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Background. The availability of large complex data sets generated by high throughput technologies has enabled the recent
proliferation of disease biomarker studies. However, a recurring problem in deriving biological information from large data sets is
how to best incorporate expert knowledge into the biomarker selection process. Objective. To develop a generalizable framework
that can incorporate expert knowledge into data-driven processes in a semiautomatedwaywhile providing ametric for optimization
in a biomarker selection scheme. Methods. The framework was implemented as a pipeline consisting of five components for the
identification of signatures from integrated clustering (ISIC). Expert knowledge was integrated into the biomarker identification
process using the combination of two distinct approaches; a distance-based clustering approach and an expert knowledge-driven
functional selection. Results. The utility of the developed framework ISIC was demonstrated on proteomics data from a study of
chronic obstructive pulmonary disease (COPD). Biomarker candidates were identified in a mouse model using ISIC and validated
in a study of a human cohort. Conclusions. Expert knowledge can be introduced into a biomarker discovery process in different
ways to enhance the robustness of selected marker candidates. Developing strategies for extracting orthogonal and robust features
from large data sets increases the chances of success in biomarker identification.

1. Introduction

An unprecedented opportunity for identification of disease
biomarker candidates has been provided by the advent of high
throughput technologies in the past decade [1, 2]. The explo-
sive growth of large data sets has been overwhelming in terms
of the number, size, format, and complexity [3, 4]. While
diversified data sets have led to numerous opportunities and
studies for discovering new disease marker candidates, the
success of those efforts has been largely disappointing in
terms of validating the results across populations [4].

Current strategies for biomarker discovery tend to focus
on one of two approaches: data-driven [5] or expert know-
ledge-driven [6]. A data-driven approach makes use of large
data sets to unearth the underlying structures embedded in
the data to facilitate identification of robust features. The
value of this purely statistical approach has been evident
in the successful identification of cancer biomarkers, for
instance, using an artificial neural network (ANN) model for
detecting early stage epithelial ovarian cancer with a panel
of five serum markers [7]. In contrast, an expert knowledge-
driven approach takes advantage of constantly increased
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understanding in pathophysiological mechanisms of diseases
at bothmolecular and systems levels to extract discriminating
features of diseases [6]. Despite many intense efforts devoted
to the field of biomarker discovery, no robust yet generaliz-
able framework has been widely accepted by the community.
Recent studies have suggested that integrating data-driven
and knowledge-driven approaches rather than exclusive
reliance on either can potentially improve the robustness of
selected biomarker candidates and their performances across
populations. For instance, an empirical Bayes method has
been used to combine the information on pathways and
networks into the experimental results of cancer biology
[8]. The idea of integrating experimental measurements and
existing knowledge is rational and appealing. However, many
challenges can be recognized immediately and need to be
addressed properly, such as optimal knowledge databases to
use, suitable formats of expert knowledge, reasonable ways
to integrate these disparate kinds of data, and appropriate
selection strategies.

As one of the leading causes of death worldwide, chronic
obstructive pulmonary disease (COPD) is a prevalent con-
dition that is characterized by progressive and not fully
reversible airflow limitations [9, 10]. No new classes of drugs
forCOPD treatment have been approved for use in theUnited
States in more than twenty years [11]. Despite associations
with multiple pathological components, one hallmark of
COPD is a persistent inflammatory state that contributes
to a progressive decline in lung function [12]. A mouse
model with adenosine deaminase (Ada) deficiency has been
established to develop a rapid pulmonary inflammation and
progressive destruction of lung tissue that closely mimics
many aspects of human COPD and other chronic lung
diseases [13, 14]. Adenosine is a molecule routinely generated
at sites of inflammation and tissue injury. It is a key signaling
molecule involved in multiple intracellular signaling path-
ways related to the modulation of inflammatory responses
[15, 16]. Ada is the purine catabolic enzyme responsible for
converting adenosine to inosine, which is frequently induced
in response to cell stress or damage and involved in anti-
inflammatory, tissue-protective pathways [16, 17].

Accumulating evidence has suggested that elevated
adenosine levels in lung are associated with chronic lung
diseases in both human and animal models [12, 17]. An in-
depth understanding of the biological relevance of Ada in
lung will benefit our general understanding of COPD.

In this paper, we describe a semiautomated framework,
identification of signatures from integrated clustering (ISIC),
for merging data-driven and knowledge-driven approaches
into a biomarker selection scheme in an iterative manner,
with a defined metric provided for performance evaluation.
To demonstrate ISIC, we applied it to proteomics data sets
of bronchoalveolar lavage fluid (BALF) and plasma from
a mouse model of COPD, the Ada-deficient mouse model
[13, 14], to identifymarker candidates of COPD.The resulting
candidates were subsequently validated in a human plasma
data set from a cohort of low bodymass index (BMI) smokers
with COPD and healthy controls. We believe that ISIC is
a novel and powerful tool for integrating data types in the

context of biosignature discovery and show that it produces
robust results between a model system and human disease.

2. Methods

2.1. Animal Samples, Patient Samples, and Proteomics Data
Collections. Data from the Ada-deficient mice were used for
the initial biomarker identification [13]. Bronchial secretions
and blood plasma from the Ada −/− and Ada +/−mice were
individually collected and processed as described previously
[15]. Human plasma samples were selected from a large
cohort (𝑛 = 467) of the Genetics of Addiction program at the
University of UtahMedical School [18]. Plasma samples from
7 lowBMI smokers withCOPDand 7 lowBMInever smokers
(COPD free) were used for the patient and control samples.
All BALF and plasma (mouse and human) samples were
processed, tryptic digested, separated, and analyzed using liq-
uid chromatography-mass spectrometry (LC-MS). Detailed
information on animal and human sample collections and
data collection is provided in Supplemental Information,
which includes Supplemental Methods, brief descriptions
and rationales of the framework, discussion on COPD data
sets used in the current study, Supplemental Figures, Sup-
plemental Tables, and References. Supplemental Information
available online at http://dx.doi.org/10.1155/2013/613529.

2.2. Processing of Proteomic Data Sets. The peptides were
identified and quantified using a collection of in-house devel-
oped tools that are freely available at http://omics.pnl.gov/.
For the mouse data, the peak intensity values of the final
identified peptides were obtained from the analyses of LC-
LTQ-Orbitrap spectral data. The raw peak intensity values
were processed in theMatLab environment, including quality
control, normalization, protein quantification, and compara-
tive statistical analyses [19–21]. The final peptide abundances
were transformed into the log

10
scale for the subsequent data

analyses. Quality control was a process performed to identify
and remove the peptides with an insufficient amount of data
across the set of samples [20], aswell as to identify and remove
the LC-MS data sets that showed significant deviations from
the standard behaviors of all LC-MS analyses [22].The outlier
LC-MS data sets were identified at a significance level of
0.0001. The peptides were normalized across all technical
replicates to ensure the least amount of bias introduced
into the data sets [21]. Specifically, the BALF data were
normalized Using a linear combination of order statistics
to determine a subset of peptides [23] followed by mean
centering, and the plasma data were normalized using a rank
invariant peptide subset [21] followed by median centering.
The normalized log

10
abundance values were averaged across

the technical replicates within each biological sample. The
subsequent protein quantifications were performed using
the most abundant reference peptide through an R-Rollup
method [19, 24]. The human plasma data were processed
using the same protocols for the BALF data, as described
above.

2.3. Significantly Altered Proteins in Mouse BALF and Plasma.
The quantified proteins in BALF and plasma were compared
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quantitatively and qualitatively between the time-matched
Ada +/− and Ada −/− mice (three in each group) at each
of the five time points, respectively. Quantitative comparison
was performed using a Dunnett adjusted 𝑡-test to assess
the numeric change in the average abundance of a protein
between the two phenotypes at the individual time points.
Qualitative comparison (the presence or absence of a pro-
tein) was implemented by a 𝐺-test, a modified 𝜒2 test of
independence, which assessed the associations between the
presence/absence of proteins and the phenotypes of the mice
[20]. A significantly altered protein was defined if at least one
of the five 𝑡-tests or five 𝐺-tests was statistically significant
(𝑃 < 0.05) after Bonferroni multiple hypothesis correction.
All the protein abundances were compared with their time-
matched counterparts. To provide sufficient replicates for the
subsequent analyses, we combined the significantly altered
proteins from all five time points and grouped them into
either disease (Ada −/−) or control (Ada +/−) categories for
the BALF and plasma samples, that is, a sample size of 15mice
in each of the groups.

2.4. Distance-Based Hierarchical Clustering. All clustering
analyses using the mouse data were performed on the com-
plete data set of significantly altered proteins. Missing values
were imputed at the protein abundance level using a regular-
ized expectation-maximization algorithm [25]. The imputa-
tion toolbox is freely available at http://www.clidyn.ethz.ch/
imputation/index.html. Three different distance matrices
were calculated.The first was based on the protein expression
profiles and was calculated as Euclidean distance of the
protein abundances in the log

10
scale. The second was based

on the functional relationships between the proteins and
was determined by the semantic dissimilarities in the bio-
logical process subontology from the Gene Ontology (GO)
[26]. The semantic dissimilarity was defined as 1-semantic
similarity between protein pairs and calculated using the
cross-ontological analysis (XOA) tool [27] or the GOSemSim
package [28] in the R statistical language. The third one
was the joint distance measure of the previous two. It was
calculated as the weighted average of the other two distances
with weighting factors of 0.25, 0.50, 0.75, or 1 or the average
of their individual logistic functions [29]. A logistic function
is a common sigmoidal function with equation:

𝑓 (𝑥) =

1

1 + 𝑒

−𝑥
, (1)

where 𝑥 is associated with a distance matrix, that is, the first
or second distance. Specifically, 𝑥 is expressed as

𝑥 =

6

]
(𝛿

𝑎𝑖 ,𝑎𝑗
− ]) , (2)

where 𝛿
𝑎𝑖 ,𝑎𝑗

is a distance or dissimilarity between two pro-
teins, ] is a smooth threshold (chosen as the mean of the dis-
tance matrix), and 6/] is a heuristically chosen parameter of
the slope in our calculation [30]. The averaged logistic func-
tion of the two distance matrices was used as a candidate of
the joint distance measures. The numbers of clusters were
empirically determined as 6 and 12 for the BALF and 6 for

the plasma data sets based on their sample sizes. Ward’s
minimum variance linkage was used in all hierarchical
clustering [31].

2.5. Expert Knowledge-Driven Disease Model-Related Func-
tional Analysis. A biological function-centric approach was
used to determine the functionally enriched biological pro-
cesses in the BALF and plasma samples of mice [32].The bio-
logical processes are referred to the terms included in the bio-
logical process hierarchy in theGO.The significantly changed
proteins in the Ada −/−mice (relative to their controls) were
mapped to their corresponding genes and compared with a
list of all genes in the mouse genome in order to determine
the levels of significance for individual biological processes
in the data using a hypergeometric test. The GO terms with
the enrichment𝑃 values smaller than 10−8 (in bothBALF and
plasma) were considered as significantly enriched biological
processes in our data sets [32]. For each enriched GO term,
we determined its own level (how specific the term is) and its
top-level ancestor (broadest category that includes the term)
within the biological process subontology. The level of a GO
term is the number of steps taken to reach the top-most
node when ascending the GO tree starting from the term of
interest. The top-level ancestor of a GO term is the ancestor
term that is directly below the top-most node (“biological
process,” GO ID: 8150). The enriched GO terms were then
grouped according to their top-level ancestors and resulted
in a number of biological process groups that were enriched
in the Ada −/−mice.

An expert knowledge-driven disease selection was sub-
sequently implemented on the enriched GO terms selected
above. Specifically, a subset of the enriched terms was further
selected based on expert knowledge on the Ada-deficient
model, the 𝑃 values of enrichments, and the levels of the GO
terms within individual functional groups, that is, the GO
terms sharing the same top-level ancestor(s). Those func-
tional clusters with their corresponding proteins were the
final results of this expert knowledge-driven disease-model-
related annotation selection. Each of the clusters was rep-
resented by either all differentially expressed proteins or,
alternatively, the top three most differentially altered proteins
in the cluster between the two phenotypes for the subsequent
analyses in ISIC.

2.6. Bayesian Integration and Classification. A Bayesian inte-
gration approachwas applied on clusters to derive the optimal
probability models for the data sets [33]. Four standard sta-
tistical algorithms were applied to the individual clusters (or
subsets) generated from the hierarchical clustering or expert
knowledge-driven functional annotation to build likelihood
probabilitymodels: linear discriminant analysis [34], fuzzy k-
nearest neighbor [35], multinomial logistic regression [36],
and Näıve Bayes [37]. Classification accuracy (CA) was used
to evaluate the performances of the individual subsets and
the integrations of the multiple subsets of each round of the
analyses. CA is a measure of how well predictions match
with the actual data. Our approach predicts the disease state
of each animal (Ada −/− or Ada +/−), and so true positives
(TP; correct predictions of disease) and negatives (TN)
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Figure 1: Flowchart of the ISIC framework in a biosignature discovery process.

are compared to incorrect predictions (false positives and
negatives; FP and FN). CA is expressed as

CA =
number of correctly classified samples

total number of samples

=

TP + TN
TP + FP + TN + FN

.

(3)

The optimal algorithm for a specific cluster was the one
providing the best CA among the four probability mod-
els. The posterior probabilities were integrated through a
Bayesian approach using the different combinations of the
subsets along with their optimal algorithms determined [33,
38].Within either of the approaches, theCAs fromall possible
combinations of clusters were calculated, and the highest
value was reported as the optimal integrated CA for the
data set under that setting. Five-fold cross-validations were
performed in all analyses to assure that the probabilities were
independent from the training data. The cluster membership
and the corresponding proteins of each cluster from the
optimal integration were recorded for the comparisons. Once
the cluster membership of the optimal integration for a data
set was determined, the integration and determination of CA
from the selected clusters were repeated 100 times with five-
fold cross-validations. The average CA was reported as the
final optimal integrated CA of each round of the analyses.
Additionally, the integrated CAs were reported from the
use of a full data set and a partial data set. The full data
set refers to the entire data set that was divided into the
numbers of clusters indicated. The partial data set refers to
the subset of the clusters that provided the best integrated
CA for each combination of parameters (overall number of
clusters, distance matrix used, and weight for expert versus
data matrix integration.).

2.7. Biomarker Candidate Selection. Biomarker candidate
selectionwas conducted separately in the clustering approach
versus the expert-driven functional selection. In the cluster-
ing approach, we selected the biomarker candidates as the set
of protein clusters that gave the best integrated CAs. In the
expert-driven functional selection, the biomarker candidates
were selected as the several most differentially altered pro-
teins belonging to the functional clusters providing the best
integrated CAs.

2.8. Validation. Validation was performed on a proteomics
data set of human plasma at both the cluster (six cluster opti-
mization) and individual protein levels. For the validation on
clusters, we used the clusters identified from themouse BALF
and plasma proteins using their joint distance matrices. In
each cluster, we filtered to only include proteins that were
detected in both human and mouse. The CAs for individual
clusters and the integrations from all six clusters were
calculated. For the validation on the individual proteins, the
biomarker candidates selected frommouse BALF, whichwere
also detected in the plasma data sets, were evaluated in the
human plasma data set.

3. Results

3.1. Overview of Approach. The objective of this study was to
develop a semiautomated framework for integrating expert
knowledge into disease marker selection scheme in an itera-
tive manner guided by the use of a defined metric providing
the evaluation of performances.The framework, named ISIC,
was designed to serve as a conceptual pipeline rather than a
collection of detailed protocols; the basic flow is illustrated
in Figure 1. The overall process consists of five components,
that is, data reduction, distance-based hierarchical clus-
tering, Bayesian integration and classification, selection of
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Table 1: Optimal integrated CAs derived from (A) the distance-based hierarchical clustering and (B) the disease-model-related functional
selection approaches.

Clustering based on

Optimal Integrated CA

Distance matrix
Data

expression
profiles

Functional
relationships A combinationof the two

No. of clusters 1 6 12 6 12 6 12

(A) Different
distance matrices

BALF Full 0.83 0.86 0.79 0.93 0.80 0.81 0.81
Partial 0.93 0.96 0.96 1.00 1.00 0.99

Plasma Full 0.66 0.68 0.54 0.62
Partial 0.77 0.79 0.83

Number of proteins1 All Top 3
No. of clusters 1 12 1 12

(B) Disease
model-related
functional selection

BALF Full 0.81 0.90 0.88 0.82
Partial 0.93 0.99

Plasma Full 0.57 0.56 0.59 0.65
Partial 0.73 0.87

1This refers to the different number of significantly changed proteins (all proteins or top 3 proteins) used in each cluster.

biomarker candidates, and validation. In addition, an expert
knowledge-driven diseasemodel-related functional selection
was provided as a parallel approach, the results of which can
be compared to those from ISIC using CA as a discriminator
between the two approaches. Biomarker candidates were
selected based on their CA performances in the individual
approaches, which were subsequently validated in a human
data set (see Supplemental Information for additional expla-
nation).

3.2. Application on COPD Data Sets. To demonstrate ISIC,
we applied it to three proteomics data sets associated with
COPD. First, we identified the potential biomarkers in data
obtained in the BALF and plasma samples from the Ada-
deficient mouse model of COPD. This model system has a
clear distinction between diseased and nondiseased samples
and therefore iswell-suited to developing and testing our clas-
sification approach. To validate the candidates identified from
the development phase, we chose to examine plasma data
from smokers with COPD along with their corresponding
controls. This data set, derived from the actual patient
samples, allowed us to test whether the signatures identified
from mouse would be robust in their ability to classify
diseased and nondiseased human samples with complex and
varied genetic and environmental backgrounds.

3.2.1. Initial Searching Spaces of BALF and Plasma from the
Ada-Deficient Mice. A special effort was focused on how to
appropriately handle themissing values in the data sets.Miss-
ing values are an inevitable issue in many proteomics studies.
It is not uncommon to have 30% or more missing values,
that is, measurements for a specific protein that are missing
from individual samples but present in others, even from a
carefully designed and implemented proteomics data set [39].
In the mouse demonstration data sets, the missing rates were

26% in BALF and 17% in plasma. Dunnett adjusted 𝑡-tests
were performed on the proteins having adequate abundance
values in both types of mice, and 𝐺-tests, a modified 𝜒2
test of independence [20], were implemented on the proteins
without adequate abundance values, respectively. The former
assesses the quantitative changes, and the latter evaluates the
qualitative changes in the individual protein abundances. A
quantitative change is self-explanatory, while a qualitative
change here refers to a real biological absence or presence
of a protein between the two groups of mice. Numbers
of changed proteins as well as the direction of change are
indicated in Figure S1. The collections of the proteins that
are quantitatively (a numerical change in the abundance) and
qualitatively (absence/presence) different at individual time
points were considered as our initial biomarker searching
spaces in BALF (396 out of 532) and plasma (150 out of
351). Heat maps of protein expression from both data sets are
depicted in Figure S2, and no distinct patterns are observed
in either.

3.2.2. Distance-Based Hierarchical Clustering and Classifica-
tion Performance. We calculated distances between all pro-
teins based on their abundance levels across all observations
or their functional similarity based on their annotations in
GO. These sets of distances were then integrated and used
for hierarchical clustering. The clusters derived from three
different dissimilarity matrices were used in the Bayesian
integration and classification step to obtain CA scores for
each combination of parameters. No significant differences
in the CA scores were observed between different weighted
averages or logistic functions (data not shown). The inte-
grated CA scores from using the full and partial data sets are
listed in the Table 1(A), and the information from individual
clusters is provided in Table S1. The optimal CA scores from
the use of the entire data set as a single cluster provided the
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Table 2:The list of the enriched general functional groups from the Ada-deficient model of COPD extracted by the expert knowledge-driven
functional analysis using the BALF data.This list is based on (A) a GO-based biological process enrichment and (B) the disease-model-related
expert selection.

No. Enriched general functional group (A) GO-based biological process (B) The disease model-related GO cluster
1 Immune system process (1) Immune system process (13-1)1 Immune system process

2 Stress/stimulus response (2) Response to stimulus (1) Response to stimulus;
(2) Response to stress

3 Cellular response to stimulus (3) Cellular process (3) Cellular response to stimulus

4 Metabolic process (4)Metabolic process

(4) Small molecule metabolic process;
(5) Oxoacid metabolic process;
(6) Oxidoreduction coenzyme metabolic process;
(7) Nucleotide metabolic process;
(8) Carbohydrate derivative metabolic process

5 Biological regulation (5) Biological regulation
(9) Regulation of immune system process;
(10) Regulation of localization;
(11) Regulation of programmed cell death

6 Death (6) Death (12) Death

7 Localization (7) Localization;
(8) Establishment of localization

(13-2)1 Localization;
(13-3)1 Establishment of localization

8 Cellular organization (9) Cellular component
organization or biogenesis (13-4)1 Cellular component organization or biogenesis

9 Proliferation
(10) Cell proliferation;
(11) Growth;
(12) Developmental process

10 Others

(13) Reproduction and reproductive
process;
(14) Biological adhesion;
(15) Locomotion;
(16)Multicellular organismal
process;
(17)Multiorganism process

(13-1)1 Immune system process;
(13-2)1 Localization;
(13-3)1 Establishment of localization;
(13-4)1 Cellular component organization or biogenesis

1This term belongs to the 13th cluster (others) from the approach B.

baseline performances of the approach. In BALF, using the
396 proteins, the classification performances were approxi-
mately 80% CA or higher, and their CA counterparts from
plasma (using the 150 proteins) were lower at about 60%.
Interestingly, the optimal integrated CA scores in BALF and
plasma were both derived from using a subset of the clusters
rather than a full data set.

3.2.3. Expert Knowledge-Driven Disease Model-Related Func-
tional Selection and Classification Performance. A total of 303
GO terms (data not shown) were determined as enriched
(𝑃 < 10

−8
) in the biological process hierarchy from themouse

BALF samples using a hypergeometric test. Intermediate
level GO terms were selected based on knowledge of the
disease model and then grouped into 13 groups of GO
annotations (the rightmost column in Table 2). These groups
were summarized into their top-level GO-based biological
processes (center column, Table 2) into ten general enriched
functional groups for the Ada-deficient mouse model of
COPD, which was the final result of the expert knowledge-
driven analysis.

The CA performances of the ten functional groups were
assessed in a similar way as those in the clustering approach.
Specifically, the optimal individual CA scores for functional
clusters from using all and the top three differentially

expressed proteins within individual clusters were calculated
and are summarized in Table S2. The CA results using the
entire data set as a single cluster are also provided as the refer-
ence points.The integrated CA results are listed in Table 1(B).
To our surprise, for both individual and integrated results,
the CAs calculated using the top three proteins outperformed
the CAs using all proteins in the majority of the cases. In
addition, the best integrated CA scores were derived from
the partial instead of the full data sets, similar to what we
observed in the clustering approach. This similar pattern
implies that collecting more data from the same sample
source may not guarantee gaining better performances.

3.2.4. Selection of Biomarker Candidates from Different
Approaches. In the distance-based clustering approach, the
biomarker candidates were the protein clusters. Specifically,
215 (out of 396) proteins in two clusters (with the total
number of clusters set as six) or 129 proteins in two clusters
(with the total number of clusters set as twelve) in BALF
from the best performing combination of clusters were
considered to be the biosignatures. Similarly, a group of 13
proteins from the best performing cluster were selected as a
narrowed set of biomarker candidates in plasma. Because our
approach combines patterns in abundance with functional
relationships, we hypothesized that these signatures would
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Table 3: The validation results (in CA) on the cluster-based biomarker candidates using a human plasma data set.

Functional group no. in Table 2 CA from mouse plasma-defined clusters in CA from mouse BALF-defined clusters in
Mouse plasma Human plasma Mouse BALF Human plasma

1 0.54 0.93 0.79 0.93
2 0.58 0.86 0.93 0.79
3 0.56 0.71 0.72 0.71
41 0.83 0.71 0.79 0.79
5 0.63 0.79 0.83 0.64
6 0.53 0.79 0.62 0.64
1, 4 0.80 0.86
2, 51 1.00 0.71
1–6 0.83 0.93 0.81 0.86
1The best performing clusters from the indicated mouse data set.

be more robust relative to the individual candidates with top
performances.

In the disease model-related functional selection driven
by expert knowledge, CAs from the top threemost differential
proteins of each cluster generally outperformed the CAs
from all differential proteins of the cluster. Therefore, we
examined the biomarker candidates in the top three proteins
from each GO term instead of all proteins under it. The
information on the five best CA performances is listed in
Table S3, including the CA scores, the cluster names, and the
protein lists. A single functional cluster, carbohydrate deriva-
tive metabolic process, yielded the best CA score of 0.99,
which includes complement C3 (CO3/C3,Uniprot/gene sym-
bol), prothrombin (THRB/F2), vitamin D-binding protein
(VTDB/GC), and v-type proton ATPase 16 kDa proteolipid
subunit (VATL/Atp6v0c).These proteins were also present in
some of the top-performing clusters from our cluster-based
approach. Note that most proteins have multiple annotations
and the six proteins that consistently recurred in the top-
performing functional clusters were considered as a list of
biomarker candidates of COPD (using the BALF data set)
from the expert knowledge-driven approach.The panel of six
biomarker candidates includes THRB, VTDB, CO3, VATL,
adiponectin (ADIPO/ADIPOQ), and liver fatty acid-binding
protein (FABPL/FABP1).

3.2.5. Validation. To compare the robustness of signatures
derived using different approaches and to validate our find-
ings, we chose to use a data set of human plasma samples.
These samples were taken from subjects with low BMI
(<25) who smoke and have been diagnosed with COPD and
their corresponding healthy controls. A total of 44 proteins
in human data were differentially expressed in the mouse
plasma, which was used in validation.The optimal CAs from
using the 44 common proteins in the six clusters that were
defined by the mouse plasma are listed in Table 3. The inte-
grated CA from using all six clusters was 0.93 in the human
and 0.83 in the mouse plasma. Though the best-performing
cluster (the fourth cluster) in mouse did not provide a better
performance in human, the top integrated CA (using the
first and fourth clusters) gave comparable classification result
in human plasma. Validation using the six clusters defined

by the mouse BALF showed similar outcomes (Table 3). We
also calculated the individual CAs of the 44 common plasma
proteins in mouse and human data sets, respectively. The
results show that the top-performing individual proteins in
mouse do not provide consistent classification performances
using human data and only marginally discriminate the
patients from their controls (Table S4). This is in contrast
to our findings in the cluster-based biomarker candidates in
the mouse plasma, which could also classify human patients
quitewell.The receiver operating characteristic (ROC) curves
and the areas under the curves (AUC) were also performed
for validation, which obtained comparable results relative to
the CAs (Figure S3). The ROC curves provide the estimates
for sensitivity and specificity, which is a commonly used
evaluation metric in clinical studies, of the tested biomarker
candidates.

At the level of individual proteins, four out of the six
candidates selected by the expert-driven functional selection
were also identified in human plasma samples.TheCA scores
from individual marker candidates and several top integra-
tions of both mice and human samples are summarized in
Table 4. This panel of BALF-based marker candidates, that
is, THRB, VTDB, CO3, and ADIPO, consistently showed
better performances in human plasma relative to those in
mouse plasma. Reasonable results were observed in all three
specimens: the CA score of 0.93 in the mouse BALF, 0.70 in
the mouse plasma, and 0.93 in the human plasma. Detailed
information on the four candidates is illustrated in Figure 2,
including the average fold changes and their regulation
directions in the Ada −/− group relative to the controls. The
significance levels of the protein abundance changes are also
provided, which were determined by the 𝑃 values from the
corresponding 𝑡-tests or 𝐺-tests.

3.2.6. Comparison of Classification Performances at the Dif-
ferent Time Points. With the data sets available for the time-
matched diseased and controlled animals, we were able to
compare the individual and integrated optimal CAs at the
different time points during the developmental course of
COPD from the Ada-deficient mouse model. In particular,
we compared the optimal CAs derived from the proteins that
were individually and cumulatively significantly changed at
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Table 4:The validation results in CA on the individual biomarker candidates of COPD in the human data and the CAs from the mouse data.

Individual protein or a panel of proteins Optimal CA in Belong to the general functional group1
Mouse BALF Mouse plasma Human plasma

Prothrombin, THRB 0.86 0.50 0.93 1–10
Vitamin D-binding protein, VTDB 0.69 0.63 0.86 2–10
Complement C3, CO3 0.69 0.67 0.79 1–10
Adiponectin, ADIPO 0.66 0.53 0.64 1–9
THRB; VTDB 0.97 0.57 0.93
THRB; CO3 0.86 0.70 0.93
VTDB; CO3 0.83 0.67 0.79
THRB; CO3; ADIPO 0.86 0.70 1.00
VTDB; CO3; ADIPO 0.83 0.70 0.93
THRB; VTDB; CO3; ADIPO 0.93 0.70 0.93
1The enriched functional clusters refer to the general functional groups listed in Table 2: 1: immune system process; 2: stress/stimulus response; 3: cellular
response to stimulus; 4: metabolic process; 5: biological regulation; 6: death; 7: localization; 8: cellular organization; 9: proliferation; 10: others.

1 2 3 4

THRB VTDB CO3 ADIPO
Protein abundance fold change in 

−3

−2

−1

0

1

2

3

4

5

6

Av
er

ag
e f

ol
d 

ch
an

ge
 w

ith
 re

gu
lat

ed
 d

ire
ct

io
n,

di
se

as
ed

 v
er

su
s c

on
tro

l P = 0.009

P = 0.815

P = 0.003

P = 0.039

P = 0.052

P = 0.004

P = 0.004

P = 0.713

P = 0.006

P = 0.478P = 0.012

P = 0.052∗

∗

∗∗

∗∗

∗∗

∗∗

∗∗

Plasma from low BMI smokers with COPD

BALF from Ada −/− mice
Plasma from Ada −/− mice

Figure 2: The bar graph of the average fold changes of the protein
abundances in diseased group relative to their controls of four
potential biomarkers identified in mouse BALF. The positive fold
changes indicate the observed upregulation in the diseased group,
the Ada −/− mice, and the negative fold changes indicate the
observed downregulation. The significances of these changes are
indicated with two (𝑃 value is between 0.01 and 0.001), one (𝑃 value
is between 0.01 and 0.05), or no asterisk (𝑃 value is greater than
0.05). The arrow in dashed line of ADIPO shows that this protein
was present in the BALF of the Ada −/−mice but absent in the Ada
+/− group. The mouse data from the last two time points (on days
38 and 42) were used for this analysis.

the five time points in both fluids (Figure 3).The individually
changed proteins at a specific time point refer to the proteins
that showed significant alterations in their abundances at this
single time point, while the cumulatively changed proteins
at the same time point refer to a collection of individually
changed proteins from day 26 up to this time point. Both
the individual and cumulative CAs from BALF (solid lines)
consistently outperformed their counterparts from plasma
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Cumulative CA (BALF) Cumulative CA (plasma)
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Figure 3: The comparative results in the optimal CAs between
the BALF (solid lines) and plasma (dashed lines) from the Ada-
deficient mice during the disease developmental course. The CAs
were derived from the cumulatively (blue) and individually (green)
significantly changed proteins at different time points.TheCAswere
obtained from the resulting clusters using the joint distance matrix
of protein expression patterns and their functional relationships
(XOA).

(dashed lines) in terms of discriminating between diseased
and nondiseased animals.

Not surprisingly, the ability of this discrimination shows
an increasing trend as the Ada −/− mice get sicker in
both plasma and BALF. It is also interesting that these four
candidates are able to classify mice fairly well at very early
time points, even before outward manifestations of disease.

4. Discussion

In the field of biomedical science, the primary challenge has
been shifting from data generation to data interpretation.The
explosive growth of high dimensional data sets has demanded
the development of semiautomated or automated tools as
a necessity for knowledge discovery [4, 40]. In this study,
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we introduced the ISIC as a framework that is designed for
integrating experimental measurements and expert knowl-
edge into disease marker identification in a semiautomated
manner. One main merit of the ISIC lies in the manner
of integration, which simultaneously combines data- and
knowledge-driven information into a quantitative format. A
pipeline was assembled accordingly and demonstrated on
several proteomics data sets of COPD to identify biomarker
candidates of COPD.

The focus of the semiautomated clustering approach is to
separate the initial marker searching candidates, that is, the
differentially expressed proteins in the data sets, into several
different groups that contain features with similar expres-
sion patterns and functionalities within groups. In contrast,
the expert-driven functional selection may be somewhat
subjective; however, it can be an efficient way to extract
a handful of biomarker candidates with the incorporation
of proper knowledge. The classification performances of
this demonstration of COPD data sets on both approaches
obtained comparable results that were both quite good. It is
also worth mentioning that our intention here is to illustrate
the individual merits and weaknesses of both approaches
in the biomarker selection schemes in order to gain insight
on how to comprehensively and efficiently extract valuable
information from data sets.

Biomarker identification is a process to select a limited
number of biomolecules that convey the essential biological
information distinguishing a disease state from a nondisease
state. In the clustering approach, our results show that our
cluster-based biomarkers are much more robust in their
ability to classify human patients than the individual proteins.
A possible explanation is that features in clusters may capture
more consistent and comprehensive information from data
relative to the individual proteins. We are currently working
to include an extra step of feature selection, which will
rigorously identify subsets of proteins with optimal CAs, to
focus smaller biomarker sets.

We found that small sets of proteins could be selected
with good performance using our expert knowledge-driven
approach.The biomarker candidates selected in this way have
a subjective component but also can potentially filter out the
low quality markers identified from pure statistical processes.
Another limitation of expert-driven strategy is that not all
gene or gene products have annotations, which eliminates the
possibilities for exploring the functional relationships among
them in the currently available knowledge databases.

One noticeable consistency of the two approaches is that
all the optimal classification performances, indicated by the
optimal integrated CAs, resulted from using partial instead of
the full data sets (Table 2).This trendwas particularly striking
whenusing the top-threemost differentially changedproteins
to represent the individual GO terms in clusters defined by
the expert-knowledge driven functional selection (Table S2).
This indicates that simply using more data collected from the
same data source does not guarantee improved performance
and that redundant informationmost likely is included in the
additional data.

As previously emphasized, ISIC is intended to be con-
ceptual as well as flexible. The five components function

independently and collaboratively. Each component serves
its distinct functionality and is implemented at a different
stage in the biomarker discovery process. The independence
between them makes it easy to tailor individual compart-
ments for specific data sets or to substitute using other
methods with similar functions. The data reduction largely
is a data-dependent process. As a means to group similar
data into clusters based on a similarity criterion, the distance-
based hierarchical clustering can also be achieved by other
groupingmechanisms, such as k-means, self-organizedmaps,
and fuzzy clustering [41]. In the model integration portion,
Bayesian integration can be replaced with a support vector
machine [42, 43], decision trees and random forests [44, 45],
and artificial neural networks [2], which have been applied in
many types of data integration [4]. In terms of performance
evaluation, CA was chosen mainly due to its suitability in
cases with more than two categories. An ROC curve and the
measurement of AUC [46] as well as recall and precision
[47] are both reasonable substitutions for the CA but mostly
limited to cases with binary responses.

In conclusion, we describe a generalizable framework
for integrating expert knowledge into processes of dis-
ease biomarker discovery. Our framework, ISIC, consists of
several independent and collaborative components and is
flexible enough to accommodate addition, subtraction, and
modification of analyses. The integration of data-driven and
knowledge-driven information is used in a distance-based
clustering approach in a semiautomated manner. An expert-
driven functional selection approach was also performed to
select individual proteins for comparison to our automated
approach. We identified signatures in a mouse model of
COPD and subsequently validated them in a human cohort,
where they demonstrated a comparable accuracy in discrim-
inating patients with COPD from those without COPD.This
was in contrast to standard approaches to identify biomarkers
in the mouse model, which were not robust in the human
cohort. We believe that ISIC represents a generalizable
platform for identification of robust biosignatures from
integrated data sources.
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