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Abstract
Purpose of Review We review the literature on hip fracture mechanics and models of hip strain during exercise to postulate the
exercise regimen for best promoting hip strength.
Recent Findings The superior neck is a common location for hip fracture and a relevant exercise target for osteoporosis. Current
modelling studies showed that fast walking and stair ambulation, but not necessarily running, optimally load the femoral neck and
therefore theoretically wouldmitigate the natural age-related bone decline, being easily integrated into routine daily activity. High
intensity jumps and hopping have been shown to promote anabolic response by inducing high strain in the superior anterior neck.
Multidirectional exercises may cause beneficial non-habitual strain patterns across the entire femoral neck. Resistance knee
flexion and hip extension exercises can induce high strain in the superior neck when performed using maximal resistance
loadings in the average population.
Summary Exercise can stimulate an anabolic response of the femoral neck either by causing higher than normal bone strain over
the entire hip region or by causing bending of the neck and localized strain in the superior cortex. Digital technologies have
enabled studying interdependences between anatomy, bone distribution, exercise, strain and metabolism and may soon enable
personalized prescription of exercise for optimal hip strength.
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Introduction

Reduced bone mass and compromised bone strength in
osteoporosis are a major socio-economic burden. The
health care cost for treating low and minimal energy fra-
gility fractures was $2.8 billion in Australia in 2012, and it
is expected to rise to $3.8 billion by 2022 due to population
growth and ageing [1]; this figure is common to most
regions of the developed world [2]. Physical exercise has
long been proposed as a means for reducing the risk of
fragility fracture by promoting bone accrual and improving
motor function to reduce fall risk. However, the modest
and variable bone response to exercise in adults compli-
cates prescribing the type and amount of exercise for
optimal bone health [3]. Modern digital technology can
complement exercise prescription for osteoporosis by
providing information about skeletal mechanics during
locomotion.

A recent position statement endorsed by Exercise and Sport
Science Australia (ESSA) summarized current research find-
ings into specific guidelines for the prevention and
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management of osteoporosis through exercise [3]. In older
adults, regular impact and high intensity resistance exercises
may reduce the likelihood of both falling and fracture by en-
hancing musculoskeletal function and promotingmodest bone
accrual [3–7], yet the effect has been observed to be highly
variable [8]. For example, in women over 58 years of age,
percent change (mean ± SD) in femoral neck bone mineral
density (BMD) in response to an 8-month training program
including high intensity resistance and weight-bearing activi-
ties was 0.3 ± 3.0% compared with − 2.0 ± 3.0% in sedentary
controls [6], thereby showing a variance larger than the mean
effect (CV > 100%). An understanding of the patterns of bone
strain during different types of exercise together with longitu-
dinal information on BMD may help optimize exercise pro-
grams to improve bone strength and mitigate the incidence of
fragility fractures.

Digital technology can complement randomized con-
trolled trial (RCT) designs by combining principles of
mechanics, muscle and bone physiology with anatomical
and functional measurements in participants into physics-
based models, which can provide information relating to
musculoskeletal loading during exercise otherwise not ac-
cessible from direct human measures. For example,
physics-based models are increasingly used in a variety
of clinical contexts of increasing breath [9] such as stud-
ies of musculoskeletal function in healthy adults [10••],
obese children [11] and joint replacements [12]. Models
provided muscle and joint forces [10••, 13, 14] and bone
strain [15, 16] and improved prediction of bone strength
and classification of fracture cases over traditional BMD
measurements [17–19], motivating their integration into
regulatory systems in the USA and Europe [20, 21]. In
the context of exercise treatments for osteoporosis, current
studies enabled quantifying the amount and distribution of
hip strain for a variety of exercise types used for the
prevention and management of osteoporosis [3, 10••,
22–24]. Hence, physics-based models can inform exercise
prescription for osteoporosis.

Here, we review the literature on models of skeletal me-
chanics for informing exercise prescription in osteoporosis.
We focus on the hip, which shows the smallest and most
variable response to exercise of the anatomical regions sus-
ceptible to osteoporotic fracture [6] and, when fractured,
carries the most severe health consequences [2]. The exercise
type required for maximizing hip strength is identified using
the weakest link concept in relation to studies of hip architec-
ture and fracture mechanics. Current studies providing hip
strain during a variety of exercise types are reviewed and
discussed in the context of exercise recommendations for os-
teoporosis by ESSA [3]. Finally, we provide the authors’ per-
spective on the use of digital technology for enabling person-
alized prescription of exercise type and amount for optimal
bone health.

Exercise for Hip Strength

Bone strength is determined by the weakest link in the struc-
ture in relation to the specific mechanical environment, geom-
etry and loading. Hip architecture displays asymmetric trabec-
ular organization and cortical thickness adapted to support
habitual physical activity. The principal compressive trabecu-
lar network transfers the compressive load generated at the hip
joint to the thick (3–4 mm) medial femoral neck cortex. The
principal tensile trabecular network runs through the medial
femoral head, the thin superior neck cortex (< 1 mm) and the
lateral greater trochanter, carrying the tensile load generated
by bending of the neck. The structural asymmetry of the femur
has been attributed to minimal loading in the superior neck
cortex while walking due to the antagonist effect of the hip
abductors, which generates compression for balancing the
frontal plane moment, and the tension required to sustain the
body weight [25]. The asymmetric structurally adapted hip
displays approximately twice the strength under habitual load-
ing compared with that associated with the impact from a
sideways fall on the trochanter [26].

Age-related bone loss causes diffused bone weakening and
increased susceptibility to fracture under minimal load in low-
energy falls, low dynamics events (e.g., stumbling) and spon-
taneously, for the weakest hips under intense muscle co-
contraction [27]. Although a variety of fracture patterns have
been observed, ranging from subcapital to subtrochanteric
fractures, the thin superior neck cortex appears to represent
the weakest link in the majority of fracture cases showing
thinner superior neck cortices than non-fracture controls
[28]. Laboratory experiments showed that the superior cortex
opens in tension under habitual loading configuration [29]
(Fig. 1) and crushes in compression while falling on the side
(Fig. 2) in femurs of variable BMD [17], suggesting that os-
teoporosis affects strength but not the mode of failure of the
hip. Therefore, it appears that promoting hip strength through
exercise can be achieved by promoting either diffused bone
accrual by increasing the strain intensity experienced during
habitual activity or local thickening of the superior neck cortex
by increasing bending of the neck. From an evolutionary per-
spective, promoting the thickening of the superior neck cortex
through physical exercise means reversing the process of hu-
man evolution that made it thin [25].

Classification of Studies of Hip Strain
During Exercise

At the time of writing, searching Medline and PubMed using
keywords hip, strain, exercise and model yields 51 studies
published over the past 10 years, of which 11 used integrated
models for providing information pertaining to hip strain in
humans for a variety of exercise types [10••, 22–24, 31–37].
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Integrated models combined musculoskeletal models of hu-
man motion providing muscle and joint forces during exercise
[38, 39•, 40] and structural models of femoral mechanics pro-
viding femoral strain under prescribedmuscle and joint forces.
Studies have focussed on normal activities [10••, 22, 31,
33–37], impact and resistance exercises [10••, 22, 31, 36],
age-related changes of hip mechanics during walking [37]
and the effect of isolated hip-spanning muscle groups on hip
mechanics [24]. Henceforth, such models are reviewed for
providing guidance for designing exercise interventions
targeting specific regions of the hip.

All the 11 studies analysed here assumed rigid skeletal and
joint behaviour and optimal control assuming that muscles are
recruited by targeting a prescribed function such as, for exam-
ple, minimizing muscle activation or energy consumption.
Optimal control was found to provide estimates of the hip
contact force in agreement with published measurements
[10••] and to exceed by less than 0.22 BW the hip contact
force while walking obtained by imposing the model to follow
(R2 = 0.60) some electromyography recordings in participants
[13]. However, optimal control methods have difficulty in
tracking recorded antagonist muscle contraction, which can
drive the hip contact force up by multiples of the body weight
during exercises requiring joint stabilization like stumbling

[41] or reaction to unexpected motion perturbations [42];
these conditions were not considered by the studies analysed
here. Regarding model anthropometry, most models scaled a
generic body anthropometry to intersegmental lengths in par-
ticipants, providing consistent cohort averages of the hip con-
tact force (R2 = 0.81), femoral neck strain (R2 = 0.95; slope =
0.96–0.97) and a peak error equal to 4.2 BW [31]. Similarly,
skin movements in common stereo-photogrammetry motion
capture experiments were shown to provide consistent pat-
terns and timing of the hip contact force but caused a variation
of the force intensity equal to 1.8 BW [43]. For comparison,
the hip contact force during walking is 2.5–4.5 BW [44] and
over 9–12 BW can be expected in exercises for osteoporosis
management generating 2–3 BW ground reaction force [3].
Therefore, the studies analysed here provided the main effect
of exercise type while their validity in specific participants
should be taken with caution.

Concerning the femur’s structural model, some studies
modelled femoral strain using bone geometry and distribution
in calibrated computed tomography (CT) images and a proce-
dure validated earlier for calculating cortical strain (R2 = 0.89–
0.95, [15, 16]) and hip strength (R2 = 0.80–0.85; [17]) [10••,
22–24, 32, 45]. The same procedure was used to model a
osteoporotic donor (white women; age, 81 years old; T score =

Fig. 2 Three subsequent frames obtained using high speed cameras (at
15,000 fps) displaying fracture in an osteoporotic donor (white woman;
age, 66; T-score = − 2.09) while replicating the impact resulting from a
fall on a side (unpublished). Frames represent the femur before

touchdown (a), at the time of the first cortical opening observed in the
superior neck (b, red circle) and fracture progression to the medial neck
(c, red arrow). Speckling and strain gauging seen in the images were part
of a different study

Fig. 1 Cross-section images of a
human femur (osteoporotic white
women; age, 79 years; T-score =
− 3) subjected to a single-leg
stance configuration (red arrow)
increased stepwise up to inducing
a fracture opening in the superior
sub-capital region of the neck.
The figure displays the femur be-
fore load application (a) and after
fracture occurred (b). Images
were obtained using time-elapsed
synchrotron-light micro-
computed-tomography [30]
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− 2.5) combining body anatomy from full-body CT imaging
and dissection and a structural model of the femur experimen-
tally validated (R2 = 0.95) later used for studying different
exercises [22]. Other studies fitted a generic bone density
map to a cohort reporting limited information on model valid-
ity [36, 37]. Therefore, it appears that validated models can be
used to study the amount of strain under prescribed forces in
participants while different technologies may enable ranking
of exercise types. These differences should be considered
when comparing different studies.

Models provided estimates of hip strain enabling ranking
exercises consistently with their osteogenic capacity found in
current randomized studies [46–49]. For example, 50 unilat-
eral hops per day per 6 months caused 0.8–2.8% increase of
femoral neck BMD in premenopausal women [46, 47] in
agreement with higher strain while hopping and jumping over
walking in all numerical studies analysed [10••, 22, 31, 36].
Squatting and deadlift exercises, as opposed to hip abduction
exercises, caused concomitant strength increase of both the
hip and the hip extensor muscles [48] in agreement with the
ability of the hip extensor muscles, as opposed to the hip
abductor muscles, to load the superior neck in our earlier nu-
merical analyses [22–24]. Fast walking (6 km/h) was found to
nearly double strain, either in tension or compression, experi-
enced by the superior neck during normal walking (4 km/h) in
agreement with earlier observation of diminished bone loss in
a self-paced brisk walking exercise intervention [49]. Finally,
the heterogeneity of the bone response to exercise observed by
Lang and colleagues [48] is in agreement with the heteroge-
neity of hip strain reported by most numerical studies [10••,
22, 32].

Regarding model consistency, comparison betweenmodels
is complicated by the limited number of studies analysed here,
different procedures used for modelling femoral mechanics,
often incomplete information of exercise kinematic and dy-
namic and by different mechanical variables for assessment.
For example, different studies used principal strain compo-
nents [36], effective strain [10••], strain energy density per
unit of bone mass [22] and strain averages over different bone
volumes [10••, 37]. To date, there is no gold standard for
comprehensive verification of modelled lower limb muscle
forces, except at the triceps surae [50] and quadriceps [51,
52], and limited verification data for hip contact forces [53]
and femoral strain [54]. One study compared the tensile strain
in the proximal lateral shaft during walking to corresponding
strain measurement published for two hip-snapping syndrome
patients (i.e., 1198–1454 με in tension and 393–948 με in
compression) [54], hence providing a low-strain point for
model verification [31]. A different high strain point for model
verification may be obtained, for example, by comparing the
strain calculated during high intensity safe exercises to bone
damage threshold levels [22, 55]. We expect that the increase
in the number of studies, the availability of benchmark data,

open databases and cross-laboratory initiatives will soon pro-
mote consistency across and facilitate comparison between
studies.

Exercise Intensity and Type

The osteogenic response to exercise occurs at locations where
strains exceed those of habitual loading, with the latter typi-
cally considered during normal walking in sedentary individ-
uals (speed, 3.5–4.5 km/h). As such, exercise generating
higher strain in the superior neck cortex than that during nor-
mal walking is preferable for promoting hip strength. During
walking, the effective strain in postmenopausal women, aver-
aged over 12 neck portions, in the anterior and superior fem-
oral neck is 1045–1241 με [10••]. Gait speed is a well-known
indicator of age-related functional decline [56]. Although Lim
et al. showed that muscle contribution to acceleration of the
centre of mass is invariant to age [57], Anderson andMadigan
[37] showed that young participants (age, 25 ± 4 years) dis-
play higher ground reaction (9%), hip contact force (18%) and
similar strain levels during late stance as compared to older
counterparts (age, 79 ± 5 years) walking at the same speed.
Since hip strain increased as BMD decreases, hip strain may
also be an indicator of functional decline, independent from
gait speed [37].

Other common activities including stair ambulation, fast
walking and light jump in place confirmed minimal loading
of the superior neck cortex theorized earlier by Lovejoy for
upright locomotion [25] and display similar strain patterns
[10••]. Nevertheless, stair ambulation was found to induce in
the superior neck 30% higher effective strain (1410–1639 με)
than walking, suggesting that stair ambulation may be a useful
mechanical stimulus for the hip while ageing [10••].
Conversely, lower strain than walking was found during land-
ing on both feet from a light jump in place generating 0.6 BW
ground reaction force on each foot [10••]. In women aged over
60 years, the ground reaction force explained the 52–85% of
the variance of the effective strain at mid-femoral neck [10••].

Higher intensity exercises including fast walking, hopping,
jumping and resistance training exercises about the hip were
ranked using estimates of hip contact force and strain [36].
Hopping and running at 7–9 km/h generated the highest hip
contact force (6–8 BW). Hopping generated about a threefold
increase of the peak tensile strain in the inferior neck over
every other exercise analysed and the highest compressive
strain in the inferior neck. Fast walking (6 km/h) generated
the highest tensile strain in the superior neck, closely followed
by running (7–9 km/h), and the highest compressive strain,
closely followed by hopping. Fast walking, hopping
(propulsion) and running (9 km/h) induced 1.5–2.5 times
higher strain than normal walking, either in tension or com-
pression, in the superior neck. Fast walking and running at an
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increasing speed (5–9 km/h) caused similar strain levels in the
superior neck, likely because of reduced muscle ability to
generate support as speed increases [58]. All resistance exer-
cises about the hip induced lower strain in the hip than normal
walking. However, the hip torque generated during exercise
was not provided. By pooling all the activities together, the hip
contact force explained the 80% of the tensile strain variance
in the superior neck. However, the strain variance explained
by the ground reaction force decreased to 20% focusing on the
12 exercises generating higher hip contact force than normal
walking (> 4 BW) (Fig. 3), complicating ranking of osteogen-
ic activities using the hip contact force intensity and suggest-
ing a specific effect of exercise type on the hip contact force
direction.

The specific strain and strain energy generated per unit of
ground reaction force and joint torque were studied using the
model of an osteoporotic donor combining body anatomy
from full-body CT imaging and dissection and a structural
model of the femur experimentally validated (R2 = 0.95)
[22]. The model was animated by weight-bearing activities
recorded in a young body-matched volunteer and maximal
isokinetic contractions about the hip and knee in a mixed
cohort aged 61–78 years [59]. Long jumps generating 0.6–
2.6 BW ground reaction force and maximal hip extension
exercises caused approximately 5000 με tension in the supe-
rior neck and highly heterogeneous strain maps showing focal
strain varying from the superior (hip extension and knee flex-
ion) to the anterior neck (long jump). The specific strain en-
ergy generated per unit ground reaction force in weight-
bearing exercises and per unit of joint torque in resistance
training exercises varied by 2–10 times across exercises.
Differences in the specific strain and strain energy across ex-
ercise were then attributed to the specific muscle contractions
driving each different exercise.

A study investigated the hip contact force orientation, in-
tensity and hip strain potentially generated by each hip-
spanningmuscle group and their relation to anatomy and body
posture [24] (Fig. 4). The hip abductor muscles generate pre-
dominantly compression at 0° hip abduction by pulling the
greater trochanter toward the ilium and their force-
generating capacity decreases as the hip abduction angle in-
creases and loading of the neck becomes substantial bending
at 40° hip abduction. The hip extensors (gluteus maximus and
hamstring muscles) compress the femur between the pelvis
and the tibia, generating a hip contact force at a small angle
from the diaphyseal axis and causing mostly bending to the
neck and tension in the superior neck. The iliopsoas, the pri-
mary hip flexor muscle, pulls the femur from the lesser tro-
chanter compressing the posterior neck and tensioning the
anterior neck. Interestingly, the hip contact force during nor-
mal daily activities, as measured in patients wearing a telemet-
ric hip implant [44], was found to span a narrow central posi-
tion in the envelope of the hip loadings potentially generated
by each muscle separately [23], thereby supporting the use of
multiaxial exercises to cause extreme non-habitual loading to
the hip. This information can be used for determining the
exercise type targeting specific hip regions.

Exercise Recommendations

The exercise recommendations of the ESSA position state-
ment include a mix of weight-bearing and resistance exercises
of increasing intensity inducing from 2 to 3 BW ground reac-
tion force for the management of osteoporosis to above 4 BW
ground reaction forces for osteoporosis prevention [3]. Model
results support ESSA’s current exercise recommendations and

Fig. 3 Linear regression analysis between the tensile strain in the superior
neck and the intensity of hip contact force for the exercises analysed by
Pellikaan and colleagues [35]. The regression was performed by pooling
all the exercises together (Fig. 3a) and for the exercises inducing a hip
contact force higher than that generated by normal walking (Fig. 3b)
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provide information for optimizing current exercise
treatments.

Fast walking (6 km/h) and stair ambulation, not included in
ESSA’s recommendation, may be easily integrated into nor-
mal daily activity to help mitigate the natural age-related bone
decline. Running is unlikely to translate into increased me-
chanical stimulus of the hip compared with fast walking.
High intensity jumping and hopping exercises may promote
anabolic response of the superior neck. Multidirectional exer-
cises may leverage the different capability of different muscle
groups and postures for loading above usual levels different
hip regions. Resistance exercises targeting hamstring and hip
extensor muscles, among those recommended by ESSA, have
the highest potential for loading the superior neck cortex [22].
Concerning exercise safety, exercises generating 2–3 BW
ground reaction force in osteoporotic patients were found safe
in a single validated model [22]. No study reported the safety
of different exercise types in osteoporosis for a broader range
of BMD levels.

Models can also contribute to the design of questionnaires
of self-reported physical activity for relating exercise regi-
mens to hip response and for guiding exercise recommenda-
tions. For example, the bone-specific physical activity ques-
tionnaire (BPAQ) combined self-reported physical activity
and an osteogenic index, which was based on information
on the ground reaction force, loading rate, frequency and rest-
ing time [60, 61]. Such questionnaire explained 65% of the
variance of femoral neck BMD in young males [62, 63], im-
proving the otherwise modest relationship of self-reported ge-
neric physical activity [64]. The specific strain and strain en-
ergy per unit of ground reaction force in the models can be
used to weight exercises according to both their intensity
(ground reaction force) and type (specific effect).

A Perspective Toward Personalized Exercise
Prescription

Personalized exercise prescription requires discerning individ-
ual features of the hip response to exercise that may be deter-
mined by complex interaction between anatomy, muscle func-
tion, bone distribution and metabolism. Therefore, accounting
for the interaction between all these features can enable per-
sonalized prescription of exercise treatments for osteoporosis.
Here, we provide the authors’ perspective toward personalized
prescription of exercise-diet-drug treatments.

Significant progress has been made toward a fast, reli-
able and personalized physics-based model of human
physiology. Current technologies can incorporate anatom-
ical, mechanical, physiological and neurological features
in each individual [40, 65]. The body anatomy in the
model can be informed by medical imaging [66–68] or
extracted from population databases [69, 70]. Statistical
methods have been developed for improving the anatom-
ical fidelity in the model using the limited set of informa-
tion typically available in a clinical environment [71, 72].
Real-time or near real-time numerical methods have been
developed to predict muscle and joint force [73], bone
strains [74, 75] and strength [76]. Technologies have been
developed to constrain the problem of muscle coordina-
tion to available observations of muscle activity [77, 78]
and to reduce the bone position error in current motion
capture technologies [79]. Similarly, bone anatomy and
distribution can be obtained from calibrated CT images
[10••, 22, 31] or extracted from population databases
[76]. Access to high performance computing hardware,
efficient new computational algorithms [74, 75, 80, 81]
and open-source population databases [71] have reduced

Fig. 4 The hip load generated by contractions of the gluteus (gluteus
medius and minimus) and of the hamstring muscles. The gluteus
generates a mostly compressive load to the femoral neck at 0° hip
abduction (a) and significant bending at 40° hip abduction (b). The
hamstring generates a hip contact force at small angles from the

diaphyseal axis causing substantial bending to the neck (c). Force
vectors for the gluteus and the hamstring muscles are scaled differently
to improve the readability of the figure. Animations representing the
entire range of motion are available in the supplementary material
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the burden of implementing robust models. These ad-
vances will enable personalized computational models of
hip strength and strain during exercise.

Regarding the response of hip strength to exercise, recent
evolutions of the mechanostat model proposed by H. Frost in
1983 describe how osteocytes and lining cells sense changes
of the mechanical stimulus and adapt current bone structure by
activating osteoblasts (i.e. bone-forming cells) and osteoclasts
(i.e. bone-resorbing cells) [82–84] where the mechanical stim-
ulus exceeds, or is lower, than its homeostatic value [85, 86].
Typically based on animal studies [87–89], these models can
be used for determining the amount of bone deposited, or
resorbed, as a function of exercise, individualmetabolism, diet
and pharmacological treatment [90, 91•, 92] for different an-
atomical locations and bone types [87–89]. In humans, bone
adaptation theory has been used to relate normal activity to
bone distribution [86, 93], for studying the long-term stability
of total hip replacements [94–98] and the hip response to leg-
press exercises [23]. However, most human studies focused
only on the mechanical component of bone adaptation, but not
metabolism [23, 86, 93–98]. Only one human study used
models of bone metabolism focussing on changes of the
mid-femoral diaphysis due to ageing, parathyroid hormone
treatment and the lack of gravitational forces during space
flights using a single representative mechanical loading [99].
Incorporation of models of hip metabolism and mechanics
during exercise is the current focus of the bone research
community.

In the coming years, it is likely to be possible to deploy a
highly personalized computational model of hip strength and
response to exercise with minimal imaging requirements in
minutes, which can then be used to design the exercise regime
for a given individual. The use of such models in combination
with retrospective and longitudinal exercise interventions will
allow appropriate identification of model assumptions and
technology for personalized prescription of exercise type and
amount for optimal hip strength.

Conclusion

The analysis of the current studies on hip strain during exer-
cise has shown that fast walking and stair ambulation, but not
necessarily running, may help mitigating the natural age-
related bone decline and may be easily integrated into routine
daily activity. High intensity jumps and hopping promote hip
strain in the superior neck higher than that during walking and
multidirectional exercises may cause beneficial non-habitual
strain patterns. Resistance knee flexion and hip extension ex-
ercises can induce high strain in the superior neck when per-
formed using maximal resistance loadings in the average pop-
ulation. Information about exercise safety in the models
analysed is marginal and at times contrasted likely due to

limited model verification in some cases. Digital technologies
can help study the interdependencies between anatomy, bone
distribution, exercise, strain and metabolism thereby enabling
personalized prescription exercise for optimal hip strength.
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