK+PM6 models were built using CPSA (charge partial surface area) [44], topological, 

constitutional, molecular descriptors, and semi-empirical quantum-chemical descriptors. The 

TopoPSA—topological polar surface area—descriptor [45] was selected to be used in all models. The 

models were built using three approaches, one with 232 CDK descriptors, the other with the 8  

semi-empirical quantum-chemical descriptors calculated by the PM6 method and with the 232 CDK 

and the 8 PM6 descriptors. The selected and the most important descriptors obtained with these three 

approaches were compared with our previous studies [15] using only the CDK descriptors. The ten 

most relevant descriptors, found by the Rf algorithm, used to build the Rf models also include in almost 

cases the different types of descriptors mentioned above. The MeanDecreaseAccuracy parameter 

(Mean Decrease in Accuracy) of importance is considered more reliable than the MeanDecreaseGini 

parameter (Mean Decrease in Gini Coefficient) [46]. Taking into account the MeanDecreaseAccuracy 
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measure in the best Rf model for predicting the overall biological activity, antitumor and antibiotic 

activities it is possible to correlate those activities with the type of descriptors selected. For instance, 

the overall biological activity appears to be related with the electronic, molecular and quantum 

descriptors. The CPSA, BCUT and WHIM descriptors as well as the εHOMO seem to have a main role 

in modeling the overall activity. The BCUT descriptors encode connectivity information and atomic 

properties of the molecule [47]. The WHIM descriptors are weighted holistic invariant molecular 

descriptors that are built in such a way to capture relevant molecular 3D information with respect to 

molecular size, shape, symmetry and atom distribution [48]. Nevertheless, the antitumor activity 

appears to be largely related with the topological descriptors. In addition, the molecular distance edge 

descriptors (MDE), which evaluate molecular distance edge descriptors for carbon, nitrogen and 

oxygen atoms, seems to be the most important type of the descriptors for modeling the antitumor 

activity. Only the MDEO-12 (molecular distance edge between primary and secondary oxygen atoms) 

and the khs.sssCH (a fragment count descriptor that encode the presence of a tertiary carbon group in 

which it has three single bonds) descriptors were selected for all machine learning techniques (i.e., 

CFS filter for SVM, the two measures of the Rf, and CT using the CDK+PM6 approach).  
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712 2-amino-1,3-thiazol-4-yl (Z)-methoxyimino acetoxymethyl H 0.904 0.932

938 thiophen-2-yl OMe 0.816 0.844

ID493

Probantibiotic
0.968

CDK+PM6
model

Probantibiotic
0.884

CDK
model

ID48362

Probantibiotic
0.882

CDK+PM6
model

Probantibiotic
0.814

CDK
model

ID483

Probantibiotic
0.862

CDK+PM6
model

Probantibiotic
0.854

CDK
model

H

O

O O

O

H

H

O H

H

O
H
O

OH

H
OHO

HO
O O

O
H

O

O

ID579

Probantibiotic
0.864

CDK+PM6
model

Probantibiotic
0.864

CDK
model

ID827

Probantibiotic
0.854

CDK+PM6
model

Probantibiotic
0.854

CDK
model

ID977

Probantibiotic
0.850

CDK+PM6
model

Probantibiotic
0.826

CDK
model

ID308

Probantibiotic
0.826

CDK+PM6
model

Probantibiotic
0.776

CDK
model

ID48363

Probantibiotic
0.822

CDK+PM6
model

Probantibiotic
0.684

CDK
model

ID527

Probantibiotic
0.812

CDK+PM6
model

Probantibiotic
0.764

CDK
model

ID953

Probantibiotic
0.808

CDK+PM6
model

Probantibiotic
0.792

CDK
model

 

Scheme 4. The unreported 15 lead antibiotic MNPs and MbNPs from AntiMarin database 

using the best Rf antibiotic model with a Probantibiotic greater than or equal to 0.8. 
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The MDEO-12 is the second most important descriptors for the MeanDecreaseAccuracy and 

MeanDecreaseGini parameters in the best Rf model and it is as well the first descriptor selected to 

build the antitumor classification tree. Using the first rule of the antitumor tree (MDEO-12 < 0.999 for 

antitumor compounds and MDEO-12 ≥ 0.999 for non-antitumor compounds) it was possible to 

correctly discriminate antitumor/non-antitumor 722/500 compounds, corresponding to ~70% of the 

training set and 355/233 compounds, corresponding to ~68% of the test set I. The results were even 

impressive when only the “MDEO-12 < 0.999” rule was applied—from the 880 antitumor compounds 

722 were correctly classified, ~82%, for the training set and 355 out of 438, ~81%, for the test set I. 

All the lead-like antitumor MNPs and MbNPs that we had already proposed are classified as antitumor 

by this rule. The remarkable performance of this descriptor in discriminating between antitumor and 

non-antitumor compounds was reported before by us [15]. The MDEO-12 descriptor is known to 

codify the molecular size by taking into account oxygen atoms also characterizes polarity [49]. 

Inspection of the compounds belonging to the training set reveals that this descriptor provides an 

indication of the presence of oxygen-containing groups such as glycosyl, amide, lactam, ester or 

lactone together with hydroxyl, carboxylic acid or ether functional groups.  

The antibiotic activity seems to be related mainly with the topological and constitutional 

descriptors. Four descriptors were selected for all machine learning techniques—one electronic 

(TopoPSA), two topological (MDEO-12 and MDEC-22—molecular distance edge between secondary 

carbon atoms), and one constitutional (khs.sssCH). The TopoPSA is the most important descriptor for 

the MeanDecreaseGini parameter in the Rf model and it is as well the first descriptor selected to build 

the antibiotic tree. Using the first rule of the antibiotic tree (TopoPSA ≥ 120.7 for antibiotic 

compounds and TopoPSA < 120.7 for non-antibiotic compounds) it was possible to correctly 

discriminate 499/854 and 256/394 antibiotic/non-antibiotic compounds for the training set (642/1104) 

and test set I (326/537), respectively. Subsequently the TopoPSA descriptor presents similar results for 

both antibiotic and non-antibiotic classes differently to the antitumor CT model where the MDEO-12 

descriptor shows impressive discrimination ability only relatively to the antitumor compounds. 

Globally 1353 out of 1746 compounds, ~77%, were correctly classified by this rule with 499 out of 

642 antibiotic compounds, ~78%, and 854 out of 1104 non-antibiotic compounds, ~77%, correctly 

classified for the training set. Similar results were obtained for the test set I. Only two MbNP of 25 

lead-like antibiotic MNPs and MbNPs that we had already proposed are classified as non-antibiotic 

(IDs 483 and 977) by this rule. The remarkable of this descriptor in discriminating between antibiotic 

and non-antibiotic compounds is in accordance with our previous study [15]. 

3. Experimental Section 

3.1. Data Sets and Descriptors 

The training and test sets I were extracted from the PubChem database [50,51], searching by the 

different types of biological activity available in the database (e.g., antitumor, antibiotic, antimicrobial, 

antifungal, antimalarial, anti-HIV). The retrieved chemical structures were saved as SMILES strings. 

The training and the test sets are the same which had been used to build the QSAR models, for 

classification, of our previous work [15] (the data set was randomly partitioned in training and test set), 
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with exception of a few compounds that produce error in the process for calculation of the semi-empirical 

quantum-chemical descriptors. The training set and test set I consists of 1318 antitumor, 968 antibiotic, 

55 antifungal, 11 antimalarial, one anti-HIV, 74 anti-microbial, 145 cytotoxic and 199 non-active 

compounds. Of note some compounds have more than one bioactivity record. The non-active 

compounds were selected on the basis that they were screened for at least one biological activity. The 

training set consists in 1746 compounds and the test set I in 863 compounds. These datasets were used 

for the development and external validation of the QSAR classification models, respectively. A further 

set, AntiMarin set, with 418 MNPs and MbNPs was extracted from the AntiMarin database [6,17,18]. 

This set will not be used to test the model but to exploit lead-like molecules from MNPs and MbNPs. 

An additional test set, test set II was also extracted from PubChem, which contains 183 APIs with the 

following pharmacological classifications: 68 antitumor, 29 antibiotic, eight anti-HIV, 34 anti-inflamatory, 

11 antifungal, six antiviral, six insecticides, nine antimalarial, and seven anti-ulcer. The chemical 

structures of the MNPs and MbNPs were downloaded in the MDL SDF format. The different sets were 

assembled and duplicates removed to avoid overlapping between the two databases. Although the 

chirality was taken into account, racemic compounds (or cases where the stereochemistry was not 

indicated) were considered as one of the possible stereoisomers. The SMILES strings of the four 

different data sets, the natural source for the compounds of AntiMarin set, and the corresponding 

experimental and predicted activities are available as Supplementary Material Tables S2–S5. 

3.2. Molecular Descriptors 

JChem Standardizer tool version 5.12.3 (ChemAxon Ltd., Budapest, Hungary) were used to 

standardize the molecular structures by normalization of tautomeric groups and by removing of small 

fragments. Then CORINA version 2.4 (Molecular Networks GmbH, Erlangen, Germany) were used to 

generate 3D structures of the compounds. From the 3D structures 270 empirical molecular descriptors, 

including electronic, topological, geometrical, constitutional, and hybrid (BCUT and WHIM) 

descriptors, were calculated using the CDK Descriptor Calculator 1.3.2 [52,53]. 

The calculation of the semi-empirical quantum chemical descriptors was performed in a  

semi-automatic way using the following steps: (a) generation of the most stable conformer using the 

leconformer method, with JChem CXCALC tool (ChemAxon Ltd.), (b) optimization of the 3D 

geometry with MOPAC2009 [54] using the PM6 semi-empirical method [55], and (c) calculation of 

the harmonic vibrational frequencies to determine if the optimized geometry was minima on the 

potential energy surface (all real frequencies) at the same theory level. The semi-empirical quantum 

chemical descriptors extracted directly from the MOPAC output were the energy of the highest occupied 

molecular orbital, εHOMO, and the energy of the lowest unoccupied molecular orbital, εLUMO. From 

these two orbital energies the following descriptors were calculated: hardness, η = (εLUMO − εHOMO); 

chemical potential, μ = −(εHOMO + εLUMO)/2; Mulliken electronegativity, χ = −μ; Parr & Pople absolute 

hardness, (εHOMO − εLUMO)/2; Schuurmann MO shift alpha, (εHOMO + εLUMO)/2; electrophilicity index,  

ω = μ2/(2η) as defined by Parr et al. [56]. The quantum-chemical descriptors were measured in 

electronvolt (eV). 



Molecules 2015, 20 4867 

 

 

3.3. Selection of Descriptors and Optimization of QSAR Classification Methods 

The first step for the selection of the best set of descriptors to model the different activities was  

the removal of constant descriptors (i.e., a descriptor that presents the same value for all compounds of 

a data set, this usually being zero). After that, multilinear regressions (MLR) were built with Weka 

3.6.5 [57–59] to select descriptors by the M5 method, using the training set which give origin to a set 

232 descriptors. The next step in the selection of the best set of descriptors to model each activity 

consists in the application of the Correlation-based Feature Subset Selection algorithm [60] (the 

algorithm evaluates the usefulness of individual descriptors for predicting the given activity and also the 

level of intercorrelation among descriptors) implemented in Weka 3.6.5. The selection was performed 

using the AttributeSelectedClassifier routine of Weka with the CfsSubsetEval option as descriptor 

evaluator and the BestFirst, LinearForwardSelection or GreedyStepwise option as search methods 

within a ten-fold cross-validation procedure and k nearest neighbor (KNN) algorithm as ML technique. 

3.4. ML Techniques 

The KNN algorithm [61] predicts the activity for a compound by majority voting of the k most similar 

compounds in the training set. The KNN models were implemented with the Weka 3.6.5 software using 

as parameters a k of 10 (10 most similar neighbours of the query compound), Euclidean distances (as 

measure of similarity), and contributions of neighbours weighted by the inverse of distance. 

CTs were grown using the RPART library, with the default parameters [62,63], in R program, 

version 2.13.1. A classification tree is sequentially constructed by partitioning compounds from a 

parent node into two child nodes. Each node is produced by a logical rule defined for a single 

descriptor, where objects below a certain descriptor’s value fall into one of the two child nodes, and 

objects above fall into the other child node. The prediction for a compound reaching a given terminal 

node is obtained by a majority vote of the objects (in the training set) reaching the same terminal node. 

The CT models were built by three approaches, one using 232 CDK descriptors, the other using eight 

semi-empirical quantum-chemical descriptors calculated by the PM6 method (PM6 descriptors) and 

finally using both the 232 CDK descriptors and the 8 PM6 descriptors. 

A Rf [64] is an ensemble of unpruned classification trees created by using bootstrap samples of the 

training data set. The best split at each node was defined among a randomly selected subset of 

descriptors. Prediction is made by a majority vote of the classification trees in the forest. The 

performance is internally assessed with the prediction error for the objects left out in the bootstrap 

procedure (internal cross-validation or OOB estimation). In addition, the method quantifies the 

importance of a descriptor by the increase in misclassification occurring when the values of the 

descriptor are randomly permuted, correlated with the mean decrease in accuracy parameter, or by the 

decrease in a node’s impurity every time the descriptor is used for splitting, correlated with the mean 

decrease in the Gini coefficient parameter. Rfs also assign a probability to every prediction on the basis 

of the number of votes obtained by the predicted class. A measure of similarity between two objects 

can be calculated from the number of trees in the ensemble that classify the two objects in the same 

terminal node. Rfs were grown with the R program, version 2.13.1, using the Random Forest  

library [63]. The Rf models were built with 500 trees and by three approaches, one using 232 CDK 
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descriptors, the other using 8 semi-empirical quantum-chemical descriptors calculated by the PM6 

method (PM6 descriptors) and finally using both the 232 CDK descriptors and the 8 PM6 descriptors. 

As a result of the nature of two-class imbalance in the overall activity model, this problem was 

alleviated setting the class weights to 50:50. 

SVM map the data into a hyperspace through a nonlinear mapping (a boundary or hyperplane) and 

then separate the two classes of compounds in this space. The boundary is positioned using examples 

in the training set that are known as the support vectors. With nonlinear data, kernel functions can be 

used to transform it into a hyperspace where the classes become linearly separable. In the present 

work, SVM models were established with the Weka 3.6.5 program, using the LIBSVM package [65–68]. 

The type of SVM was set to C-SVM-classification and the kernel function was the radial basis 

function. The parameter C of the C-SVM-classification was optimized in the range of 1–500 and the 

default γ parameter in the kernel function was used. The descriptors selected by the CFS procedure 

were normalized and used to develop the classification models. The active and non-active classes of 

the overall activity model were set to the weights of 10:90, respectively. 

4. Conclusions 

In this work, we have compared the predictive power of QSAR classification models based on 

quantum-chemical descriptors computed through the PM6 method and empirical descriptors such as 

CDK. The results suggest that the implemented computer-aided approach using quantum-chemical 

descriptors could be used to predict the bioactivity of new, or existing NPs without bioactivity records, 

and by this way identify and propose lead compounds en route to a specified activity with an improve 

in performance as compared to the QSAR model built only with CDK descriptors. The result of the 

application of this approach is the reduction in great extent the number of compounds used in real 

screens and on the other hand, allows to confirm our previous previsions. The obtained results for the 

presented virtual screening of possible lead compounds en route to antitumor and antibiotic drugs  

were also externally supported by the publication in the literature as active compounds of some of the 

compounds proposed and initially classified in the AntiMarin database as non-active compounds or 

without activity record. The remarkable performance of the εHOMO quantum-chemical descriptor in the 

discrimination in large scale data sets of lead-like or drug-like compounds has never been reported. 

The evaluation of the discriminating power of this quantum descriptor, calculated at a quantum level, 

in large sets of bioactive molecules could be an interesting approach in future works. 
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