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Chromatin conformation shapes the environment in which our genome is transcribed
into RNA. Transcription is a source of DNA damage, thus it often occurs concomitantly
to DNA damage signaling. Growing amounts of evidence suggest that different types of
RNAs can, independently from their protein-coding properties, directly affect chromatin
conformation, transcription and splicing, as well as promote the activation of the
DNA damage response (DDR) and DNA repair. Therefore, transcription paradoxically
functions to both threaten and safeguard genome integrity. On the other hand,
DNA damage signaling is known to modulate chromatin to suppress transcription
of the surrounding genetic unit. It is thus intriguing to understand how transcription
can modulate DDR signaling while, in turn, DDR signaling represses transcription of
chromatin around the DNA lesion. An unexpected player in this field is the RNA
interference (RNAi) machinery, which play roles in transcription, splicing and chromatin
modulation in several organisms. Non-coding RNAs (ncRNAs) and several protein
factors involved in the RNAi pathway are well known master regulators of chromatin
while only recent reports show their involvement in DDR. Here, we discuss the
experimental evidence supporting the idea that ncRNAs act at the genomic loci from
which they are transcribed to modulate chromatin, DDR signaling and DNA repair.
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INTRODUCTION

Genetic information is transmitted asDNA, yet is functional as RNA in cellular organisms. Genome
integrity and as a consequence transcription fidelity is continuously harmed by DNA lesions.
The cascade of events that starts with the detection of DNA lesions proceeds through signaling
pathways and eventually triggers repair is known as the DNA damage response (DDR; Ciccia and
Elledge, 2010). Among the different kinds of lesions, DNA double-strand breaks (DSBs) are the
most deleterious and must be accurately repaired. It has been evident for several years that RNA is
an important player in the regulation of chromatin and transcription (Holoch and Moazed, 2015)
but only recently has RNA been shown to directly participate in preserving genome integrity (Sabin
et al., 2013; d’Adda di Fagagna, 2014). This occurs in different ways: not only do RNA transcripts
promote DDR signaling when DNA damage arises at their genetic loci (Francia et al., 2012) and
guide homology-directed DNA repair (Wei et al., 2012; Gao et al., 2014) but also provide an intact
copy of corrupted genetic information to be used as a template for DSB repair (Storici et al., 2007;
Keskin et al., 2014). These studies reveal that transcripts can play an active role in preserving the
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integrity of the genome from which they are generated, raising
the paradox that transcription can lead to DNA damage while
transcripts are beneficial for efficient DNA damage signaling and
repair at the loci from which they are transcribed.

The generation of a DSB causes the appearance of transcripts
mapping to sequences flanking the site of damage (Francia
et al., 2012; Michalik et al., 2012; Wei et al., 2012) referred
to as DNA damage-response RNAs (DDRNAs; Francia et al.,
2012) or double-strand break-induced RNAs (diRNAs; Wei
et al., 2012). Importantly, transcripts map extremely close to
DNA lesion and form also if DNA damage is generated at
a locus devoid of promoter sequences and positioned away
from other transcription units, excluding the possibility that
transcripts are generated passively (Francia et al., 2012). This
novel phenomenon appears to be evolutionarily conserved
since it has been reported in plants (Wei et al., 2012),
insects (Michalik et al., 2012), mouse and human cells
(Francia et al., 2012; Gao et al., 2014). However, these
findings are contradictory to the more commonly accepted
view that sees transcription as an inherently mutagenic
process (Bermejo et al., 2012; Kim and Jinks-Robertson, 2012;
Hamperl and Cimprich, 2014; Sollier et al., 2014) and DDR
activation antagonistic to transcription (Shanbhag et al., 2010).
A unifying model that reconciles these contradictory theories is
missing.

The use of deep sequencing technology lead to a revolution in
our understanding of epigenetic mechanisms behind eukaryotic
genome functions by uncovering the existence of ncRNAs which
act as master chromatin regulators (Peschansky and Wahlestedt,
2014). DDRNAs are ncRNAs required for activation of the DDR
(Francia et al., 2012; Wei et al., 2012), but the mechanism
by which they function is still under investigation. Because
DDRNAs are active at very low abundance (Francia et al.,
2012), a characteristic consistent with other epigenetic regulatory
transcripts (Wang et al., 2008; Gupta et al., 2010; Sado and
Brockdorff, 2013), it is tempting to speculate that they control
DDR activation and DNA repair by modulating chromatin.
Here, we discuss how ncRNAs and factors of the RNAi pathway
are known to influence chromatin and transcription and we
comment about the influence that DDRNAs might have on
chromatin during DDR activation and DNA repair.

Long ncRNAs in Chromatin and
Transcription Regulation
Non-coding RNAs are generally classified based on their length:
long ncRNAs (lncRNAs) are considered all non-coding transcript
longer then 200 base-pairs up to several kilobases; while below
this arbitrary threshold ncRNAs are generally referred to as
small ncRNAs (sncRNAs). However, this gross classification only
defines two overarching categories, each of which includes several
different families based on ncRNA biogenesis, localization and
function (St Laurent et al., 2015). Apart from the well known
big classes of ribosomal RNAs, transfer RNAs, heterogeneous
nuclear RNAs, small nucleolar RNAs and ribozymes, several
novel lncRNAs have been identified and are often involved in
the epigenetic regulation of the eukaryotic genome. Indeed,

lncRNAs have the ability to recruit chromatin modifying
complexes to defined genomic loci through the concomitant
function of protein-binding domains, and sequence specificity
(Cech and Steitz, 2014). A paradigm for lncRNA-directed site-
specific chromatin modulation comes from the characterization
of X-chromosome inactivation (XCI) for dosage compensation.
XCI is achieved by the cells through the deposition of H3K27me3
repressive histone marks by the Polycomb repressive complex
PRC2, which is recruited to only one X chromosome via a
direct interaction with lncRNA transcript from the X inactive-
specific transcript (Xist) locus (Plath et al., 2003; Galupa and
Heard, 2015). Acting locally as a sequence-specific scaffold, Xist
lncRNA is active at a very low copy number per cells (Zhao
et al., 2008). Intriguingly, few studies reported the interactions
of Xist lncRNA with BRCA1, a DNA repair protein required for
homologous recombination (HR) which has also been proposed
to participate in XCI (Ganesan et al., 2002, 2004). Nevertheless,
the putative involvement of BRCA1 in XCI have been challenged
in other reports (Xiao et al., 2007). Similarly to Xist, other
chromatin bound ncRNA act in cis as few copies per cell to repress
transcription. One example is the ncRNACCND1 whose expression
is induced upon DNA damage at the 5′ regulatory regions
of CCND1. ncRNACCND1 allosterically interacts with the RNA
binding protein FUS/TLS and represses the expression of CCND1
by inhibiting the activity of p300 histone acetyltransferase locally
(Wang et al., 2008). A number of other lncRNAs are induced
upon DNA damage, often in a TP53-dependent manner. Two
examples are the long intergenic non-coding RNA-p21 (lincRNA-
p21; Huarte et al., 2010) and the lncRNA named p21 associated
ncRNA DNA damage activated (PANDA; Hung et al., 2011),
both transcribed upstream of the cell cycle regulator p21.
LincRNAp21 binds to the transcription factor hnRNP-K and
controls the proper silencing of TP53-repressed genes (Huarte
et al., 2010) while PANDA binds to NF-YA, PRC1 and PRC2
to modulate the expression of pro-apoptotic and senescence
genes upon DNA damage (Puvvula et al., 2014; Zhang and Peng,
2015).

Long non-coding RNA with antisense orientation control
the expression of complementary transcripts in cis. Intriguing
examples are the p15AS (p15 antisense transcript), which is
expressed in antisense orientation to the cyclin-dependent kinase
inhibitor p15 and controls its silencing by heterochromatin
formation in a DICER-dependent manner (Yu et al., 2008), and
the KCNQ1 antisense transcripts (KCNQ1ot1) which represses
KCNQ1 by recruiting the H3K9 histone methyltransferase G9a
and the PRC2 complex increasing the level of H3K9me3 and
H3K27me3 in cis to its locus (Pandey et al., 2008). Similarly, the
monoallelically expressed ncRNA AIR represses Slc22a3, Slc22a2,
and Igf2r genes in cis by interacting and recruiting G9a (Nagano
et al., 2008).

However, not all ncRNAs act by modulating chromatin
in cis. The long intergenic ncRNA HOX transcript antisense
RNA (HOTAIR), which originates from the HOXC locus,
represses transcription of the HOXD locus in trans by recruiting
PRC2 (Rinn et al., 2007; Gupta et al., 2010; Spitale et al.,
2011). HOTAIR can directly interact with both PRC2 and the
LSD1/CoREST/REST histone de-methylase complex, thereby
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inactivating transcription at target sites by coupling H3K27
methylation with de-methylation of H3K4 (Tsai et al., 2010).
HOTAIRmisregulation has been observed in a variety of cancers
and might affect the expression of genes involved in apoptosis,
growth and metastasis (Yu and Li, 2015). Another lncRNA
relevant for cancer is ANRIL that, by interacting with the PRC1-
component CBX7, contributes to repress the INK4b/ARF/INK4a
locus and therefore limits senescence (Yap et al., 2010).

Non-coding RNA scaffolds not only induce repressive
chromatin conformation but also positively influence
transcription. This is the case of HOTTIP, a lincRNA
transcribed from the 5′ tip of the HOXA locus that, by
targeting WDR5/MLL complexes across HOXA and driving
histone H3K4 trimethylation, coordinates the activation of
HOXA genes at specific timing in vivo (Wang et al., 2011a).
Chromosomal looping and high order structure necessary for
gene activation have been proposed to be guided by HOTTIP
lncRNA (Wang et al., 2011a), similar to what occurs for the
ncRNAs with enhancer functions (eRNAs), other activating
lncRNAs whose transcription stimulates the expression of
neighboring genes (Orom et al., 2010; Lai et al., 2013; Andersson
et al., 2014). Another way in which RNA changes the architecture
of chromatin is by binding multiple proteins, as demonstrated by
the PCGEM1 lncRNA that interacts with the androgen receptor
(AR) and the activating chromatin effector Pygopus homolog
2 (Pygo2), thereby enhancing selective looping of AR-bound
enhancers to target gene promoters (Yang et al., 2013).

Overall, a unifying theme in ncRNA-directed chromatin
modification is the use of transcripts as a scaffold to achieve locus
specific chromatin modification a well characterized mechanism
that raises the apparent paradox that RNA-guided transcriptional
silencing requires on-going transcription of the same locus.

An additional mechanism proposed for the targeting of
these lncRNA to the correct locus is via lncRNA:DNA triplex
formation. One example is the recently identifiedMEG3 lncRNA
which represses genes of TGF-beta pathway by recruiting EZH2
via RNA:DNA triplex formation (Mondal et al., 2015). Previously
lncRNA:DNA triplex formation was proposed in the case of
the promoter associated pRNA, ncRNA complementary to the
rDNA promoter that, by recruiting the DNA methyltransferase
DNMT3b, mediates de novo CpG methylation and silencing of
rRNA gene promoters (Schmitz et al., 2010).

In Table 1 are listed the lncRNAs discussed.

Small Non-coding RNA and the RNA
Interference Machinery in DDR and
Chromatin Modulation
Small non-coding RNAs (sncRNAs) are also divided in several
different classes. Among a number of sncRNAs families, the
more characterized are microRNAs (miRNAs or miR): DICER-
and DROSHA-dependent sncRNAs which control the expression
of more than 30% of human coding transcripts both at post-
transcriptional and transcriptional level (Pasquinelli, 2015).
Certainly, also DNA damage is a stimulus that results in altered
expression of several miRNA families (Wouters et al., 2011). In
particular, a group of miRNA promoters are targeted by the DDR

effector and transcription factors TP53. Most relevant examples
are the miR34a-c family and the miR29 family (Hermeking, 2012)
which are induced in cells exposed to different genotoxic stress,
and miR200c which increases following oxidative stress and
triggers apoptosis and senescence by targeting ZEB1 (Magenta
et al., 2011). ThemiR34a-c family represses themRNA transcripts
of several genes involved in cell proliferation and survival, such
as BCL2, Cyclin D1 and E2 and cyclin-dependent kinases (CDK)
4 and 6, and therefore controls both apoptosis and senescence
(Chang et al., 2007; Raver-Shapira et al., 2007; Tazawa et al.,
2007; Yamazaki et al., 2012). The TP53 dependent up-regulation
of the miR29 family, which represses the TP53 inhibitor Wip1
phosphatase, ultimately leads to TP53 induction and contributes
to a positive feed-back loop during aging or chronic DDR
activation (Ugalde et al., 2011). Other miRNAs induced upon
DNA damage in a TP53-dependent manner and relevant for
cancer are miR192, miR194, and miR215 (Braun et al., 2008).
Intriguingly, mutant TP53 expressed in cancer not only loses its
oncosuppressive properties but also regulates the expression of a
different cohort of miRNAs responsible for its oncogenic activity
(Liao et al., 2014). Moreover, TAp63, another member of the

TABLE 1 | List of lncRNAs discussed in the text. For each of them the
interacting protein-complexes, the epigenetic modification and/or the
related functional outcome are specified.

lncRNA Chromatin
modifying
complex

Epigenetic
modification

Functional outcome

Xist PRC2 complex H3K27me3 Transcriptional repression of
inactive X chromosome

HOTAIR PRC2
LSD1

H3K27me
H3K4
de-methyl

Transcriptional repression of
HOX genes

ANRIL CBX7/PRC1 H3K27me3 Transcriptional repression of
INK4 locus

KCNQ1ot1 G9a
PRC2

H3K9me3
H3K27me3

Transcriptional repression of
KCNQ1 gene

AIR G9a H3K9me3 Transcriptional repression of
Slc22a3, Slc22a2, and Igf2r
genes

p15AS – H3K9me3
H3K4de-
methyl

Transcriptional repression of
p15

LincRNAp21 hnRNPK – Transcriptional repression of
TP53-repressed genes

PANDA NF-YA
PRC1

– Transcriptional repression of
pro-apoptotic and senescence
genes

ncRNACCND1 FUS/TLS – Transcriptional repression of
CCND1

pRNA DNMT3b DNA
methylation

Transcriptional repression of
rDNA

HOTTIP WDR5/MLL H3K4me3 Transcription activation of HOX
genes

PCGEM1 Androgen
receptor
PYGO2

Chromatin
looping

Enhanced transcription of
androgen receptor-regulated
genes

eRNAs Mediator – Enhanced transcription of
target genes
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TP53 family, binds to DICER gene promoter and trans-activates
it, directly controlling the processing of all miRNAs (Su et al.,
2010).

DNA damage and DDR activation can also regulate miRNA
expression by modulating the miRNA processing at maturation
steps. Following DNA damage, the main DDR kinase Ataxia
telangiectasia mutated ATMphosphorylates the KH-type splicing
regulatory protein KSRP (Zhang et al., 2011), a multifunctional
RNA-binding protein that interacts with both DROSHA and
DICER (Trabucchi et al., 2009, 2011). KSRP was reported
to interact with guanosine-rich regions in the terminal loop
of miRNA precursors (pre-miRNA), and its ATM-dependent
phosphorylation significantly enhanced the maturation of a
cohort of pri-miRNA including pri-let 7, whereas KSRP
mutations in the ATM-dependent phosphorylation sites impair
its miRNA-regulating activity (Trabucchi et al., 2009, 2011;
Gherzi et al., 2014). It was also shown that ATM dependent
phosphorylation of exportin-5, which mediates the nuclear
export of miRNAs, enhances its interaction with nuclear
pores after DNA damage, defining an additional level of
miRNA modulation by DNA-damage signaling (Wan et al.,
2013).

Transcripts coding for key factors involved in DDR and
chromatin modulation are also targeted by specific miRNAs
at the post-transcriptional level following DNA damage. For
example, one of the earliest events in the DDR is the ATM-
dependent phosphorylation of the histone variant H2AX (Ciccia
and Elledge, 2010), the coding mRNA of which is targeted
by both miR24 (Lal et al., 2009; Brunner et al., 2012) and
miR138 (Wang et al., 2011b; Yang et al., 2015a). Indeed, the
overexpression of these miRNAs increases sensitivity to DNA
damaging agents (Lal et al., 2009). ATM mRNA itself is also
targeted by some miRNAs up-regulated in cancer, such as
the N-myc-induced miR421 (Hu et al., 2010; Mansour et al.,
2013), but also miR101 (Yan et al., 2010) and miR100 (Ng
et al., 2010) whose overexpression enhances radiosensitivity
by down-regulating ATM. Similarly, miR182 down regulates
BRCA1 levels in human breast cancer cells, thus impeding repair
by HR and sensitizing cell to treatment with PARP inhibitor
and ionizing radiation (Moskwa et al., 2011; Krishnan et al.,
2013).

However, a different group of miRNA has a positive impact on
DDR activation. The recently describedmiR339-5p, andmiR542-
3p, indirectly stabilize TP53 by repressing MDM2 (Wang et al.,
2014; Zhang et al., 2015). Overall, there is complex network of
mutual modulations between DDR factors, DDR activation and
miRNA biogenesis.

Transcripts originating from DNA breaks are processed
by two ribonucleases of the RNAi machinery DROSHA and
DICER, into sncRNAs (Francia et al., 2012; Michalik et al.,
2012; Wei et al., 2012) and have been proposed to act
in HR associated with the RNA-induced silencing complex
(RISC) component ARGONAUTE 2 (AGO 2; Gao et al.,
2014). RNA-processing enzymes have been linked to DDR
activation in yeast as well (Manfrini et al., 2015). In agreement
to the well-known function of RNAi in regulating gene
expression by post-transcriptional gene silencing, DDRNAs have

been shown to act as endogenous siRNA against truncated
transcripts accumulating as a consequence of lesion generation
(Michalik et al., 2012). However, sncRNA processed by the
RNAi pathway are also known to silence gene expression
at transcriptional level by modulating chromatin (Guang
et al., 2008; Fagegaltier et al., 2009; Cernilogar et al., 2011).
Indeed sncRNAs can act as guiding molecules for chromatin
modifier enzymes in lower organisms (Fukagawa et al., 2004;
Buhler et al., 2006; Castel and Martienssen, 2013; Keller
et al., 2013). In mammals, RNAi factors such as DICER
and AGO, historically considered merely cytoplasmatic, have
been shown to localize in the nucleus of mammalian cells
while maintaining activity (Janowski et al., 2006; Meister,
2013; Du Toit, 2014; Gagnon et al., 2014; Gao et al., 2014;
White et al., 2014) and DICER-dependent, sequence-specific
sncRNAs among which some miRNAs have been shown to
control transcription at chromatin level in different contexts
(Janowski et al., 2006; Kim et al., 2006; Gonzalez et al.,
2008). This process is even enhanced in senescent cells, likely
to suppress pro-proliferative genes (Benhamed et al., 2012).
SncRNA-dependent chromatin modulation in mammals also
occurs during deposition of heterochromatin at repetitive
sequences (Giles et al., 2010) such as telomeres (Cao et al.,
2009), centromeres (Halic and Moazed, 2010; Marasovic et al.,
2013) and ribosomal DNA (Sinkkonen et al., 2010), as well as
gene termination sites (Skourti-Stathaki et al., 2014). DICER-
dependent sncRNAs associated with AGO1 and AGO2 have
also been shown to modulate RNA polymerase II (RNAPII)
elongation rate inmammalian cells by locally inducing chromatin
compaction, thereby influencing splicing choices (Ameyar-
Zazoua et al., 2012). A similar effect can be obtained at specific
splicing sites via transfection of exogenous siRNA (Allo et al.,
2009).

Although in all of these contexts sncRNAs recruit chromatin
repressive complexes that induce silencing of target loci,
DICER-dependent sncRNAs have also been proposed to play
the opposite role of restraining the spreading of constitutive
heterochromatin at the boundaries of centromeres (Keller et al.,
2013) suggesting that their function might not be limited
to heterochromatin formation and transcriptional silencing.
Indeed, sequence-specific RNAs, often in complex with AGO2,
have been show to map to transcriptional start sites (TSS-RNA)
in human (Zamudio et al., 2014), mouse, chicken and fruit flies
(Chitwood and Timmermans, 2010; Czech and Hannon, 2011)
and small promoter-associated transcripts (PROMPTs) predicted
to activate transcription through changes in chromatin structure
have been described (Preker et al., 2008; Seila et al., 2008). Also,
sncRNA-AGO2 complexes were shown to control transcription
through reduction of H3K9 levels at sequence-specific promoter
of a target gene, thereby inducing its activation (Li et al., 2006).

Increasing amounts of evidence also indicate that RNAi
protein factors regulate gene expression co-transcriptionally
through interaction with the transcriptional machinery (Castel
and Martienssen, 2013). In Drosophila melanogaster Dicer 2 and
Ago 2 interact with RNAPII and are required for positioning
the transcription machinery on gene promoters in euchromatin
(Cernilogar et al., 2011), while in mammals AGO1 associates
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with RNAPII and induces gene silencing at siRNA-targeted gene
promoters (Kim et al., 2006). DROSHA and the DROSHA-
containing complex known asmicroprocessor, have recently been
proposed to control gene expression co-transcriptionally in two
different ways: first acting at gene promoters by binding to
hairpins of nascent transcripts, thus stabilizing them (Gromak
et al., 2013), and second by cleaving stem-loops present in
specific transcripts to induce transcription termination (Dhir
et al., 2015). At sites of DNA damage, AGO2-associated sncRNAs
influence the DNA repair pathway by recruiting the HR-factor
Rad51 to actively transcribed regions (Gao et al., 2014). This is
in agreement with the observation that transcriptionally active
chromatin is preferentially repaired by HR (Aymard et al., 2014).
Overall, several different examples exist of sequence-specific and
RNAi-dependent sncRNAs acting at the level of chromatin in
different organisms.

Endogenous Sources of Long
Double-stranded RNA, Precursors of
sncRNAs
SncRNAs mostly act as single stranded RNA (ssRNA) molecules,
however, DICER is able to cleave only double stranded RNA
(dsRNA) precursors (Holoch and Moazed, 2015). How such
longer double stranded precursors are generated in different
contexts is often unclear. The accepted model of miRNA
biogenesis in which a longer ssRNA is folded into a stem-
loop secondary structure (Kim et al., 2009) does not always
apply to non-miRNA loci. A recently proposed source of
dsRNA precursors is oppositely oriented transcription of two
independent genetic unit, leading to the formation of partially
complementary transcripts able to anneal with each other
and form long dsRNA molecules (Gullerova and Proudfoot,
2012; Skourti-Stathaki et al., 2014). Increasing evidence points
to the fact that dsRNA generated by overlapping transcripts
form relatively frequently in vivo. In fact, DICER inactivation
leads to increased levels of dsRNAs and consequent activation
of the interferon response, in agreement with the idea that
transcripts able to form long dsRNAs are fairly abundant
and are indeed substrate for DICER processing (White et al.,
2014). In support of this notion, overlapping, inversely oriented
transcripts originating at regions with high gene density, as
well as bidirectional transcription at neighboring transcription
units, are not uncommon in the genome of vertebrates (Adachi
and Lieber, 2002; Okamura et al., 2008; Orekhova and Rubtsov,
2013). It has been proposed that a common feature of promoters
in eukaryotic organisms is bidirectionality (Seila et al., 2009).
However, this model is still controversial and other studies
have proposed instead that promoters are intrinsically uni-
directional (Duttke et al., 2015). An example of widespread
and ubiquitous antisense transcripts is the recently characterized
class of Natural Antisense Transcripts (NATs), regulatory RNA
molecules influencing the expression of the complementary gene
(Faghihi and Wahlestedt, 2009; Khorkova et al., 2014). These
antisense transcripts may have been largely elusive because they
are unstable and rapidly processed, similar to what happens with
the recently identified nascent transcripts generated by divergent

transcription initiation at promoter and enhancer (Weingarten-
Gabbay and Segal, 2014).

Another interesting source of dsRNA has been proposed
at human promoters where an engaged RNAPII is loaded in
an opposite orientation respect to the gene and synthesizes
complementary RNAs of few hundred bases but does not elongate
beyond the promoter (Core and Lis, 2008; Core et al., 2008).
In support of this model, phosphorylation of Tyrosine 1 on
the RNAPII C-terminal domain (CTD) has been associated
with antisense transcription at promoters and enhancers of
mammalian cells (Descostes et al., 2014). Moreover, at RNAPII
pausing sites upstream to promoters dsRNAs are known to
accumulate (Flynn et al., 2011). Therefore, it has been proposed
that a paused promoter-proximal RNAPII can synthesize both
RNA strands that then anneal forming a dsRNA, which can
be processed by DICER (Du Toit, 2014). Bound to AGO,
these sncRNAs are believed to influence the local chromatin
conformation, thus fine-tuning the switch between paused and
elongating RNAPII. A similar mechanism has been described at
transcription termination sites where RNAPII pausing is caused
by R-loops (Skourti-Stathaki et al., 2014) and sncRNAs associated
with AGO proteins are believed to recruit chromatin modifier
enzymes and increase local chromatin compaction. Likewise,
RNAPII is known to pause at alternative splice sites (Allo
et al., 2009; Saint-Andre et al., 2011) where RNAi-dependent
sncRNAs accumulate, further suggesting that paused RNAPII
may generate antisense transcription and therefore dsRNA
molecules. It is therefore plausible that in the physiological
context of gene transcription, DNA damage and DDR signaling
may induce RNAPII pausing and consequent synthesis of
complementary transcripts. Once annealed, these transcripts
may provide a dsRNA precursor for DICER-dependent DDRNA
biogenesis that, in turn, may stimulate DDR activation and
guide-chromatin modulation (see Figure 1 for a schematic
representation).

In plants and yeasts an additional source of dsRNA
precursors is provided by RNA dependent RNA polymerases
(RdRP), able to synthesize the complementary strand of a
single stranded RNA template (Ahlquist, 2002). Most higher
eukaryotes also encode putative RdRPs, but in mammals RdRP
activity associated with RNAi has remained elusive (Maida and
Masutomi, 2011). Recently, it has been proposed that mammalian
RNAPII retains RdRP activity similar to that of budding yeast
RNAPII (Lehmann et al., 2007) and is involved in generating
complementary strands of non-coding transcripts to target
them for degradation (Wagner et al., 2013). A similar RdRP
activity has been postulated for human telomerase TERT, which
was proposed to produce telomeric dsRNAs then processed
into sncRNA in a DICER-dependent manner (Maida et al.,
2009; Maida and Masutomi, 2011) suggesting that TERT may
contribute to amplifying sncRNA biogenesis from telomeric
sequences. However, the putative RdRP activity of TERT is still
under debate (Martinez and Blasco, 2011). At site of DNA
damage, diRNA biogenesis requires RdRP activity in plants
(Wei et al., 2012), suggesting that a residual RdRP activity of
RNAPII could be involved in DDRNA biogenesis in mammalian
cells too.
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FIGURE 1 | Models of ncRNA-mediated site-specific chromatin modification and DDR modulation. (A) Schematic representation of long ncRNA (lncRNA)
in transcriptional repression. (1) RNAPII dependent transcripts fold in protein-binding domains and (2) recruit histone-modifying complexes such as PRC2 to
chromatin in cis. (B) Schematic model of small ncRNAs (sncRNAs) generation and chromatin modulation at RNAPII pausing sites. (1) Pausing of RNAPII is induced in
physiological condition at promoter and enhancer sequences and at transcription-termination sites prone to form R-loops, but could also occur in the presence of
DNA lesions. (2) RNAPII pausing stimulates the loading of another RNAPII in opposite orientation on the complementary DNA template and generates antisense
transcripts. DsRNA precursors are then processed by the RNAi-machinery into sncRNA. (3) ARGONAUTE 2 (AGO2) forms a complex with such sequence-specific
sncRNA and guide chromatin-modifying enzymes to the pausing site via nascent RNA:sncRNA interaction. (C) Schematic model for sncRNAs generation and
function at site of DNA damage. (1) Double-strand break (DSB) generation induces stalling of RNAPII and synthesis of partially complementary transcripts. (2)
Stem-loop like secondary structures of the transcripts or long dsRNAs precursors are processed by DROSHA and DICER into sncRNA, DDRNA. (3) DDRNA
stimulates DDR activation via an unknown mechanism. Initially, DDR activation leads to chromatin de-compaction, which may increase transcription and favors ATM
activation. In turn, ATM induces mono- and poly-ubiquitination of H2A/H2AX by RNF8/RNF168 ubiquitin ligases, consequent chromatin compaction and
transcriptional silencing (4). Chromatin compaction might promote reciprocal interactions between DDR proteins through their increased density, further boosting
DDR activation in the absence of additional transcription.

Chromatin Compaction and Relaxation
at Sites of DNA Damage
Both condensation and relaxation have been show to occur at
damaged chromatin. Recently, it has been shown that chromatin
compaction after DNA damage is a secondary event that
follows an initial chromatin relaxation (Burgess et al., 2014).
Adjacent to DSBs, local chromatin de-condensation as well
as histone reorganization and eviction have been previously
observed in mammalian cells (Kruhlak et al., 2006; Ziv et al.,
2006; Berkovich et al., 2007; Price and D’Andrea, 2013). It
is also well established that important chromatin remodeling
complexes such as SWI/SNF (Smith-Roe et al., 2015), CHD
(Stanley et al., 2013), INO80 (Kashiwaba et al., 2010), SMARCA5
(Smeenk et al., 2013), ISWI (Aydin et al., 2014) and the

poly (ADP-ribosyl)ation dependent, nucleosome-repositioning
enzyme ALC1 (Ahel et al., 2009), are recruited to DSBs. The
putative purpose of this recruitment is to remove nucleosomes
from damaged DNA, shift back the position of nucleosomes and
substitute histone variants (Panier and Durocher, 2013; Price
and D’Andrea, 2013; Smeenk et al., 2013). Moreover, well-known
histone marks characteristic of open chromatin are deposited
after DNA damage in a DDR-dependent manner: histones H2A
and H4 acetylation by the histone acetyl transferases TIP60
(Sun et al., 2009) and MOF (Sharma et al., 2010) and the
monoubiquitination of histone H2B by RNF20/RNF40 (Miller
and Jackson, 2012), have been extensively shown to be deposited
at site of DNA damage. Interestingly, both MOF (Akhtar and
Becker, 2000) and RNF20/40 are well known transcription
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activators (Shiloh et al., 2011) that also modulate chromatin
de-condensation at transcribed regions, suggesting that similar
chromatin modifications might be required for DDR activation.

A number of other processes that promote chromatin
relaxation and are required for proper DDR activation have
been reported, such as the mobilization of heterochromatin-
associated factors HP1 and KAP-1 (Ziv et al., 2006; Ayoub
et al., 2008; Noon et al., 2010; Bolderson et al., 2012) away
from damaged loci and the re-localization of DNA breaks at
the periphery of heterochromatin or inside euchromatin (Chiolo
et al., 2011; Jakob et al., 2011). Collectively, these reports prove
that active chromatin de-compaction at sites of DNA damage
is a controlled process, rather than a side effect given by
DNA breakage, raising questions about the possible mechanism
by which both chromatin relaxation and re-compaction are
modulated by DDR. Both events seem to play a functional role
in DDR since the loss of the initial chromatin de-compaction
but also the induction of persistent de-compaction on damaged
chromatin impair DDR signaling (Burgess et al., 2014) and
repair (Kakarougkas et al., 2014; Kalousi et al., 2015). On the
other hand, forced chromatin compaction can also induce ATM
signaling in the absence of physical DNA damage (Kaidi and
Jackson, 2013). Overall, not only chromatin compaction but also
local chromatin relaxation is intimately associated with DDR
signaling at damaged chromatin. Antagonistic signals during
DDR signaling have been implicated in providing boundaries to
its spread along chromatin (Panier and Durocher, 2013). Thus,
the fact that these two apparently contradictory phenomena
coexist at site of damage may suggest that they finely tune each
other.

During DDR activation two consecutive steps can be
distinguished: the first consists of a primary, direct recognition
of DNA lesions by DDR sensors, while the second consists of
an amplification phase mediated by chromatin modifications that
recruit and retain DDRmediators and kinases in close proximity,
promoting their interaction (Fernandez-Capetillo et al., 2003;
Bekker-Jensen and Mailand, 2010). A distinct, yet not alternative
scenario envisages that the initial recognition of a DNA lesion
requires chromatin de-compaction to allow the binding of DDR-
sensors to damaged DNA, while the following DDR signal
amplification might be enhanced by compaction, which increase
the local signal and favors the reciprocal interaction among
DDR proteins. Additionally, the initial chromatin de-compaction
could indeed promote local transcription that generates RNA
precursors for DDRNA biogenesis, in turn required to boost DDR
signaling and thus repair (Figure 1), (Francia et al., 2012; d’Adda
di Fagagna, 2014).

The Intricate Relationship between DDR
Signaling and Transcription

A genomic locus is repaired more efficiently when actively
transcribed than when kept silent (Goodarzi et al., 2008;
Chaurasia et al., 2012; Fong et al., 2013), an observation
suggesting that on-going transcription can play a positive
role in DNA repair. Along the same line, RNAPII and
the transcription machinery have been proposed to act as

genome scanner, detecting and signaling the presence of
DNA damage (Lindsey-Boltz and Sancar, 2007; Montecucco
and Biamonti, 2013; Winsor et al., 2013). In this scenario,
the recent understanding that most of our genome is
pervasively transcribed at a basal level (Kapranov et al., 2007;
Berretta and Morillon, 2009; Clark et al., 2011) emphasizes
how prominent the role of transcribing RNAPII could
be in the detection of damaged DNA and activation of
consequent repair. More intriguingly, inhibition of RNAPII
elongation by specific antibodies induces the ATM dependent
phosphorylation of the tumor protein TP53 in the absence
of DNA damage and in a replication-independent manner
(Ljungman et al., 2001; Derheimer et al., 2007), highlighting
that DDR might be activated upon inhibition of RNAPII
elongation.

One related fascinating topic is how transcription is
modulated around DNA breaks. It has been shown that
DNA breaks can cause transcription inhibition of adjacent
genes via two complementary mechanisms: by surrounding the
damaged locus with repressive chromatin modifications and/or
by excluding elongating RNAPII from damaged sites. An elegant
study in a conveniently engineered cellular system shows that
a cluster of DSBs generated by a restriction enzyme at a
repetitive locus stimulates DDR-mediated chromatin silencing
that spreads for kilobases from the damaged locus (Shanbhag
et al., 2010). It is now well established that DNA damage-
induced ATM activation recruits Ring Finger protein 8 (RNF8)
and RNF168 E3-ubiquitin ligases that ubiquitinate histones
H2A/H2AX in chromatin surrounding the breaks (Jackson
and Durocher, 2013; Brown and Jackson, 2015). This event is
believed to cause chromatin compaction and has been linked
to repression of transcription units positioned a few kilobases
downstream from the cluster of DSBs (Shanbhag et al., 2010).
Importantly, transcription inhibition induced by DSB generation
can be reversed by ATM inhibition or RNF8 and RNF168 co-
depletion while still in the presence of DNA damage (Shanbhag
et al., 2010), suggesting that transcription is not physically
impeded by the DNA lesions itself, but is instead actively
controlled by DDR-activation. In the same cellular system
it has been shown that the chromatin remodeling complex
Polybromo BRG1 (Brahma Related Gene 1) Associated Factor
(PBAF) is phosphorylated by ATM and, together with the
Polycomb repressive complexes PRC1 and PRC2, is required for
transcription repression in cis to the DSB cluster (Kakarougkas
et al., 2014).

Interestingly, the down-regulation of transcriptional units due
to a nearby damaged locus correlates with a reduced presence
of the elongating RNAPII isoform but not of total RNAPII at
the γH2AX-positive domain (Shanbhag et al., 2010), suggesting
that RNAPII might be initially pausing at damaged chromatin
rather than being excluded from it. This hypothesis is in line
with the recent observation that cells treated with DSB-inducing
agents show an increase of RNAPII association with chromatin,
rather than a decrease (Britton et al., 2014). Several other reports
suggest the opposite, showing the exclusion of RNAPII from
γH2AX positive chromatin when laser micro-irradiation is used
to deliver a high dose of DNA damage in a confined area (Chou
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et al., 2010; Miller et al., 2010; Seiler et al., 2011; Polo et al.,
2012).

Repression of transcription adjacent to a DNA lesion is
also suggested by the fact that several heterochromatin markers
and heterochromatinization-inducing enzymes are present at
sites of DSBs. Some examples are HP1 (Baldeyron et al.,
2011), the histone methyltransferases SUV3-9 and PRDM2,
responsible for the deposition of the H3K9me3 (Ayrapetov
et al., 2014), the histone deacetylases HDAC1 and HDAC2
(Luijsterburg et al., 2009; Zarebski et al., 2009; Miller et al.,
2010) and the histone methyltransferase MMSET (Pei et al.,
2011). Moreover, chromatin-repressive complexes, such as PBAF,
Polycomb and the Nucleosome Remodeling Deacetylase NuRD
complex, associate with damaged chromatin (Chou et al., 2010;
Kakarougkas et al., 2014; Leung et al., 2014). Overall, it is well
established that DDR activation induces a signaling pathway
that results in repression of adjacent genes, a phenomenon that
might be useful to counteract the accumulation of corrupted
or truncated transcripts and to avoid collisions between
transcription and repair intermediates.

Conversely, it has been proposed that when a single DSB
is generated inside a gene, RNAPII elongation rate is only
transiently arrested by DNAPKcs-dependent DDR signaling
(Pankotai et al., 2012). DNA-PKcs inhibition allows transcription
elongation to take place, regardless of the presence of the break,
and possibly even across the break (Pankotai et al., 2012).
This provocative interpretation is in line with the in vitro
observation that RNA polymerases can bypass different types
of DNA lesions, including DNA breaks, by mis-incorporating
ribonucleotides, a process known as transcriptional mutagenesis
(Doetsch, 2002; Saxowsky and Doetsch, 2006; Pankotai and
Soutoglou, 2013; Xu et al., 2014). Thus, a possible model
to reconcile these contradictory observations predicts that
DDR activation modifies chromatin to induce transcriptional
repression at heavily damaged chromosomes, while a single DNA
break causes only a transient RNAPII pausing, thus enabling a
rapid restart after DNA repair.

RNAi Pathway and Innate Immunity
against Invading Genetic Elements
sncRNAs are known to take part in other essential events linking
chromatin and transcription modulation with genome instability,
such as genome defense from invading nucleic acids and
transposable elements (TE; Fagegaltier et al., 2009; Cam, 2010).
In this context, RNAi-dependent sncRNAs guide the deposition
of repressive histone marks at invading genetic element through
base pairing with nascent transcripts.

It is easy to imagine that complementary transcripts might
originate from the expression of repetitive elements such as Long
Interspersed Nuclear Elements (LINE) and Short Interspersed
Nuclear Elements (SINE), which derive from retrotransposons
and Alu repeats. LINE and SINE are present in millions of
copies in our genome occupying respectively 17% and 11%
of it. Indeed, by inducing transcriptional gene silencing of
repetitive sequences, RNAi represents one of the main forms of
innate immunity against viruses and invading genetic elements

in all organisms (Obbard et al., 2009). From archaebacteria,
the RNAi related CRISPR/Cas immune pathway exploits an
RNA-guide to direct sequence specific DNA cleavage against
invading phages or plasmids (Rimer et al., 2014). It has been
recently demonstrated that DNA target recognition involves its
transcription and that cleavage by Cas can occur both on DNA
and RNA complementary molecules in the case of Type III
CRISPR-Cas system (Samai et al., 2015).

In plants, RNAi is a major source of immunity functioning
through induction of exogenous DNA silencing via methylation
(Kim and Zilberman, 2014), while in animals the evolution
of a protein-based adaptive immune response has partially
reduced the need of antiviral RNAi activity. Still, TEs and viruses
have invaded and profoundly shaped the mammalian genome
(Buckley and Lis, 2014). It has been estimated that almost 40%
of our genome is composed of invading genetic elements such
as integrated viruses and TEs, which, once activated, are potent
inducers of DNA damage (Goodier and Kazazian, 2008). In
human cells, DICER has been shown to play an important role in
counteracting Alu-dependent dsRNA accumulation and toxicity
(Kaneko et al., 2011).

RNA-mediated control of transposon activation is particularly
active in the mammalian germ line where a devoted class of small-
interfering RNA, PIWI-interacting RNA (piRNA), has been
linked to both epigenetic and post-transcriptional gene silencing
of retrotransposons (Siomi et al., 2011; Castel and Martienssen,
2013). piRNAs are not expressed in somatic cells but are
aberrantly re-expressed in cancer cells, suggesting that TE could
be reactivated by the large amount of DNA damage experienced
by cancer cells and in turn cause additional deleterious mutations
promoting cellular transformation (Cheng et al., 2011). To
protect themselves, viruses and TEs suppress RNAi and try to
escape RNAi control by evolving rapidly. It has been proposed
that genes encoding for the RNAi factors have co-evolved quickly
with the viruses that they counteract (Obbard et al., 2006).

Quelling: An Ancient Link between RNAi
and Genome Instability
Another interesting phenomenon linking RNAi-guided gene
silencing and control of genome stability is quelling in
Neurospora crassa (Pickford et al., 2002; Fulci and Macino,
2007; Lee et al., 2009) a post transcriptional gene silencing
triggered by multiple copies of a transgene, similar to co-
suppression in Caenorhabditis elegans (Pickford et al., 2002;
Fulci and Macino, 2007; Lee et al., 2009). During quelling,
‘abortive’ transcripts from the transgene are synthesized by
the DNA-dependent RNA polymerase QDE-1 and amplified
by the RdRP activity of QDE-1 itself (Cogoni and Macino,
1999a,b). DsRNA is then processed by dicing enzymes, generating
sncRNAs necessary for post transcriptional gene silencing of
the transgene itself (Catalanotto et al., 2004). Both sncRNAs
and the Argonaute-related protein, QDE-2, whose mutation
yields DNA damage sensitivity, are overexpressed upon DNA
damage (Lee et al., 2009), a fact suggesting that quelling might
be involved in DDRNAs biogenesis in N. crassa. Similarly
to what occur during quelling, DNA breaks in endogenous
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repetitive sequences might induce the expression of
complementary transcript processed into sncRNAs, which in
turn stimulate repair and silencing of the repetitive DNA (Yang
et al., 2015b).

CONCLUSION

It seems that sncRNAs play an evolutionarily conserved
role in both chromatin dynamics and genome stability.
Thus, the discoveries of DDRNAs and diRNAs highlight the
existence of a consistent, yet previously unknown, sncRNA-
mediated layer in the regulation of DDR signaling and
DNA repair. This discovery raises the possibility of novel
approaches in designing chemical or other pharmacological
molecules that might act on, or through, the DDR pathway
in hopes of identifying novel strategies for disease treatment
(Pearl et al., 2015). The idea that DDRNAs control DDR
activation is likely interconnected with the fact that such
sncRNAs may also modulate chromatin around damaged DNA.
However, the exact role played by DDRNA in controlling

chromatin conformation is still poorly defined and needs further
investigation.

Given the involvement of DDR in a number of physiological
and pathological processes such as immunodeficiency,
neurodegeneration, sterility and development (Jackson and
Bartek, 2009), combined with the potential tumor suppressive
functions of both DDR and chromatin mediated gene silencing
(Sulli et al., 2012), the study of the molecular mechanisms by
which DDRNAs act is of tremendous interest.
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