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Abstract: A translucent Gd2O2S:Pr ceramic scintillator with an in-line transmittance of ~31% at
512 nm was successfully fabricated by argon-controlled sintering. The starting precipitation precursor
was obtained by a chemical precipitation route at 80 ◦C using ammonia solution as the precipitate,
followed by reduction at 1000 ◦C under flowing hydrogen to produce a sphere-like Gd2O2S:Pr
powder with an average particle size of ~95 nm. The Gd2O2S:Pr phosphor particle exhibits the
characteristic green emission from 3P0,1→

3H4 transitions of Pr3+ at 512 nm upon UV excitation into
a broad excitation band at 285–335 nm arising from 4f 2

→4f 5d transition of Pr3+. Increasing Pr3+

concentrations induce two redshifts for the two band centers of 4f 2
→4f 5d transition and lattice

absorption on photoluminescence excitation spectra. The optimum concentration of Pr3+ is 0.5 at.%,
and the luminescence quenching type is dominated by exchange interaction. The X-ray excited
luminescence spectrum of the Gd2O2S:Pr ceramic is similar to the photoluminescence behavior of its
particle. The phosphor powder and the ceramic scintillator have similar lifetimes of 2.93–2.99 µs,
while the bulk material has rather higher external quantum efficiency (~37.8%) than the powder
form (~27.2%).

Keywords: Gd2O2S; Pr3+ doping; ceramic scintillator; phosphor powder

1. Introduction

Scintillation materials convert the radiation of high-energy rays (X-rays or gamma rays) into
visible light and are extensively applied in various fields such as safety inspection, high energy physics,
nuclear medicine, and industrial non-destructive testing [1–6]. Scintillators can be divided into solid,
liquid, and gaseous states, among which solid inorganic scintillators, as the most widely used materials,
include single crystals and polycrystalline ceramics. A ceramic scintillator is superior to a single crystal
due to its low cost, short production cycle, large-size production, as well as high dopant concentration
with a homogeneous mixture at the molecular level [6–9]. Solid-state Gd2O2S (GOS) has excellent
chemical and physical characteristics, such as high melting point (2070 ◦C), high density (7.43 g/cm3),
high X-ray attenuation coefficient (~52 cm−1 at 70 keV), wide band gap (4.6–4.8 eV), favorable chemical
durability, low phonon energy, low crystal symmetry, and low toxicity, which make it a promising host
material for luminescence and scintillation applications [10,11]. GOS-based phosphors have attracted
considerable attention for decades. For instance, the green-emitting GOS:Tb phosphor exhibits a high
brightness and a high luminous efficiency and is applied in television screens, cathode ray tubes,
and X-ray intensifying screens [12,13].

GOS belongs to the hexagonal crystal structure (space group: P3− ml; lattice parameters:
a = b = 0.3851 nm and c = 0.6664 nm) with trigonal symmetry [10]. Owing to its optically anisotropic
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structure, the sintered GOS ceramic is difficult to densify into a fully transparent body by sintering
densification. The obtained GOS bulk generally shows an opaque or a translucent appearance,
which mainly depends on its relative density. The Pr3+-activated GOS ceramic is an effective ceramic
scintillation material for high-quality imaging applications owing to its high X-ray conversion efficiency,
strong stopping power for the incident X-ray, short lifetime, fast afterglow, high chemical stability,
and good emitting, matching with the high sensitivity of silicon photodiodes. Furthermore, co-doping
with Ce3+ or F− was found to have significant impacts on the scintillation properties, such as light
output and afterglow [8,14,15].

GOS-based ceramic scintillators have been fabricated by hot pressing (HP) [14,16,17], hot isostatic
pressing (HIP) [18], spark plasma sintering [19], and pressureless sintering in hydrogen/nitrogen
atmosphere [20,21]. Although HP/HIP sintering has low requirements in terms of particle sinterability,
the disadvantages lie in low efficiency and expensive cost. On the other hand, pressureless sintering is
cost-efficient and time-effective, but it requires sinterable starting powder.

To date, oxysulfide particles have been synthesized by three main paths, namely, solid phase
reaction, gaseous sulfuration method, and liquid phase route [22–30]. The traditional solid-state reaction
frequently needs ball-milling treatment and high reaction temperature, leading to coarse particles,
uneven particle size distribution, and undesired contamination [31,32]. The gaseous sulfuration method
results in superfine GOS powders, but harmful vapors such as H2S, CS2, or S can be simultaneously
produced [30]. The wet chemical route is an environmentally friendly way for the synthesis of
morphology-controllable oxysulfide particles, including hydrothermal reaction [20,33], homogenous
precipitation [6,34–37], and direct precipitation [38], among which direct precipitation is preferred for
its higher batch yield, time saving, and simple operation.

In the present work, nanocrystalline Gd2O2S:Pr powder was obtained by a reduction reaction
under a hydrogen atmosphere at 1000 ◦C from its precipitation precursor prepared by a direct
precipitation method, with which translucent Gd2O2S:Pr ceramic was successfully fabricated by
pressureless sintering under a protective argon atmosphere. The luminescence and scintillation
properties of both the Gd2O2S:Pr phosphor and ceramic were studied in detail.

2. Materials and Methods

2.1. Particle Synthesis

The starting materials of Gd2(SO4)3·6H2O (>99.99% pure; Haoke Technology Co., Ltd., Beijing,
China) and Pr2(SO4)3·6H2O (>99.99% pure; Haoke Technology Co., Ltd., Beijing, China) were together
dissolved in distilled water according to the stoichiometric ratio of (Gd1-xPrx)2O2S (x = 0.001–0.0075)
and well mixed to make a homogeneous mother liquor with a concentration of 0.01 mol/L.

A white suspension was yielded by dropwise dripping 1.0 mol/L NH3·H2O (GR pure, Aladdin
Biochemical Technology Co., Ltd., Shanghai, China) into the mother liquor in a hot-water bath of
80 ◦C at a rate of 3–5 mL/min under magnetic stirring (~180 r/min) until pH = 6.5. After aging for
1 h, the white precipitation was repeatedly rinsed with distilled water via centrifugal separation.
The precipitation precursor was then dried at 100 ◦C for 12 h and lightly ground with an agate
mortar. The precursor was calcined at 1000 ◦C for 3 h in a tubular furnace under flowing hydrogen
(~150 mL/min) to yield oxysulfide.

2.2. Ceramic Production

The as-prepared oxysulfide powder was compressed by cold isostatic pressing under ~240 MPa.
The green body was sintered in a tungsten-heater furnace at 1650 ◦C under protective argon atmosphere.
The density of the sintered body was determined by Archimedes’ method. The sintered ceramics were
double-side ground and polished to be ~11.15 ± 0.01 mm in diameter and ~0.50 ± 0.01 mm in thickness.
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2.3. Characterization

The precipitation precursor and its reduction product were characterized by field-emission
scanning electron microscopy (FE-SEM; Model S-4800, Hitachi, Japan) and X-ray diffraction (XRD;
Model D8 Focus, Bruker, Germany) using nickel-filtered CuKα as the incident radiation. The surface
microstructure of the ceramic was observed on a desktop scanning electron microscope (SEM; Model
EM-30plus, COXEM, Korea). Photoluminescence (PL)/photoluminescence excitation (PLE) spectrum,
fluorescence lifetime, and quantum yield of the powder and ceramic were measured by transient
fluorescence spectrophotometer (Model FLS 980, Edinburgh Instruments Ltd., Livingston, UK) using a
450 W xenon lamp as the excitation source. The X-ray excited luminescence (XEL) spectrum of the
ceramic was measured using the photomultiplier tube working on a Zolix Omni-λ300 monochromator
at a voltage of −900 V, while the X-ray tube copper target was operated at a voltage of 69 kV and a
current of 3 mA.

3. Results and Discussion

Figure 1A shows the XRD patterns of the precursor powder and reduction products. An amorphous
precursor was obtained via the chemical precipitation route. The reaction temperature of 80 ◦C with an
aging time of 1 h is not enough for its crystallization. Upon calcination at 1000 ◦C under a hydrogen
atmosphere, all diffraction peaks of the products can be well indexed to hexagonal Gd2O2S (JCPDS
No. 26-1422) without any impure phases, indicating that the precursor fully converts into oxysulfide
via thermal decomposition and reduction reaction. Its schematic crystal structure drawn by VESTA
3D visualization software is shown in Figure 1B. Only one coordination type for Gd3+ exists in the
unit cell, that is, each Gd3+ is surrounded by four oxygen atoms and three sulfur atoms to form a
seven-coordination polyhedron [39]. After Pr3+ incorporation, it would substitute the Gd3+ site because
of their similar ionic radii (0.0990 nm for Pr3+ with CN = 6 and 0.0938 nm for Gd3+ with CN = 6).
Along with increasing Pr3+ addition, remarkable shifts of diffraction peaks were not observed due to
the low Pr3+ concentration and small difference in ionic radii between Pr3+ and Gd3+. The average
crystallite size (DXRD) can be calculated by the Debye–Scherrer formula: d = 0.89λ/[(B0

2
− Bc

2)1/2
·cosθ],

where B0 is the half-peak width, Bc is the correction factor caused by instrument broadening, θ is the
angle of the diffraction peak, and λ is the wavelength of the X-ray [40]. The resulting DXRD values
calculated from (101) diffractions are ~35.7, 32.3, 58.0, and 47.7 nm for the samples doped with 0.1, 0.25,
0.5, and 0.75 at.% Pr3+, respectively.
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Figure 1. XRD patterns of the Gd2O2S (GOS):Pr precursor powder and reduction products (A),
and schematic crystal structure of GOS (B).

Figure 2 displays morphologies of the precipitation precursor and its reduction product at 1000 ◦C.
The precipitation precursor shows a two-dimensional nanoplate-like shape clustered into a loose
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honeycomb. Although the XRD analysis cannot indentify the chemical composition of the precursor,
it may be speculated to possess the layered Ln2(OH)4SO4·nH2O (Ln = Gd and Pr) structure consisting
of the host layer of Ln-hydroxy polyhedron and the interlayer SO4

2− [25,33], because this compound
not only exhibits the nanoplate morphology but also has the same Ln/S molar ratio as the (Gd,Pr)2O2S
reduction product (Figure 1). The precipitation formation mechanism obeys the hard-soft acid-base
principle, viz., the hard acid tends to react with the hard base and the same for the soft acid and the
soft base—hard-hard or soft-soft combinations [41]. The hard Lewis acid of Gd3+ is readily coupled
with the hard Lewis bases of SO4

2− and OH− to form the basic sulfate. After being reduced at 1000 ◦C,
the nanoplate-like precursor is completely cracked into a sphere-like oxysulfide powder with a statistic
average particle size of ~95 nm.
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Figure 2. FE-SEM micrographs showing morphologies of the precipitation precursor (A) and its
reduction product at 1000 ◦C (B).

The appearance of the GOS:Pr ceramic fabricated by argon-controlled sintering is shown in
Figure 3A. Although the ceramic sample exhibits translucence to the naked eye, it is a relatively good
optical quality for a ceramic that has an optically anisotropic crystal structure. Under UV irradiation,
the bulk emits the strong green visible light derived from 3P1,0→

3H4 transitions of Pr3+. On the
ceramic transmittance curve (Figure 3B), the absorption band at ~350 nm corresponds to the 4f 2

→4f 5d
transition of Pr3+ and the other ones beyond 350 nm are assignable to the intra−4f 2 transitions of Pr3+.
The GOS:Pr bulk has an in-line transmittance of ~31% at 512 nm (Pr3+ emission center). Figure 3C,D
shows the surface microstructure and fracture surface of the sintered GOS:Pr ceramic. The specimen
has a dense microstructure, and pores are only occasionally observed. Such a microstructure is desired
for improved scintillation performance, since the pores frequently induce scattering losses. Its relative
density was measured to be ~99.2% by Archimedes’ method. The statistic average grain size is
~5 µm via WinRoof image analysis software. The grain size is relatively uniform, and exaggerated
grain growth is not found. By observing its fracture surface, the dense GOS:Pr ceramic is mainly
intragranularly fractured.
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Figure 3. Appearance (A) and in-line transmittance (B) of the GOS:Pr ceramic scintillator, and SEM
micrographs of the surface (C) and fracture surface (D) of the sintered ceramic. The lower part in panel
(A) is the appearance of GOS:Pr ceramic under irradiation from a 254 nm UV lamp. The inset in panel
(B) is the enlargement of its in-line transmittance curve from 200 to 700 nm.

Figure 4A presents the excitation spectra of (Gd1-xPrx)2O2S (x = 0.001–0.0075) phosphor particles
obtained by monitoring 512 nm emission of Pr3+ as a function of activator concentration. The main
broad bands of all samples are located at 285–335 nm, which are ascribed to 4f 2

→4f 5d transitions of
Pr3+ [34]. With more Pr3+ addition, a ~2 nm redshift of the 4f 2

→4f 5d transition band center can be
observed. Such a phenomenon can be attributed to the lower electronegativity of Pr3+ (1.13) than that of
Gd3+ (1.21), which allows for the easier electron transfer to the excitation state of Pr3+. The weak bands
at 245–285 nm are assignable to the absorption of the host lattice, since the corresponding bandgap of
Gd2O2S was found to be ~4.6 eV [34]. Redshift lattice-absorption bands (~6 nm) are also observed,
because increasing Pr3+ incorporation would lead to a smaller bandgap for the oxysulfide. Under
306 nm excitation, all the (Gd1-xPrx)2O2S phosphors exhibit characteristic green emissions of Pr3+

(Figure 4B). That is, the strongest emission peak at ~512 nm originates from the 3P0→
3H4 transition;

the second strongest peak at ~502 nm derives from the 3P1→
3H4 transition; and the weakest peak

at ~547 nm arises from the 3P1→
3H5 transition. Both the PLE and PL intensities of (Gd1−xPrx)2O2S

phosphors increase to 2.6–2.8 times with the gradually rising Pr3+ concentrations from 0.1 to 0.5 at.% as
shown from the normalization curves (Figure 4C,D). A further increase in Pr3+ content (e.g., 0.75 at.%),
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however, causes a reduction in PL/PLE intensity due to luminescence quenching. Thus, the optimal
Pr3+ concentration in the GOS matrix is determined to be 0.5 at.%. As a function of the Pr3+ content,
the PLE and PL intensities have a highly consistent variation tendency.
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(Gd1−xPrx)2O2S (x = 0.001–0.0075) phosphor powders, PLE intensities of the 306 nm excitations
normalized to 1 for the lowest value (C), and PL intensities of the 512 nm emissions normalized to 1 for
the lowest value (D).

Huang et al. propose a theory to describe the relationship between PL intensity and activator
concentration [42], which agrees with Dai and Meng et al. [43,44]. That is, the mutual interaction type
of luminescence quenching in a solid phosphor can be determined by the following equation:

log(I/c) = (−s/d) log(c) + log f (1)

where I is the emission intensity, c is the activator concentration, s is the index of electric multipole, d is
the sample dimensionality (d = 3 for energy transfer among the activators inside particles), and f is the
constant. The variable s values correspond to different quenching mechanisms. Namely, the s values
of 6, 8, and 10 relate to the dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole electric
interactions, respectively, while s = 3 corresponds to exchange interaction. The plot of log(I/c) versus
log(c) for the 512 nm emission of Pr3+ is shown in Figure 5, from which a linear slope (s/3) of ~0.7 is
yielded and thus the s value is close to 3. It can be concluded that the exchange interaction is mainly
responsible for the luminescence quenching of GOS:Pr phosphors. The exchange interaction processes
are divided into radiative and non-radiative. The former includes emission and radiative transfer,
whilst the latter comprises internal relaxation and multipolar interactions between ions. The PL
intensity linearly rises as Pr3+ concentration increases up to 0.5 at.%, since more luminous centers are
generated. However, a further increase in Pr3+ content (e.g., above 0.75 at.%) enhances the probability
of energy transfer with cross-relaxation between Pr3+ activators due to the shortened distances.
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Figure 6A shows the XEL spectrum of the translucent GOS:Pr ceramic scintillator made in this
work. The ceramic material exhibits a strong green emission at 510–514 nm, arising from 3P0→

3H4

transition of Pr3+, which is similar to the PL behavior of its powder form. The mechanisms between PL
and XEL substantially differ from each other. The PL primarily utilizes the 4f 2

→4f 5d transition of Pr3+.
However, the XEL can be divided into the following three processes:

X − rays→ e_ + h+ (2)

Pr3+ + h+ → Pr4+ (3)

Pr4+ + e_
→ (Pr3+)∗ → Pr3+ + hv (4)
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Figure 6. X-ray excited luminescence (XEL) spectrum of the translucent GOS:Pr ceramic scintillator (A)
and its 1931 CIE chromaticity diagram (B).

That is, under high-energy ray excitation, lots of electron-hole pairs in the host lattice are created [45].
The Pr3+ cation traps the hole to form a transient Pr4+ state [15], followed by recombination with the
electron to emit visible light. The 1931 CIE chromaticity coordinate of the GOS:Pr ceramic is (0.11, 0.73),
which falls into the characteristic green region (Figure 6B).
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Figure 7A exhibits the decay kinetics of the GOS:Pr phosphor powder and ceramic scintillator
for the 512 nm emission of Pr3+ under 306 nm excitation. The fluorescence lifetime can be obtained
via fitting the decay curve with the single exponential equation: I(t) = Aexp(−t/τ) + B, where τ is the
fluorescence lifetime, t is the delay time, I(t) is the instantaneous emission intensity, and A and B are
constants [45,46]. The fitting results yield τ = 2.93 ± 0.02 µs, A = 425.74 ± 1.09, and B = 10.12 ± 0.51 for
the phosphor powder, and τ = 2.99 ± 0.03 µs, A = 264.73 ± 1.39, and B = 7.89 ± 0.38 for the scintillation
ceramic. The fluorescence lifetimes determined in this work are in general agreement with the reported
values of 2.4–3.0 µs for GOS:Pr,Ce ceramics [8,11,18,47].
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Figure 7. Fluorescence decay behaviors of the GOS:Pr phosphor powder and scintillation ceramic for
the 512 nm Pr3+ emission under 306 nm excitation (A) and their quantum efficiency spectra obtained
under 306 nm excitation (B).

Figure 7B exhibits the responses of the GOS:Pr phosphor powder and ceramic scintillator to
306 nm excitation using a white BaSO4 solid as a reference material. The external quantum efficiencies
(εex) of the sample can be deduced from the total number of emitted photons divided by the total
number of excited photons as follows [45,48]:

εex =

∫
λP(λ)dλ∫
λE(λ)dλ

(5)

where P(λ)/hν and E(λ)/hν are the numbers of photons in the emission and excitation spectra of
the samples, respectively. The reflection spectrum of the white standard is used for calibration.
The external quantum efficiencies of the GOS:Pr powder and bulk are determined to be ~27.2% and
37.8%, respectively. The rather higher εex for the latter is attributed to the improved crystallinity and
rapid grain growth via high-temperature sintering.

4. Conclusions

A precipitation precursor with two-dimensional nanoplate-like morphology was prepared at 80 ◦C
using ammonia as the precipitant, followed by reduction at 1000 ◦C under a hydrogen atmosphere to
yield a hexagonal Gd2O2S:Pr phosphor powder. After cold isostatic pressing and argon-controlled
sintering, the obtained Gd2O2S:Pr scintillation ceramic has a dense microstructure with a relative
density of ~99.2%. The main conclusions from this work can be summarized as follows: (1) The
sphere-like Gd2O2S:Pr phosphor powder has an average particle size of ~95 nm and exhibits the
characteristic green emission from 3P0,1→

3H4 transitions of Pr3+; (2) The optimum concentration of
Pr3+ is 0.5 at.%, and the luminescence quenching type is dominated by exchange interaction; (3) The
Gd2O2S:Pr ceramic has an in-line transmittance of ~31% at 512 nm upon X-ray excitation into the
strong green emission with a 1931 CIE chromaticity coordinate of (0.11, 0.73); (4) The phosphor powder
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and the ceramic bulk have similar lifetimes of 2.93–2.99 µs; (5) The Gd2O2S:Pr ceramic scintillator has
a higher external quantum efficiency (~37.78%) than the powder form (~27.2%).
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