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SUMMARY
Loss of cone photoreceptors, crucial for daylight vision, has the greatest impact on sight in retinal degeneration. Transplantation of stem

cell-derived L/M-opsin cones, which form 90% of the human cone population, could provide a feasible therapy to restore vision. How-

ever, transcriptomic similarities between fetal and stem cell-derived cones remain to be defined, in addition to development of cone cell

purification strategies. Here, we report an analysis of the human L/M-opsin cone photoreceptor transcriptome using an AAV2/

9.pR2.1:GFP reporter. This led to the identification of a cone-enriched gene signature, whichwe used to demonstrate similar gene expres-

sion between fetal and stem cell-derived cones. We then defined a cluster of differentiation marker combination that, when used for cell

sorting, significantly enriches for cone photoreceptors from the fetal retina and stem cell-derived retinal organoids, respectively. These

data may facilitate more efficient isolation of human stem cell-derived cones for use in clinical transplantation studies.
INTRODUCTION

Retinopathies featuring the progressive degeneration of

the rod and cone photoreceptor cells lead to permanent

blindness. Inherited retinal dystrophies affect 1 in 3,000

people worldwide (Bessant et al., 2001), with the most

common form, retinitis pigmentosa, presenting with pri-

mary rod degeneration followed by the loss of cones. Age-

related macular degeneration results in the primary loss

of cones in the macula. Cone degeneration has the greatest

impact on sight since cones are fundamental for the detec-

tion of color, daylight vision, and high visual acuity. The

human retina contains three different types of cone photo-

receptors; approximately 5%–10% of the cone population

express S-opsin, while themajority of cones (90%–95%) ex-

press either L-opsin or M-opsin light-sensitive proteins

(Craft et al., 2014). Even though cone photoreceptors are

a rare population, forming 2%–4% of total retinal cells, hu-

mans are dependent on these cells for optimal vision.

There is a paucity of effective treatments for retinal

degeneration. Cell-replacement therapy offers an approach

for advanced disease with extensive cone photoreceptor

loss. As inner retinal neurons are initially preserved within

the diseased retina, photoreceptor cell replacement might

provide a feasible approach following proof-of-concept

studies in the mouse (MacLaren et al., 2006; Bartsch

et al., 2008; Santos-Ferreira et al., 2016b), which showed
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improvements in visual function following transplanta-

tion (Pearson et al., 2012; Lamba et al., 2009). However,

recent studies suggest that functional recovery may be

achieved by transplanted photoreceptor cells predomi-

nantly transferring genetic material, rather than making

new connections with the host retina (Pearson et al.,

2016; Santos-Ferreira et al., 2016a; Decembrini et al.,

2017), and thus developing ways to improve functional

connectivity of transplanted cells remains a priority.

Combining induced pluripotent stem cell (iPSC) genera-

tion (Takahashi et al., 2007) and retinal organoid culture

systems (Meyer et al., 2009; Nakano et al., 2012; Zhong

et al., 2014; Reichman et al., 2014) has allowed recapitula-

tion of human retinogenesis and the generation of photo-

receptors from human somatic cell sources which could

provide a renewable source of autologous cells for cone

transplantation therapy. Nevertheless, there has yet to be

a direct comparative study of the transcriptome of human

fetal and PSC-derived cone photoreceptors to assess their

degree of similarity.

In addition to providing baseline data for assessing suit-

ability of iPSC-derived cones for therapeutic applications,

establishing the transcriptome of human developing

L/M-opsin cones would allow exploration of the molecular

determinants needed for early specification and mainte-

nance of the cone cell fate, which remains to be fully eluci-

dated. In the human retina, from as early as fetal week 10.9,
The Authors.
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cones and rods can be distinguished based on cell

morphology, nuclei condensation, and proximity to the

central retina where the fovea forms (Xiao and Hendrick-

son, 2000; Hendrickson et al., 2008). To date, the most

well-documented human cone-specific markers are the

cone opsins (Xiao and Hendrickson, 2000; Cornish et al.,

2004), with S-cones appearing first, followed by L/M-cones.

L- and M-opsin-expressing photoreceptors can be distin-

guished via high-resolution retinal imaging and retinal

densitometry (Roorda and Williams, 1999; Hofer et al.,

2005), but cannot be separated via immunohistochemistry

due to the high homology (98%) of the OPN1LW and

OPN1MW genes (Nathans et al., 1986; Cornish et al.,

2004). Several studies in the mouse, suggest that rod and

cone photoreceptors share a common cell lineage and

define S-cones as a default cell fate pathway, which is

driven through the interaction of the cone-rod homeobox

gene (Crx) and the nuclear receptor RAR-related orphan re-

ceptors (Rora/Rorb) (Fujieda et al., 2009; Srinivas et al.,

2006; Kim et al., 2016). To becomeM-cones, precursor cells

must express transcription factor genes, including retinoid-

x-receptor gamma (Rxrg) and thyroid hormone receptor

beta 2 (Thrb2), which regulate cone cell identity (Ng

et al., 2001; Roberts et al., 2005). Other lines of evidence

define the Onecut homeobox 1 (ONECUT1) and spalt-like

transcription factor (Sall3) genes, as necessary for gener-

ating progenitors biased to produce cone and horizontal

cells (Emerson et al., 2013; de Melo et al., 2011; Suzuki

et al., 2013). Moreover, in the human retina the character-

ization of cone-associated regulatory factors remains to be

explored. Cone transcriptome data only exist for adult

mouse cone photoreceptors (Siegert et al., 2009); in hu-

man, only total retina (Hornan et al., 2007; Cai et al.,

2012; Bowes Rickman et al., 2006; Whitmore et al., 2014;

Li et al., 2014) and isolated Crx.GFP-expressing embryonic

stem cell (ESC)-derived cells (Kaewkhaw et al., 2015) have

been analyzed. An equivalent dataset for human fetal

cone photoreceptors is currently lacking. Furthermore, sin-

gle-cell RNA sequencing (RNA-seq) (Lun et al., 2016) offers

a novel approach to explore the heterogeneity of human

cone cell populations.
Figure 1. Analysis of Cone Photoreceptor Markers in the Develop
qRT-PCR analysis of early cone photoreceptor genes, RXRG, THRB, SALL
OPN1LW/MW, ARR3, and GNAT2 (B), in fetal (9–20 pcw) and adult retin
cone photoreceptor markers, ONECUT1 (C), S-OPSIN (D–E0), L/M-OPSI
NRL (K) and RHODOPSIN (H and H0), within 9–19 pcw fetal retinae. An
Scale bar, 50 mm. Whole-mount retina (D and F). Scale bar, 100 mm. W
L/M-OPSIN and RHODOPSIN and in (J and K) indicate different location
labels L/M-opsin cones of 12 pcw (+7 days in vitro) fetal retinal exp
marker RXRG (M) (arrowheads) but do not co-localize with S-OPSIN (
epithelium; NBL, neuroblastic layer; ONBL, outer neuroblastic layer; I
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; G
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The enrichment of cone photoreceptors without genetic

manipulation (e.g., GFP reporter gene labeling) will be

crucial prior to transplantation into human patients. We,

and others, have previously described the enrichment of

mouse rod photoreceptor precursor cells by targeting anti-

gens expressed on the outer cell membrane, with corre-

sponding antibodies conjugated to fluorophores in cell-

sorting strategies (Eberle et al., 2011, 2014; Lakowski

et al., 2011; Eberle et al., 2014). An extended cell surface

biomarker panel was developed to enrich rod photorecep-

tors frommouse ESC-derived retinal cultures prior to trans-

plantation (Lakowski et al., 2015). However, little progress

has beenmade toward defining cell surfacemarkers profiles

or enrichment approaches for cone photoreceptors.

In this study, we used an adeno-associated virus (AAV)

GFP reporter, driven by a human L/M-opsin gene promoter

(pR2.1:GFP), to specifically label and isolate human fetal

cones and an equivalent population from iPSC-derived

retinal differentiation cultures. We report transcriptome

analysis of developing L/M-opsin cone photoreceptor

populations and single cells, identifying genes that are up-

regulated in early and late L/M-opsin cones. A direct

comparative analysis of fetal and iPSC-derived cells demon-

strated similar cone gene expression. From these transcrip-

tome data and using fluorescence-activated cell-sorting

(FACS) analysis, we established the cell surface marker

expression profile of L/M-opsin cone photoreceptors,

which led to the identification a cone biomarker panel

(SSEA1�CD26+CD133+CD147+) that positively enriches

for fetal L/M-opsin cones and a stem cell-derived cone

photoreceptor population.
RESULTS

Cone Photoreceptor Marker Expression in the

Developing Human Fetal Retina

We first assessed the developmental expression profile of a

set of cone photoreceptor markers in a series of fetal (9–20

post conception weeks [pcw]) and adult retinal samples by

qRT-PCR (Figure 1). Transcription factor genes implicated
ing Human Retina
3, and ONECUT1 (A), and mature cone photoreceptor genes OPN1SW,
al samples (n = 1 per time point). Immunohistochemistry analysis of
N (F–H), GNAT2 (I), and RXRG (J), and rod photoreceptor markers,
alysis was performed on retinal tissue sections (C, E, E0, and G–H’).
hite arrowheads in (H) highlight mutually exclusive expression of
of RXRG- and NRL-expressing cells. The AAV2/9 pR2.1:GFP reporter

lant (L) (arrowheads). GFP+ cells also co-label with the early cone
N) (arrowheads) or NR2E3 (O) (arrowheads). RPE, retinal pigment
NBL, inner neuroblastic layer; ONL, outer nuclear layer; OPL, outer
CL, ganglion cell layer (see Figures S1–S3).
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in early cone photoreceptor development, RXRG, THRB,

SALL3, and ONECUT1, showed varied expression levels

during retinal development relative to 9 pcw and all were

downregulated in the adult retina (Figure 1A). By contrast,

markers of mature cone photoreceptors, the cone opsins

(OPN1SW and OPN1LW/MW) and cone arrestin (ARR3)

showed substantial upregulation in late fetal retinal sam-

ples (19 and 20 pcw; Figure 1B) and in the mature adult

retina, with OPN1LW/MW expression showing the greatest

fold change (11,000-fold) during development. Cone

transducin (GNAT2) and the pan-photoreceptor markers,

cone-rod homeobox gene (CRX) and recoverin (RCRVN),

showed modest upregulation during development (Figures

1B and S1A).

Immunohistochemical analysis of cone, pan, and rod

photoreceptor markers in fetal retinal tissue highlighted

differences in retinal maturity and photoreceptor cell den-

sity in the central compared with the peripheral retina,

with later detection of protein compared with transcript

detection (Figures 1C–1K and S1). CRX and RECOVERIN

protein were detected in the 9–19 pcw retina, with a

greater density of highly expressing cells in the central

retinal region compared with the periphery (Figure S1B).

Conversely, proliferation marker KI67 was detected in

the peripheral, but not central, retinal cells by 19 pcw (Fig-

ure S1C). Of the conemarkers, onlyONECUT1 proteinwas

detected by 9 pcw in cells across the neuroblastic layer (Fig-

ure 1C). S-OPSIN protein was detected from 13 pcw on-

ward (Figures 1D–1E0), followed by L/M-OPSIN from 17

pcw, each appearing first only in the central retina (Figures

1F–1H). By 19 pcw, L/M-OPSIN- and S-OPSIN-labeled cone

photoreceptors of the central retina showed a distinct

morphology compared with the peripheral regions (Fig-

ures 1E, 1E0, 1G, and 1G0). L/M-OPSIN and rod marker

RHODOPSIN showed mutually exclusive immunostain-

ing (Figures 1H and 1H0). GNAT2 localized to the apical re-

gion of the outer nuclear layer (ONL) in cone developing

outer segments (Figure 1I); RXRG localized to the outer-

most cone cell bodies of the central ONL (Figure 1J),

whereas rodmarkers, NRL andNR2E3, showed distinct im-

munostaining of developing rod cell bodies (Figures 1K

and S1D).
Figure 2. Transcriptome Analysis of Human Fetal AAV2/9 pR2.1:G
(A–E) All fetal AAV2/9 pR2.1:GFP+ samples cluster together based on
cone and pan-photoreceptor (PR) genes (B) (light gray box). Lower lev
(dark gray box; ONECUT1 and OPN1SW also group with the rod genes). V
late GFP+ and GFP� samples (C), early GFP+ and GFP� samples (D) and
downregulated genes (adjusted p value < 0.05) are highlighted in red
(F) Venn diagram represents the overlap between significantly upregu
cone-enriched gene signature.
(G) Revigo semantic plot demonstrates the enriched biological process
the combined score from Enrichr (see Figures S2 and S3; Table S1).
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Transcriptome Analysis of Human Fetal L/M-Opsin

Cone Photoreceptors

Having defined the progressive appearance of L/M-OPSIN-

expressing cones in the human fetal retina and the paucity

of early human cone markers, we sought to isolate and

characterize the transcriptome of these cells using the

AAV2/9.pR2.1:GFP reporter. The pR2.1 promoter contains

the locus control region and enhancer regions found 50 up-
stream of L- and M-opsin genes (OPN1LW, OPN1MW, and

OPN1MW2) on the X chromosome (Nathans et al., 1989;

Wang et al., 1992). It drives expression in canine and rat

L/M-opsin cone photoreceptors (Komaromy et al., 2008;

Li et al., 2008), but also within mouse M- and S-cones

(Wang et al., 1992; Fei and Hughes, 2001). To test the spec-

ificity of the reporter within the human retina, we devel-

oped a free-floating explant culture system that supports

the viability and integrity of fetal retina during the 7 day

period required to achieve AAV vector expression (Figures

S2A–S2C). GFP+ cells were observed 3–4 days in vitro after

delivery of the reporter to early (12 pcw) and late (19

pcw) human fetal retinal explants (Figures S2D and S2E);

cryosections showed GFP+ cells in the ONL, co-labeling

with L/M-OPSIN protein (Figure 1L). GFP+ cells were also

positive for early cone-specific marker, RXRG (Figure 1M),

but negative for S-OPSIN (S-cone marker; Figure 1N),

NR2E3 (rod marker; Figure 1O) and proliferation marker,

KI67 (Figure S2F), indicating the specificity of the reporter

virus to post-mitotic L/M-opsin cone cells (Figure S2G).

The reporter also effectively labeled L/M-opsin cones in

fetal retinae (14% of 14 pcw and 4% of 18 pcw cones

labeled; Figures S3A and S3B).

Early (n = 4) and late (n = 4) fetal retinal samples labeled

with the AAV2/9 pR2.1:GFP reporter were treated by FACS

(Figure S3C) to isolate the GFP+ and GFP� cells for RNA-

seq, enabling the identification of highly expressed and en-

riched genes of the human L/M-opsin cone cell transcrip-

tome. Unbiased hierarchical clustering analysis based on

normalized gene expression showed that all GFP+ samples

cluster together (Figure 2A, black box). Similarly, hierarchi-

cal clustering analysis based on the expression of selected

established markers of cone, pan, and rod photoreceptors

(n = 28) revealed all GFP+ samples cluster together
FP-Labeled Cells
total transcript expression (A) (black box) and high expression of
els of rod-associated genes are detected in pR2.1:GFP+ samples (B)
olcano plots representing the differential gene expression between
early GFP+ and late GFP+ samples (E). Significantly upregulated and
and blue.

lated genes identified for the fetal GFP+ samples, revealing the 798

GO terms associated with the cone gene signature. Color represents



Table 1. Notable Genes from Cone-Enriched Gene Signature with High Fold Changes

Cone Population Function Genes Fold Change

Upregulated in early and late cones known cone photoreceptor associated genes OPN1MW 15

PDE6C 11.7

GUCA1A 12.8

PDE6H 10.3

ARR3 12.1

RXRG 5

THRB 10.1

GNAT2 7.9

CNGB3 18.5

PDE6H 10.3

known photoreceptor associated genes MPP4 16

RP1L1 8.9

CACNA2D4 10.6

LRIT3 11.1

SLC12A5 10.1

SAMD7 5.8

SLITRK6 6.2

CC2D2A 7.8

RGS11 18.6

RPGRIP1 12.6

EGFLAM 10.1

RD3 9.1

development SALL1 23.3

PRR15 16.1

GREM2 9.1

KREMEN2 11

HEG1 9.8

LIPG 18.5

BMP7 7.1

THBS4 8.5

SLC39A5 18.1

synaptic processing/neurotransmission NPTX1 16.7

KCNB2 13.8

KCNB1 5.8

(Continued on next page)
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Table 1. Continued

Cone Population Function Genes Fold Change

ASIC1 16.7

KCNG2 9.6

non-coding RNA genes CTD-2521M24.11 27.5

CTD-2034I21.1 21.5

CTD-2050N2.1 12.4

TNK2-AS1 9.8

Upregulated in early cones neural function DDN 6

negative regulator of Wnt signaling AMER2 2.7

nervous system development SEMA6B 3.4

synaptic processing CPLX2 2.5

Upregulated in late cones ECM/cell adhesion TNC 3.2

PCDHAC1 8.5

MATN2 7.2

photoreceptor outer segment RGS9BP 5.6

phototransduction RGS9 5.1

cilia function RSPH4A 4

development GSC2 19.9

interkinetic nuclear migration CEP120 3

cell differentiation and proliferation ST3GAL5 2.7

Function and fold changes are provided of significantly upregulated genes with high fold changes that feature within cone-enriched gene signature. The full

cone-enriched gene signature is provided in Table S2.
(Figure 2B, black box), based on their high expression of

cone- and pan-associated genes (Figure 2B, light gray

genes). By contrast, the late GFP� and total retinal samples

showed a higher expression of rod genes, particularly at

later time points (Figure 2B, dark gray genes). Noteworthy,

was the expression of OPN1SW in some of the late GFP+

samples. Together, these data support a cone identity for

the isolated GFP+ cells from human fetal retinal explants

labeled by the AAV2/9.pR2.1:GFP reporter.

Differential gene expression analyses were performed to

identify genes highly enriched in early and late fetal

GFP+ cones and genes differentially expressed between

early and late cone populations (adjusted p value < 0.05).

We identified 1,721 and 1,145 genes that were significantly

upregulated in the late and early GFP+ cone populations,

respectively, compared with the GFP� samples (Figures

2C and 2D, red data points; Table S1). Comparison of early

versus late GFP+ expression profiles identified 180 and 96

genes upregulated in the early and late GFP+ cones, respec-
1904 Stem Cell Reports j Vol. 9 j 1898–1915 j December 12, 2017
tively (Figure 2E, red and blue data points, respectively;

Table S1). Significantly upregulated genes with high fold

changes are labeled on volcano plots and highlighted in

Table S1. Merging these datasets identified 745 genes that

are enriched in both early and late cone populations, in

addition to 16 and 37 genes that are enriched in the early

or late human cone populations, respectively (Figure 2F;

Table S2). This set of 798 genes defines a unique cone-en-

riched gene signature, and includes genes with high fold

enrichment that have established roles in cone and pan-

photoreceptor functioning, developmental processes, syn-

aptic processing and neurotransmission, extracellular ma-

trix (ECM), and cell adhesion, in addition to genes with

currently undefined function (Tables 1 and S2).

Gene ontology (GO) analysis on the 798 gene cone signa-

ture identified a high enrichment of biological processing

GO terms for visual perception, detection of external stim-

ulus, chemical synaptic transmission, photoreceptor cell

maintenance, and regulation of ion transmembrane



Figure 3. Single-Cell Transcriptome Analysis of AAV2/9 pR2.1:GFP+ Cells
(A) Principal component analysis (PCA) plot of 65 individual AAV2/9 pR2.1:GFP+ cells from 15 pcw fetal retina, where each cell is colored
based on its PC1 location (blue to yellow). The proportion of variance explained by the first two principal components is shown in brackets.

(legend continued on next page)

Stem Cell Reports j Vol. 9 j 1898–1915 j December 12, 2017 1905



transport (Figure 2G; Table S3). GO terms containing the

known cone regulatory genes, RXRG, THRB, and RORA,

identified other genes associated with the ‘‘steroid hor-

mone-mediated signaling pathway,’’ including BMP7 and

NR2F6 (Table S3, genes in bold), which are without known

function in cones.

Single-Cell Transcriptome Analysis of Human Fetal

L/M-Opsin Cone Photoreceptors

We next performed single-cell RNA-seq on the AAV2/9.

pR2.1:GFP reporter-labeled population to explore the de-

gree of cell heterogeneity at a single time point. The

bulk RNA-seq analysis indicated the labeling of cells ex-

pressing OPN1LW, OPN1MW, OPN1MW2, and OPN1SW

genes. Principal component analysis was performed to

determine any systematic substructure within the

pR2.1:GFP+ cell population, which revealed a continuum

of cells with modest variability based on principal compo-

nent 1 (PC1) (Figure 3A). Differential gene expression

analysis correlated to PC1 revealed 503 significantly

differentially expressed genes (false discovery rate < 0.05

Table S4), which showed an upregulation or downregula-

tion as cells progress through PC1 (Figure 3B). We found

that the expression profiles of genes that were signifi-

cantly differentially expressed along PC1 correspond to

increasing maturation across this population. Within the

upregulated gene group, we noted a number of estab-

lished genes associated with photoreceptor maturation

including outer segment disc morphogenesis (RP1 and

PRPH2), primary cilium development (CC2D2A), pho-

totransduction proteins (CNBG3, CNGB1, GUCA1A,

GUCA1C, and ARR3), in addition to the L- and M-opsin

genes (OPN1LW and OPN1MW2) (Figures 3B and 3C). In

contrast, a number of genes that showed an overall down-

regulation across PC1 were associated with developmental

processes, including transcription factors, SOX4 and

SOX11, retinoic acid binding protein, CRABP2, neurode-

velopment disease gene, THOC6, cell migratory and

neural differentiation-related genes, TMSB4X, GPM6A,

CRMP4, and neural expressed ECM gene, SPON2 (Figures

3B and 3D). Established pan (RCVRN and CRX) and

cone photoreceptor genes (RXRG and THRB) did not

significantly differ across PC1 (Figures S4A and S4B),

which is consistent with their cone cell identity. S-cone

(OPN1SW) and rod photoreceptor (NRL and NR2E3)
(B) Heatmap of genes that are significantly differentially expressed (
single cells, which are ordered from left to right by their location on P
block) or downregulated (red to blue; second block) along PC1.
(C and D) Scatterplots showing gene expression (log2 normalized coun
show upregulation (C) or downregulation (D) along PC1.
(E) Heatmap displaying expression profiles of the 93 differentially e
feature within the cone-enriched gene signature (see Figure S4; Tabl

1906 Stem Cell Reports j Vol. 9 j 1898–1915 j December 12, 2017
gene expression, required for other photoreceptor cell

fates, was detected in a small number of individual cells

(Figure S4C).

We next examined whether the continuum of naive and

mature cell states identified at a single time point represent

true developmental trajectories. We found that 18.5%

(93/503) of the differentially expressed genes identified in

the single-cell analysis showed changed expression across

developmental time when considering the early and late

bulk mRNA transcriptome data (Figure 3E), including a

large number of genes not previously reported in cone cells

(Table S2, green highlighted genes). Hence, these data are

consistent with the proposal that, at a single point in devel-

opmental time, individual cone cells exist in the retina at

different stages of their developmental trajectory as re-

vealed by their gene expression profiles.

Comparative Transcriptomic Analysis with Human

iPSC-Derived Cone Photoreceptors

Having defined the transcriptomic signature of a human

fetal L/M-opsin cone photoreceptor population, we applied

the same approach to human iPSC-derived cone photore-

ceptor cells to assess the degree of similarity between in vivo

and in vitro generated cones. To generate cone photorecep-

tors from iPSCs, we used a retinal organoid differentiation

culture system (Meyer et al., 2009) that generates optic

vesicle structures containing RECOVERIN and CRX-ex-

pressing photoreceptor cells from week 6 of differentiation

(Figure S5A). Expression of cone markers, detected in the

human fetal retinal sample series, were confirmed by qRT-

PCR (RXRG, THRB, SALL3, ONECUT1, OPN1LW/MW,

ARR3, and GNAT2; Figure S5B). OPN1LW/MW expression

was upregulated by week 14 of differentiation and main-

tained into later stages of culture (weeks 21–28). Immuno-

histochemistry revealed labeling for photoreceptormarkers,

RECOVERIN and CRX, in addition to cone markers,

ONECUT1 and L/M-OPSIN, within optic vesicle structures

by week 14 (Figures 4A–4C) and in dissociated late-stage

cultures for L/M-OPSIN (Figure 4D). Comparable levels of

OPN1LW/MW and ARR3 expression were detected at early

(12–14 pcw) and late (19–20 pcw) developmental time

points compared with weeks 14 and 21 iPSC-derived retinal

differentiation cultures, respectively; however, OPN1LW/

MW showed significantly higher expression within the

late-stage human fetal retina (Figure 4E).
false discovery rate < 0.05) with respect to PC1. Columns represent
C1. Each row represents a gene that is upregulated (blue to red; first

ts) profiles of key significantly differentially expressed genes which

xpressed genes identified from single-cell RNA-seq analysis which
es S2 and S4).
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The AAV2/9.pR2.1:GFP virus was used to transduce early

(weeks 14–15) and late (weeks 19–20) iPSC-derived retinal

differentiation cultures, and pR2.1:GFP+ cells were isolated

for RNA-seq analysis using FACS (Figure 4F) and showed

co-labeling with photoreceptor markers, CRX and

RECOVERIN (Figure 4G, white arrows). Principal compo-

nent analysis showed clustering of the fetal and iPSC-

derived GFP+ samples together, away from total fetal retina

and GFP� samples (Figure 4H). Hierarchical clustering

analysis performedwith the newly identified fetal cone-en-

riched gene signature revealed that iPSC-derived GFP+

samples were most similar to the fetal GFP+ samples (Fig-

ure 4I; black box). Specifically, genes enriched within the

late fetal cones show the most comparable expression pro-

files within both weeks 14–15 and 19–20 iPSC-derived

GFP+ samples and the late-stage fetal samples (Figure 4I,

21/37 genes; top cluster; filled black box). Notably, the

early cone-enriched genes (Figure 4I, 16 genes; second clus-

ter) showed overall low expression within the iPSC-derived

cells, together with the remainder of the late cone-enriched

genes and the common cone gene set (Figure 4I, third and

fourth clusters). Overall, these data suggest a cone identity

of the iPSC-derived cells and provide valuable information

on their stage of differentiation and degree of similarity to

fetal cones.

Identification and Application of Cell Surface Markers

to Isolate Human Fetal and iPSC-Derived Cone

Photoreceptors

Next, we used a dual approach to identify cell surface

markers expressed by fetal pR2.1:GFP+ cells, which could

provide tools to enrich for human cone photoreceptors

without the need for genetic manipulation. We created a

cell surfacemarker protein query database of 3,367 putative

cell surface proteins, whichwas used to identify 99 and 170

potential cell surface marker genes enriched in the early

and late fetal pR2.1:GFP+ cells, respectively (Table S5). Of
Figure 4. Generation of PSC-Derived Cone Photoreceptors via 3D
(A–D) Immunohistochemistry analysis showing detection of photorec
(B) and L/M-OPSIN (C), within 14-week PSC-derived vesicles. At 26 wee
which also express CRX (C and D; arrowheads).
(E) Comparative qRT-PCR analysis of OPN1LW/MW and ARR3 at age-m
(14 weeks and 12–14 pcw; 19 weeks and 19–22 pcw), **p = 0.0008.
(F) Representative FACS traces of negative control and 14 weeks iP
9.pR2.1:GFP reporter.
(G) Representative images showing co-labeling of iPSC GFP+ cells wi
20 week retinal differentiation culture.
(H) PCA plot of fetal and iPSC-derived GFP+ samples based on total g
(I) Heatmap representation of hierarchical clustering analysis perform
gene signature. Genes featured on the heatmap represent all the early
early and late cones (44 genes with p < 0.05, highest fold changes and
Scale bar, 50 mm. See Figure S5 and Table S2.
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these, 16 were cluster of differentiation (CD) markers

(Table S5; highlighted); 13 and 7 were identified in the

late and early enriched cone gene sets respectively, with 4

CD markers, DPP4 (CD26), PROM1 (CD133), ITGA4

(CD49d), and JAM2 (CD322), featuring in both popula-

tions. Of these, DPP4 (CD26) and PROM1 (CD133) were

highly expressed and significantly upregulated in the

late-stage cones and the remainder represent potential

cone cell surfacemarkers (Table S5). In addition, we directly

screened early (12 pcw) and late (17 pcw) fetal retinae

labeled with the AAV2/9 pR2.1:GFP reporter for 242

different human CD marker antibodies using the BD Lyo-

plate screening panels. We identified markers that labeled

and caused a discrete flow cytometry shift of at least 50%

of the pR2.1:GFP+ cell population (Figure 5A). Six CD

markers (CD57, CD47, CD59, CD200, CD151, and CD98)

were common across the 12 and 17 pcw samples (Fig-

ure 5B), and eight additional markers (CD63, CD26,

CD147, CD120a, CD81, CD49c, CD90, and CD165)

labeled the 17 pcw pR2.1:GFP+ cells (Figure 5C). CD26

overlapped with the CD markers identified from the cone

gene signature and the remaining 12 CD markers were de-

tected within the cone transcriptome data, except CD165.

Notably, some CD markers displayed greater specificity to

pR2.1:GFP+ cells at later fetal time points, i.e., labeling a

higher percentage of GFP+ cells and lower percentage of

GFP� cells, includingmarkersCD26 andCD147 (Figure 5C,

black box). CD133 robustly labeled 13 and 14 pcw

pR2.1:GFP+ cells (Figure 5D).

CD26, CD133, and CD147 were selected for testing to

determine if they could enrich for late-stage human

L/M-opsin cones. Double immunocytochemistry on

dissociated human fetal retina revealed that CD26,

CD133, and CD147 co-label with some, but not all,

L/M-OPSIN-expressing cells (Figure 5E, white arrows).

Some L/M-OPSIN-negative cells were also labeled by the

CD markers. In FACS experiments, the CD markers
Retinal Differentiation Culture System
eptor markers, RECOVERIN and CRX (A), and cone markers, ONECUT1
ks, L/M-OPSIN can also be detected within dissociated cultures (D),

atched time points between fetal and iPSC-derived retinal samples
All error bars represent the SD.
SC-derived retinal differentiation culture labeled with the AAV2/

th photoreceptor markers CRX and RECOVERIN (arrowheads) within

ene expression.
ed with fetal and iPSC-derived samples based on the cone-enriched
(16 genes), late (37 genes), and most enriched genes common to

high expression from early and late GFP+ versus GFP� comparisons).



Figure 5. Identifying and Profiling CD Makers in the Human Fetal Retina
(A) Heatmap showing the cell percentage labeled by the 14 CD markers identified from the antibody screening panels. GFP+/CD marker+
percentage is representative of the total labeled pR2.1:GFP+ population and the GFP�/CD marker proportion is based on the remaining
retinal cell population.
(B) Flow cytometry traces of the 6 CD markers labeling 12 and 17 pcw pR2.1:GFP+ cells.
(C) Flow cytometry traces of the 8 CD markers labeling GFP+ cells within the 17 pcw retina; CD26 and CD147 are highlighted by the
black box.
(D) Flow cytometry traces of CD133 labeling of 13 and 14 pcw pR2.1:GFP+ cells.

(legend continued on next page)
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individually labeled a proportion of the total fetal retinal

cells (CD26+ 2.9% ± 1.6%; CD147+ 23.1% ± 12.4% and

CD133+ 71.1% ± 7.2%); these sorted cells showed a

greater percentage of L/M-OPSIN and CRX+ cells

compared with the unsorted population (CD26+ 4.9% ±

2.23%; CD133+ 1.38% ± 0.41%; CD147+ 1.67% ±

1.47%, unsorted 0.63% ± 0.59%), with the CD26+ popu-

lation showing statistical significance (Figure 5F). This

overall low level of L/M-opsin cone enrichment promp-

ted the combined sorting of these CD markers to assess

if a greater enrichment could be achieved. We detected

a triple-positive cell population for all three CD markers

via flow cytometry within late-stage fetal retinae and per-

forming immunocytochemistry on this population post

FACS revealed enrichment of L/M-OPSIN/CRX+ cells

(CD133+/CD26+/CD147+ 8.69% ± 9.62%) compared

with the other collected cells (CD133–CD26–CD147–

1.67% ± 1.93%; CD133+/CD26–/CD147– 0.64% ±

0.72%) and the unsorted population (0.45% ± 0.59%; Fig-

ures 6A and 6B). To enhance enrichment, we added a

further CD marker for negative selection, SSEA-1, which

was not detected in pR2.1:GFP+ cells in the proteomic

analysis (Figure S6) and has been previously used to re-

move mitotically active cells (Lakowski et al., 2015;

Tucker et al., 2011). By sorting fetal retinal cells negative

for SSEA-1, but positive for CD133, CD26, and CD147, an

improvement in the percentage of L/M-OPSIN/CRX+ cells

within the enriched cell population was achieved (30% ±

16.13%; p < 0.0002) when compared with the unsorted

population (0.54% ± 0.8%) and the remaining sorted

cell populations (CD133–/CD26–/CD147–/SSEA1– 0%;

CD133+/CD26–/CD147–/SSEA1– 0.69% ± 1.2%; and

SSEA1+ 0.27% ± 0.49%; Figures 6C and 6D).

Finally, we tested the fetal cone CD marker combina-

tion on stem cell-derived retinal differentiation cultures

generated using the standard protocol (Meyer et al.,

2009) for iPSC, or a newly developed protocol for ESC

retinal differentiation, which shows improved levels of

cone photoreceptor maturation (Gonzalez-Cordero

et al., 2017) (Figures S7A and S7B), to assess if a similar

CD marker-labeled population of cells was generated by

the in vitro systems. Figure S7C shows representative

flow cytometry traces comparing the SSEA1–CD133+

CD26+ CD147+-labeled populations between fetal and

PSC-derived retina. The ESC-derived retinal cultures using

the newly developed protocol showed the most similar

FACS trace to those observed from the fetal retina and
(E) CD26, CD133, and CD147 labeling of L/M-OPSIN-expressing cells (a
via immunocytochemistry. Scale bar, 50 mm.
(F) Counting of L/M-OPSIN/CRX+ cells in single FACS experiments with
bars represent the standard deviation. See Table S5.
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was used for subsequent cell-sorting experiments

(week 17–18 of culture, n = 3). Performing immunocyto-

chemistry on this sorted cell population revealed a

significant enrichment of CONE ARRESTIN/CRX+ cells

(55.1% ± 30.7%; p = 0.0036) compared with the unsorted

(8.4% ± 3.1%) and additional cell populations (SSEA1–

CD133– CD26– CD147– 3.7% ± 1.2%; SSEA1– CD133+

CD26– CD147– 2.3% ± 0.8; SSEA1+ 2.4% ± 2.0%; Figures

6E and 6F). In addition, CONE ARRESTIN-expressing cells

labeled by CD26, CD133, and CD147 were readily de-

tected within dissociated ESC-derived retinal cells (Fig-

ure 6G, white arrows), similar to observations within

the fetal retina. These data indicate that the cone CD

marker panel discovered within the fetal retina can be

applied to ESC-derived retinal differentiation cultures to

enrich for human cone photoreceptor cells.
DISCUSSION

Two important pre-clinical evaluations that need to be ad-

dressed for the development of a human cone cell-replace-

ment therapy include assessing whether iPSC-derived cone

cells recapitulate a bona fide cone photoreceptor transcrip-

tome and the development of a cone cell isolation strategy.

Here, we provide insight into the human fetal L/M-opsin

cone transcriptome and used this as a baseline reference

to show similarities in cone gene expression within iPSC-

derived photoreceptors. From these data, we also devel-

oped a cell surface marker sorting strategy for the enrich-

ment of human L/M-opsin cone photoreceptors that can

be translated to stem cell-derived retinal differentiation

culture system.

Our definition of a unique cone-enriched gene signature

for human fetal cone photoreceptors relied on the use of an

AAV2/9.pR2.1:GFP reporter. This viral reporter showed

preferential labeling of human L/M-opsin cone photore-

ceptors. Rod-associated and S-opsin transcripts were also

detected, consistent with previous reports of sharedmolec-

ular markers between different cone and rod cells (Apple-

bury et al., 2000; Cornish et al., 2004; Craft et al., 2014;

Kim et al., 2016). These data suggest a plastic or ‘‘noisy’’ na-

ture of some human photoreceptors, which may continue

to express transcripts of other photoreceptor types during

fetal development. Exploring the heterogeneity of individ-

ual cone cells at a single time point revealed their separa-

tion based on maturity, identifying differences in gene
rrowheads indicate double-labeled cells) in the 17 pcw fetal retina

CD26, CD133, and CD147 (n = 3; 17–20 pcw), **p = 0.0044. All error



Figure 6. Application of Cone CD Marker Sorting in Human Fetal and ESC-Derived Retina
(A) Counting of fetal L/M-OPSIN/CRX+ cells post FACS with the CD133/CD26/CD147 combination (n = 4); p = 0.1067. ns, not significant. All
error bars represent the SD.

(legend continued on next page)
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expression profiles of naive and more mature cones, rather

than distinguishing cells based on their specific type of

cone opsin gene expression. This difference likely reflects

the striking gradient of cone photoreceptor maturation

observed across the central-peripheral axis in the human

fetal retina (Figures 1 and S1) (Xiao and Hendrickson,

2000).

Both the bulk and single-cell RNA-seq data validated 93

conematuration genes (Table S2, green highlighted genes),

including several not previously defined to cone cells.

Comparison of our cone-enriched gene signature with

pre-existing human adult macula gene expression analyses

showed that a number of genes overlap, including tran-

scription factor NR2F6 and the photoreceptor ribbon syn-

apse protein, CPLX4 (Bowes Rickman et al., 2006; Sharon

et al., 2002). However, many identified genes were not pre-

viously reported in adult macula studies (Hornan et al.,

2007; Whitmore et al., 2014), which could be due to differ-

ences in samples ages, or their inclusion of other retinal

cells. Several genes expressed by human ESC-derived

CRX.GFP cells (Kaewkhaw et al., 2015), including

SLC38A5, VTN, and AMER2, were also shared with our

cone-enriched gene signature.

In the direct comparative transcriptome analysis per-

formed using the cone gene signature, we found similar

gene expression profiles between late fetal and iPSC-

derived cone cells. However, not all late enriched cone

genes showed equivalent levels of expression within the

iPSC-derived cells, suggesting an intermediate stage of

cone cell differentiation and a relative delay in their matu-

ration. Hence, this approach provides an informative

insight into the similarities and differences in gene expres-

sion between in-vivo- and in-vitro-derived cells, and impor-

tant benchmarking data, which is critical for pre-clinical

assessment of stem cell-derived cells for use in clinical

therapies.

Toward developing a cone cell purification strategy, we

characterized putative cell surface marker genes and CD

marker proteins expressed within the AAV2/9.pR2.1:GFP+

human cone populations, providing a benchmarking tool
(B) Representative images of L/M-OPSIN/CRX immunocytochemistry
lation. Scale bar, 100 mm.
(C) Counting of fetal L/M-OPSIN/CRX+ cells post FACS with the SSEA1/C
All error bars represent the SD.
(D) Representative FACS traces for the SSEA1/CD133/CD26/CD147 com
The red rectangular outlines represent gated cell populations in the F
(E) Counting of ESC-derived CONE ARRESTIN/CRX+ cells post FACS with
*p = 0.0146, **p = 0.0036. All error bars represent the SD.
(F) Representative FACS traces for the SSEA1/CD133/CD26/CD147 c
percentages are provided for (D) and (F), mean represents ± SD.
(G) Immunocytochemistry of CD26, CD133, CD147, and CONE ARREST
arrowheads indicate co-localization). Scale bar, 50 mm.
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for the differentiation status of retinal cultures. We evalu-

ated a cell isolation strategy for the late cone population,

based on the presence of identified cell surface molecules.

Both ST3GAL5 and EPHA10 genes, previously identified

as putative cone surface marker from RNA-seq analysis

of human ESC-derived CRX-expressing cells (Kaewkhaw

et al., 2015), featured within our significantly enriched

late cone dataset. However, CD73, previously used to

isolate cone-like cells from Nrl�/� mouse retina (Santos-

Ferreira et al., 2015), was not upregulated in the human

cones. We found no cell surface markers that exclusively

labeled the pR2.1:GFP+ cone population and instead

identified CD markers, such as CD26, CD147, and

CD133, which labeled a percentage of cone cells as well

as other retinal cells. Together with the rarity of cone

cells within the human retina, this presents a consider-

able challenge to achieve high levels of enrichment.

Nevertheless, by combining CD markers for positive

cone selection (CD26, CD147, and CD133) and negative

selection of undesirable cells (SSEA-1), we demonstrate

the enrichment of human L/M-opsin cone cells from

the human fetal retina. The average enrichment achieved

using this combination (30% ± 16.13%) suggests further

optimization would be required to increase the purity of

cone cell isolation for a clinical transplantation therapy.

However, these data demonstrate the feasibility of using

a cell surface molecule approach to enrich for human

cone photoreceptors. Furthermore, using a new ESC-

derived retinal differentiation culture system with higher

levels of cone differentiation (Gonzalez-Cordero et al.,

2017), we demonstrate the same fetal cone sorting

strategy can be applied to provide an enrichment of

ESC-derived cone photoreceptors. Together with the

identification of a human L/M-opsin cone-enriched

gene signature, this study provides an initial pre-clinical

assessment comparing bona fide and stem cell-derived

cones toward developing a cone cell therapy, which

may also be informative for other applications, including

in vitro retinal disease modeling and basic research into

human cone photoreceptor development.
within the unsorted and CD133+/CD26+/CD147+ sorted cell popu-

D133/CD26/CD147 combination (n = 4; 17–20 pcw); ***p < 0.0002.

bination within the fetal retinae, with cell population percentages.
ACS experiments.
the SSEA1/CD133/CD26/CD147 combination (n = 4, 17–18 weeks);

ombination for the ESC-derived retinal cultures. Cell population

IN within 17.5 weeks dissociated ESC-derived retinal cells (white



EXPERIMENTAL PROCEDURES

Full experimental methods are provided within Supplemental

Experimental Procedures.

Human Tissue
Human fetal eyes were obtained from the Joint Medical Research

Council UK (grant no. G0700089)/Wellcome Trust (grant no.

GR082557) Human Developmental Biology Resource (http://

www.hdbr.org/), and human adult eyes were obtained from

Moorfields Biobank with ethics approval. iPSCs (NCUS:7) were

generated by the NIHR Cambridge Biomedical Research Centre

hiPSC Core Facility from an individual’s skin fibroblasts with

normal ophthalmological examination and with ethics

approval. Work on human ESC lines was approved by the UK

Stem Cell Bank Steering Committee (Medical Research Council,

London, UK).

Application of AAV2/9.pR2.1:GFP Reporter
AAV2/9.pR2.1:GFP viruswas added to human fetal retinal explants

and iPSC-derived retinal differentiation cultures at an MOI of

40,000–45,000. pR2.1.GFP+ cells were sorted using the BD

FACSAria III cell sorter for RNA-seq analysis. CD marker profiles

of pR2.1.GFP+ labeled cells were detected using BD Lyoplate

screening panels and the BD FACSCalibur.

Total and Single mRNA-Seq and Analysis
The Illumina NextSeq 500 system was used with a targeted

sequencing depth of 17 million 43 bp paired end per sample for

the bulk RNA-seq and 2 million 75 bp paired end reads per sample

for the single-cell RNA-seq. Adjusted p values < 0.05 were used for

bulk and single-cell data to determine significance.

Statistics
ANOVAwith Bonferroni correction formultiple testingwas used to

determine statistical significance using GraphPad Prism 6.

Adjusted p values are stated within figure legends and all means

are displayed ±SD. For qRT-PCR analysis, three biological samples

were used for each time point excluding Figure 1, where biological

sample is 1 due to the limited availability of fetal tissue. For FACS

CD marker analysis, four independent fetal/ESC-derived retinal

samples were analyzed. At least 50 cells were counted for FACS

cell populations using the ImageJ software.

ACCESSION NUMBERS

The accession number for the bulk RNA-seq data reported in this

paper is ArrayExpress: E-MTAB-6057. The accession number for

the single cell RNA-seq data reported in this paper is ArrayExpress:

E-MTAB-6058.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and five tables and can be found

with this article online at https://doi.org/10.1016/j.stemcr.

2017.10.018.
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