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and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health
Center (RI-MUHC), Montréal, QC, Canada, 3 Department of Microbiology & Immunology, Dartmouth College, Lebanon,
NH, United States, 4 Department of Medicine, McGill University, Montréal, QC, Canada, 5 Department of Experimental
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Aspergillus fumigatus airway infections are associated with increased rates of
hospitalizations and declining lung function in patients with chronic lung disease. While
the pathogenesis of invasive A. fumigatus infections is well studied, little is known about
the development and progression of airway infections. Previous studies have
demonstrated a critical role for the IL-1 cytokines, IL-1a and IL-1b in enhancing
pulmonary neutrophil recruitment during invasive aspergillosis. Here we use a mouse
model of A. fumigatus airway infection to study the role of these IL-1 cytokines in
immunocompetent mice. In the absence of IL-1 receptor signaling, mice exhibited
reduced numbers of viable pulmonary neutrophils and increased levels of neutrophil
apoptosis during fungal airway infection. Impaired neutrophil viability in these mice was
associated with reduced pulmonary and systemic levels of G-CSF, and treatment with G-
CSF restored both neutrophil viability and resistance to A. fumigatus airway infection.
Taken together, these data demonstrate that IL-1 dependent G-CSF production plays a
key role for host resistance to A. fumigatus airway infection through suppressing
neutrophil apoptosis at the site of infection.

Keywords: Aspergillus fumigatus, chronic airway infection, IL-1, G-CSF, neutrophils
INTRODUCTION

Healthy humans inhale hundreds of conidia of the ubiquitous mold Aspergillus fumigatus on a daily
basis without developing pulmonary disease (1, 2). Elimination of this fungal challenge relies on
both the airway mucociliary elevator as well as phagocytosis and killing of conidia by alveolar
macrophages and epithelial cells (3, 4). In patients with impaired systemic immunity, such as those
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undergoing cytotoxic chemotherapy or stem cell transplantation,
A. fumigatus conidia escape the impaired innate immune
responses to germinate and invade tissues, producing a
necrotizing, invasive pneumonitis known as invasive
aspergillosis (5). In contrast, in patients with chronic
pulmonary conditions such as cystic fibrosis or bronchiectasis,
the inability to efficiently clear conidia from damaged airways
can lead to the development of chronic non-invasive A.
fumigatus airway infection (6, 7). A. fumigatus airway
infections are common in chronic pulmonary conditions, with
up to 80% of patients with cystic fibrosis having a positive
respiratory culture for this fungus at some point in their lives
(7, 8). The consequences of chronic A. fumigatus airway
infections are variable and include asymptomatic colonization,
Aspergillus bronchitis (characterized by neutrophilic
inflammation), and allergic bronchopulmonary aspergillosis
(characterized by severe hypersensitivity to fungal antigens,
reactive airway disease and bronchiectasis) (9, 10). The
acquisition of airway infection with A. fumigatus has been
linked to increased rates of hospitalization and worsening
airway function in patients with chronic lung disease, even in
the absence of a significant allergic response (9, 11). Although
numerous studies have probed the pathogenesis of invasive
aspergillosis, little is known about the host and fungal factors
governing the development and progression of chronic A.
fumigatus airway infections.

Experimental studies have demonstrated a critical role for the
IL-1 cytokine family members IL-1a and -1b, in host resistance
to invasive aspergillosis (12, 13). IL-1a is a proinflammatory
cytokine and alarmin that is released in response to tissue injury.
IL-1a constitutively expressed in pulmonary epithelial cells and
can be induced in leukocytes (14, 15). Conversely, IL-1b is not
constitutively expressed and is produced and secreted by
leukocytes in response to a 2-step mechanism initiated by
pathogen recognition or cytokine signaling (16–18). The first
step results in the production of inactive pro-cytokine, followed
by proteolytic cleavage and activation of the cytokine prior to
secretion (17, 19). Both IL-1 cytokines mediate their activity by
binding to, and signaling through the IL-1R1 receptor (17, 19,
20). In a high-inoculum challenge immunocompetent mouse
model of invasive aspergillosis, IL-1a was reported to promote
host resistance to A. fumigatus by enhancing the production of
chemokine (C-X-C motif) ligand 1 (CXCL1) leading to
pulmonary neutrophil recruitment (12). In a corticosteroid-
treated immunosuppressed mouse model, impaired IL-1b
expression in caspase 1-/- mice or IL-1b-/- mice was associated
with increased mortality and reduced numbers of pulmonary
neutrophil (13). Recently, we reported increased levels of
pulmonary IL-1a and IL-1b in a mouse model of non-invasive
A. fumigatus airway infection (21), and therefore hypothesized
that IL-1 cytokines may also play an important role in mediating
protection against non-invasive airway Aspergillus infection.

In the current study, we demonstrate that IL-1a and IL-1b
secretion is induced in response to experimental A. fumigatus
airway infection. IL-1R1-deficient (IL-1R1-/-) mice exhibited
impaired control of fungal growth within the airways in
Frontiers in Immunology | www.frontiersin.org 2
association with lower numbers of pulmonary neutrophils,
reduced pulmonary neutrophil viability and higher levels of
neutrophil apoptosis. Reduced pulmonary neutrophil viability
in IL-1R1-/- mice was associated with reduced production of
granulocyte colony stimulating factor (G-CSF). Administration
of recombinant G-CSF was sufficient to reduce neutrophil
apoptosis, restore the number of viable pulmonary neutrophils,
and the augment the resistance of IL-1R1-/- mice to A. fumigatus
infection to that of wild-type mice. Collectively, these
experiments establish the importance of IL-1R1 signaling in
the host response against A. fumigatus airway infection, and
also demonstrate an important role for this pathway in
maintaining neutrophil viability through the induction of G-
CSF secretion.
MATERIAL AND METHODS

Mice
All the animal experiments carried out in this study were
approved by the Animal Care Committees of the McGill
University Health Centre (Animal Usage Protocol 7609) and
the Dartmouth College Institutional Animal Care and Use
Committee (Protocol #obar.jj.1). Age and sex matched C57BL/
6 mice were purchased from Charles River Laboratories. IL-
1R1-/-, mice were provided by Dr. Maya Saleh (McGill
University, Montreal, Canada).

Agar Bead Infection
Agar beads containing A. fumigatus conidia were prepared as
described previously (21). Prior to infection, the inoculum was
verified by homogenization and quantitative culture of an aliquot
of each bead preparation. Eight to 10-week-old mice were
anesthetised with isoflurane and then endotracheally infected
with 50 µL of an agar bead suspension containing 2.5 x 106

conidia. Mice treated with IL-1 receptor antagonist (IL-1Ra)
were intraperitoneally administered 200µg of Kineret® (Sobi,
Inc) daily, commencing on day -1 relative to infection. Mice
treated with recombinant human G-CSF (rhG-CSF) were
intraperitoneally administered 250mg/kg of rhG-CSF (Amgen
Inc.) daily, commencing on the day of infection. At the indicated
time points, mice were euthanized with isoflurane and CO2, their
lungs harvested and then digested with 150U/mL of collagenase
for 60 minutes at 37°C (for pulmonary leukocyte population
analysis), homogenized using a polytron tissue homogenizer
(for fungal burden determination) as previously described
(21), or finely diced using two scalpels (for ex vivo cytokine
elaboration assays).

Fungal Burden
Pulmonary fungal burden by quantified by measuring the
galactomannan content of lung digests or homogenates as we
have done previously (21). Briefly, lung homogenates were
diluted in double distilled water (ddH20) and galactomannan
was quantified according to the Platelia™ Aspergillus enzyme
immunoassay kit (Bio-Rad) manufacturer’s instructions.
July 2021 | Volume 12 | Article 675294
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Ex Vivo Cytokine Production
Three days after infection, mice were euthanized and their lungs
harvested. Using two scalpels, lungs were finely diced and
suspended in 5 mL of RPMI (Wisent) containing 10% FBS
(Wisent) and 1% penicillin/streptomycin (Wisent). Diced lungs
were incubated on a rotating platform (Wisent) at 37°C and 5%
CO2 for 24 hours, after which the supernatants were collected
and cytokine secretion assessed by commercial ELISA (Thermo
Fisher Scientific Inc.) for CXCL1, G-CSF, IL-1a, and IL-1b.

Pulmonary Cell Population Analysis
Following collagenase digestion, lungs cells were passed through
a cell strainer and red blood cells were lysed with ammonium-
chloride-potassium buffer as previous described (21). The
resulting cells were stained for viability using Fixable Viability
Dye eFluor506 (eBioscience), and for CD45, CD11b, CD11c,
Ly6G, CD3, CD19, and SiglecF expression (BD Bioscience) (21).
Data was acquired on an LSR Fortessa (BD Bioscience) and
analyzed using FlowJo v10.0.7r2 (FlowJo, LLC). Neutrophils
were defined as CD45+CD11b+CD11c-Ly6G+, alveolar
macrophages as CD45+CD11c+CD11blowSiglecF+, eosinophils
as CD45+CD11c-SiglecF+CD11b+, and lymphocytes were the
sum of T-cells (CD45+CD11c-ly6G-CD3+) and B-cells
(CD45+CD11c-ly6G-CD19+) (Supplementary Figure 1). The
absolute number of cells per lung was calculated by the
addition of counting beads to samples (Thermo Fisher
Scientific Inc.).

Lung Histopathology
Harvested lungs were inflated with 10% buffered formalin and
submerged in formalin for up to 48 hours before being
embedded in paraffin blocks and sectioned. Sections were
stained with periodic acid–Schiff (PAS) or hematoxylin and
eosin (H&E) to visualize fungi or host cells, respectively. For
cleaved caspase 3 detection by immunohistochemisty, antigen
retrieval, staining, and signal developing was performed using an
automated immunostainer (Bond RX, Leica Biosystems). Anti-
cleaved caspase 3 antibody (Abcam) was diluted and incubated
for 30 minutes at room temperature. Visualization was
performed using the Bond Polymer Refine Detection kit (Leica
Biosystems) following the manufacturer’s instructions.

Density of Hyphae in Beads
Using ImageScope (Leica Biosystems) software, representative
beads of equal size were selected from scanned sections of PAS-
stained lungs. Beads were outlined and analyzed using the
Positive Pixel Count V9 algorithm in the software. The average
pixel intensity for each bead was normalized to the average pixel
intensity of the beads from the C57BL/6 infected mice.

Neutrophil Antifungal Activity
Mouse bone marrow neutrophils were isolated by negative selection
using a magnetic bead isolation kit (Miltenyl Biotec). Following
isolation, 2 x 105 neutrophils were suspended in DMEM (Wisent)
containing 10% FBS (Wisent) and 1% Penicillin/Streptomycin
Frontiers in Immunology | www.frontiersin.org 3
(Wisent) (cDMEM) and added to microtiter wells containing 3
x103 A. fumigatus germlings that had been pre-grown for 8 hours.
After 16 hours of co-incubation, wells were washed with sterile
water to lyse the remaining neutrophils, and the remaining hyphae
stained for 1 minute with 50µL of a filter sterilized 1mg/mL
calcofluor (Sigma) white in 5% KOH (Fisher Scientific) solution.
Hyphae were washed with sterile water 3 times then staining was
quantified using a fluorometer with 360nm excitation and
440nm emission.

Neutrophil Viability Assays
For quantification of neutrophil death by measurement of lactate
dehydrogenase (LDH) release, 24-well plates were inoculated
with 2 X 106 bone-marrow isolated neutrophils and incubated
for 24 hours. 50µL of sham agar beads or beads containing
total of 2.5 x 106 conidia were plated in 2mL of RPMI (Wisent)
containing 10% FBS (Wisent) and 1% penicillin/streptomycin
(Wisent) (cRPMI). The degree of neutrophil death was determined
by quantification of LDH activity (Promega) in culture supernatants
was determined, following the manufacturer’s instructions.

For quantification of neutrophil viability and apoptosis by
flow cytometry, 2 X 106 neutrophils isolated from mouse bone
marrow were incubated in 2mL of cRPMI in a 24-well plate for
24 hours with or without 600ng/mL recombinant human G-CSF
(rhG-CSF, Amgen Inc.) as indicated. Neutrophils were then
stained for apoptosis and viability using phycoerythrin labelled
Annexin V (BD Bioscience) and the dye 7-AAD in binding buffer
(0.01 M Hepes (pH 7.4), 0.14 M NaCl, 2.5 mM CaCl2). The
degree of staining was quantified by flow cytometry (22).

Quantification of Anti-Apoptotic
Gene Expression
In a 24-well plate, 2 X 106 neutrophils were incubated in 2mL of
cRPMI for 24 hours with or without the addition of 600ng/mL
rhG-CSF (Amgen Inc.). Neutrophils were collected and RNA
extracted by trizol as previously described (23). Anti-apoptotic
gene mRNA levels were quantified as previously described using
TaqMan probes (Thermo Fisher Scientific Inc.) for BCL-xL
(Mm00437783_m1) and MCL-1 (Mm01257351_g1), and
endogenous reference genes 18s RNA (Mm03928990_g1) and
GAPDH (Mm99999915_g1) (24).

Reactive Oxygen Species (ROS) Detection
In 1.5ml tubes, 2 X 106 neutrophils/mL were treated with the
ROS detection dye CM-H2DCFDA (Thermo Fisher Scientific
Inc.) at a concentration of 2µM for 45 minutes at 37°C. Cells
were washed and resuspended at a concentration of 2 x 105 cells/
well in 200µL of cRPMI with, 2µM phorbol myristate acetate
(PMA). Relative fluorescence was measured at 45 minutes with
an excitation of 492nm and emission of 527nm.

Statistics Analysis
GraphPad Prism software was used for all the statistical analysis.
Significance was determined by Student’s t-test, one-way
ANOVA using a Bonferroni post-test, or two-way ANOVA
using Tukey’s post-test as indicated in the relevant Figure legend.
July 2021 | Volume 12 | Article 675294
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RESULTS

IL-1a and IL-1b Secretion Is Induced by
A. fumigatus Airway Infection
Previously, we reported that levels of the proinflammatory
cytokines IL-1a and IL-1b are elevated in lung homogenates of
immunocompetent mice during non-invasive A. fumigatus airway
infection (21). However, as IL-1a is constitutively expressed
intracellularly and IL-1b is first produced intracellularly prior to
secretion, the measurement of these cytokines in lung homogenates
is unable to distinguish secreted, biologically active, IL-1a and IL-
1b from intracellular reservoirs of these molecules. Bronchoalveolar
lavage sampling of infected airways is of limited value in this mouse
model, as histopathologic examination of lungs reveals the presence
of intrabronchial lesions that frequently obstruct the airways,
reducing the ability to sample the distal airways. Therefore, to
specifically quantify secreted IL-1a and IL-1b, bead-infected lungs
were cultured ex vivo and secreted cytokines measured by ELISA.
Ex vivo culture of lungs after 1 and 3 days of airway infection
revealed the secretion of high levels of IL-1a and IL-1b in lungs of
mice withA. fumigatus airway infection, as compared to lungs from
uninfected mice or mice infected with sterile agar (sham) beads
(Figure 1). The levels of secreted IL-1 cytokines increased from day
Frontiers in Immunology | www.frontiersin.org 4
1 to day 3 of infection, while the fungal burden decreased between
these time points. In light of the higher levels of IL-1 cytokines at
day 3 of infection, this time point was chosen for further studies.

IL-1R Signaling Mediates Resistance to
A. fumigatus Airway Infection
IL-1a and IL-1b signal through binding to the IL-1R1 receptor
(19). Therefore, to determine the role of IL-1 cytokines in the
pathogenesis of A. fumigatus airway infection, the susceptibility
of IL-1R1-deficient and wild-type C57BL/6 mice to airway
infection with A. fumigatus was compared. After 3 days of
infection, histopathologic examination of lung tissues from
infected animals revealed that, unlike wild-type mice, IL-1R1-/-

mice were unable to contain hyphae within the agar beads
(Figure 2A). In addition, pixel quantification of fungal lesions
demonstrated an increase density of fungal hyphae within
pulmonary lesions of IL-1R1-/- mice as compared to wild-type
animals (Figure 2B). Consistent with these observations, IL-
1R1-/- mice displayed a significantly higher fungal burden than
did wild-type mice, as measured by pulmonary galactomannan
content (Figure 2C).

To confirm these findings, the effects of IL-1R1 blockade with
IL-1 receptor antagonist (IL-Ra) on pulmonary fungal burden
A

B

FIGURE 1 | A. fumigatus airway infection induces the production of IL-1a and IL-1b. C57BL/6 mice were infected intratracheally with sterile agar beads (Sham) or

agar beads containing A. fumigatus conidia (AfB). (A) Pulmonary fungal burden as measured by galactomannan Platelia™ ELISA at the indicated time points after
infection with A. fumigatus-containing beads. (B) Pulmonary ex vivo IL-1 cytokine secretion as determined by ELISA one and three days after infection. Results are
presented as the means ± SEM of groups of at least 7 mice across 2 experiments, *, ** and *** indicates significantly different as compared with Sham mice,
p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 respectively (one-way ANOVA t-test). n.s., not significant.
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during A. fumigatus airway infection were assessed. Treatment of
wild-type mice with IL-1Ra resulted in an increase in pulmonary
fungal burden similar to that which was observed in IL-1R1-/-

mice (Figure 2D). These findings suggest that IL-1 receptor
signaling plays a role in mediating resistance to A. fumigatus
airway infection.
IL-1R1-Deficient Mice Have Reduced
Number of Pulmonary Neutrophils and
Alveolar Macrophages During Non-
Invasive A. fumigatus Airway Infection
To determine whether the increased fungal burden in IL-1R1-/- mice
may result from impaired IL-1R-dependent pulmonary recruitment
of neutrophils or other leukocytes, the leukocyte populations within
the lungs of IL-1R1-/- and wild-typemice were quantified after 3 days
of airway infection. When compared to wild-type mice, IL-1R1-/-

mice were found to have significantly lower numbers of pulmonary
neutrophils and alveolar macrophages but not eosinophils, B or T
lymphocytes (Figure 3). Consistent with the reduced abundance of
pulmonary neutrophils and with previous reports (12, 25), infected
Frontiers in Immunology | www.frontiersin.org 5
IL-1R1-/- mice were found to have significantly lower pulmonary
levels of the neutrophil attracting chemokine CXCL1 as compared to
wild-typemice (Figure 4A). This difference in neutrophil abundance
was not observed when comparing the bone marrow of wild-type
and IL-1R1-/- mice, suggesting that lack of IL-1 receptor signaling
does result in a baseline impairment in neutrophil production
(Supplementary Figure 2).

On histopathological examination of pulmonary tissues of IL-
1R1-/- mice, fewer intact neutrophils were observed surrounding
fungal lesions as compared with wild-type animals (Figure 4B).
In addition, marked changes in neutrophil morphology were
observed in the lungs of IL-1R1-/- mice with increased nuclear
fragmentation and karyorrhexis, suggesting that the reduced
number of neutrophils found in the lungs of IL-1R1-/- mice
may also reflect accelerated neutrophil death rather than simply a
defect in neutrophil recruitment.

IL-1R1-/- Neutrophils Exhibit Increased
Apoptosis In Vivo and In Vitro
To determine if IL-1R1-/- neutrophils exhibit reduced viability in the
presence of A. fumigatus, neutrophils isolated from the bone marrow
A

B C D

FIGURE 2 | Loss of IL-1 receptor signaling results in increased susceptibility to A. fumigatus airway infection. (A) PAS stained tissue sections of lungs from wild-type
or IL-1R1-/- mice 3 days after infection with A. fumigatus-containing beads. (B) Relative hyphal bead density as measured by average intra-bead pixel intensity in
ImageScope. Results represent means ± SEM of 16 beads from 3 different mice, ***p ≤ 0.001 (Student’s t-test). (C) Pulmonary fungal burden of C57BL/6 and IL-
1R1-/- or (D) C57BL/6 mice treated with IL-1Ra 3 days after infection with A. fumigatus beads. Fungal burden was measured by galactomannan EIA. Results
represent the means ± SEM of groups of at least 9 mice across 2 experiments, ***p ≤ 0.001 (Student’s t-test).
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of IL-1R1-/- and wild-typemice were co-incubated withA. fumigatus-
containing agar beads for 24 hours. Lactate dehydrogenase (LDH)
release was measured in culture supernatants as a surrogate
measurement for cell death. IL-1R1-/- neutrophils co-cultured with
A. fumigatus-containing beads released significantly higher amounts
of LDH than did wild-type neutrophils, suggesting that IL-1R1-/-

neutrophils exhibited increased levels of cell death. Interestingly, a
Frontiers in Immunology | www.frontiersin.org 6
similar increase in LDH release by IL-1R1-/- neutrophils was observed
in the presence of sterile agar beads, suggesting that this viability
defect is not Aspergillus-specific (Figure 5A).

To confirm these findings and determine if the increased cell
death of IL-1R1-/- neutrophils is due to accelerated apoptosis,
neutrophils isolated from the bone marrow of wild-type and IL-
1R1-/- mice were incubated for 24 hours, and their viability and
FIGURE 3 | Neutrophils and macrophages are less abundant in the lungs of IL-1 receptor-deficient mice during A. fumigatus airway infection. Total pulmonary
neutrophils, alveolar macrophages, lymphocytes, and eosinophils were determined by flow cytometry analysis of C57BL/6 and IL-1R1-/- collagenase digested lungs
of the indicated mouse strains 3 days after infection with A. fumigatus beads. Results represent means ± SEM of groups of n > 15 mice across 2 experiments,
**p < 0.01, ***p ≤ 0.001 (Student’s t-test).
A

B

FIGURE 4 | IL-1 receptor-deficient mice exhibit reduced chemokine production and increased leukocyte cell death during A. fumigatus airway infection.
(A) Pulmonary ex vivo CXCL1 cytokine secretion as determined by ELISA three days after infection. Results represent means ± SEM of groups of n ≥ 7 mice across
2 experiments, ***p ≤ 0.001 (Student’s t-test). (B) H&E stained tissue sections of lungs from C57BL/6 or IL-1R1-/- mice 3 days after infection with A. fumigatus-
containing beads.
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level of apoptosis assessed by 7-AAD and Annexin V staining,
respectively. Consistent with the results of the LDH release assay,
IL-1R1-/- neutrophils displayed increased levels of cell death, as
measured by 7-AAD+ staining (Figure 5B). IL-1R1-/- neutrophils
also exhibited higher levels of early apoptosis, as measured by 7-
AAD- AnnexinV+ staining (Figure 5C). To determine if IL-
1R1-/- neutrophils also exhibit increased apoptosis in vivo during
an airway infection, immunohistochemistry staining for cleaved
caspase 3 was performed on sections of lungs from infected IL-
1R1-/- and wild-type mice. Caspase 3 staining was markedly
higher in cells surrounding fungal lesions in IL-1R1-/- mice as
compared with wild-type mice (Figure 6). Consistent with the
results of flow cytometry analysis of infected lungs, the majority
of these cells exhibited multi-lobed nuclei characteristic of
neutrophils. Taken together these data suggest that IL-1R1-/-

neutrophils exhibit reduced viability and increased apoptosis
during fungal infection, which may contribute to reduced ability
to control airway infection.

IL-1R1 Signaling Is Required for Neutrophil
Antifungal Activity and IL-17 Production
In light of their increased rate of apoptosis and cell death, we
hypothesized that IL-1R1-/- neutrophils likely exhibit reduced
Frontiers in Immunology | www.frontiersin.org 7
ability to kill A. fumigatus hyphae. To test this hypothesis,
neutrophils from IL-1R1-/- and wild-type mice were co-
cultured with A. fumigatus hyphae for 16 hours and the
residual fungal biomass quantified using calcofluor white. IL-
1R1-/- neutrophils were found to have reduced capacity to restrict
A. fumigatus growth as compared to wild-type neutrophils
(Figure 7A). To determine whether the reduced antifungal
capacity of these neutrophils was due to an intrinsic impaired
ability of the neutrophils to produce the effector ROS, in vitro
ROS production by bone marrow isolated neutrophils was
quantified. Neutrophils from wild-type and IL-1R1-/- mice
exhibited similar levels of ROS production (Figure 7B). These
data suggest that the decreased viability of IL-1R1-/- neutrophils
likely results in the impaired ability to control fungal growth
rather than an intrinsic defect in ROS-mediated killing.

In addition to mediating direct fungal killing, production of IL-
17 by neutrophils has been reported to contribute to the control of
mucosal Aspergillus infection (26). Immunohistochemistry staining
of lung tissue sections confirmed that IL-17 staining, which was
localized to the proximal inflammatory cells surrounding fungal
lesions in lungs of WT mice, was markedly reduced in the lungs of
IL-1R1-/- mice (Figure 7C).Therefore, to determine if IL-1R1-/-

neutrophils are also defective in the production of this cytokine, the
A

B C

FIGURE 5 | IL-1 receptor signaling reduces neutrophil apoptosis in vitro. (A) Neutrophil cell death as measured by LDH release following co-culture of bone-marrow
isolated neutrophils from the indicated mouse strains with sterile agar beads (Sham) or A. fumigatus conidia-containing beads (AfB) for 24 hours. Results represent
mean ± SD of 2 independent experiments, ***p ≤ 0.001, (one-way ANOVA test). (B) Neutrophil cell death as measured by 7-AAD staining and flow cytometry
analysis of bone-marrow isolated neutrophils from the indicated mouse strains directly after isolation (0 Hour) or after 24 hours of culture in 10% FBS supplemented
RPMI. Results represent means ± SD of 3 independent experiments, **p ≤ 0.01, (one-way ANOVA test). (C) Apoptosis of bone-marrow isolated neutrophils from the
indicated mouse strains as measured by Annexin V staining either directly after isolation (0 hour) or after 24 hours of culture. Results represent mean ± SD of 3
independent experiments, **p ≤ 0.01, (one-way ANOVA test).
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ex vivo release of IL-17 from lungs of WT and IL-1R1-/- mice
infected with A. fumigatus containing agar beads was measured. IL-
17 secretion from lungs of IL-1R1-/- mice was markedly reduced as
compared to WT mice (Figure 7D).

G-CSF Supplementation Restores IL-1R1-/-

Neutrophil Viability and Results in Fungal
Burden in IL-1R1-/- Mice Comparable to
That of Wild-Type
G-CSF is a cytokine produced in response to IL-1 receptor
signaling which acts specifically on neutrophils to promote
differentiation, activation, and viability (27–29). We therefore
hypothesized that the decreased viability of IL-1R1-/- neutrophils
in A. fumigatus airway infection may be due in part to reduced
levels of G-CSF. Consistent with this hypothesis, the level of G-
CSF secreted ex vivo was significantly reduced in infected lungs
from IL-1R1-/- mice, as compared to those from wild-type mice
(Figure 8A). Similarly, IL-1R1-/- mice were found to have
significantly lower serum G-CSF levels (Figure 8B). To explore
the functional significance of this reduced G-CSF production, the
effects of G-CSF supplementation on the viability of neutrophils
isolated from the bone marrow of IL-1R1-/- and wild-type mice was
tested. Treatment with G-CSF inhibited apoptosis and restored the
viability of IL-1R1-/- neutrophils to levels comparable to those seen
with wild-type neutrophils (Figures 8C–E). Consistent with these
observations, G-CSF treatment of IL-1R1-/- neutrophils resulted in
higher expression levels of the anti-apoptotic genes, BCL-xL and
MCL-1, as determined by RT-qPCR (Figures 8F, G). These data
suggest that in vitro supplementation of G-CSF restores neutrophil
viability by suppressing apoptosis.

To determine if exogenous G-CSF could also enhance the
resistance of IL-1R1-/- mice to A. fumigatus airway infection,
250mg/kg of G-CSF was administered intraperitoneally to IL-
1R1-/- mice and pulmonary fungal burden was measured 3 days
after airway infection. Treatment of IL-1R1-/- mice with G-CSF
Frontiers in Immunology | www.frontiersin.org 8
resulted in a reduction in pulmonary fungal burden to levels that
were comparable to wild-type mice (Figure 9A). G-CSF
supplementation of IL-1Ra-treated wild-type mice also enhanced
resistance to Aspergillus airway infection (Figure 9B). G-CSF
treatment of IL-1R1-/- mice resulted in an increase in the number
of viable pulmonary neutrophils to levels comparable with wild-type
mice (Figure 9C). This increase in viable pulmonary neutrophils
was likely not due to an increase in recruitment as production of the
neutrophil chemokine CXCL1 remained low in the IL-1R1-/- mice
even after G-CSF treatment (Figure 9D). Furthermore, IHC caspase
3 staining of G-CSF treated IL-1R1-/- mice displayed a reduced the
degree of caspase 3 activity comparable to wild-type mice
mentioned above (Figure 9E).
DISCUSSION

The role of IL-1 cytokines in invasive aspergillosis infections has
been the subject of several studies (12, 13, 30, 31). In an
immunocompetent high dose mouse model of invasive
aspergillosis, IL-1R1-/- C57BL/6 mice exhibited reduced
neutrophil recruitment and impaired survival following fungal
challenge as compared to wild-type mice (12). Reduced
neutrophil recruitment in this model was associated with a
significant reduction in the levels of the neutrophil chemokine
CXCL1 as well as G-CSF in the BAL of IL-1R1-/- mice (12).
Chemokine supplementation increased neutrophil numbers
within the lung and partially rescued control of fungal growth.
However, the effect of CXCL1 treatment on G-CSF levels was not
determined. In a cyclophosphamide and cortisone acetate-
treated immunosuppressed mouse model, caspase 1-/- C57BL/6
mice that were deficient in the production of IL-1b were found to
have reduced survival (13) and lower levels of pulmonary
neutrophils as observed by IHC staining for the neutrophil
specific enzyme MPO (13). Although the production of IL-1a
FIGURE 6 | IL-1 receptor signaling reduces apoptosis in vivo. Active caspase 3 immunohistochemistry staining (brown) of lungs from wild-type and IL-1R1-/- mice 3
days after infection with A. fumigatus-containing beads (arrow).
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in this mouse model was not assessed, it is likely that production
of this cytokine was also impaired as previous studies have
demonstrated that corticosteroid treatment of alveolar macrophages
impairs IL-1a secretion in response to A. fumigatus conidia (32). In
both of these studies, the reduced numbers of neutrophils within lung
tissue of IL-1 pathway deficient mice were proposed to result from a
defect in recruitment, however neither study examined neutrophil
survival or apoptosis in vitro or in vivo. Thus, although it is likely that
loss of IL-1-dependent neutrophil recruitment plays a role in
susceptibility to A. fumigatus infection, it is also possible that the
reduced neutrophil numbers observed in the lungs of these animals
Frontiers in Immunology | www.frontiersin.org 9
may also reflect reduced neutrophil viability. This hypothesis is
consistent with the observations that in the high-dose conidia
model, IL-1R1-/- mice produced lower levels of G-CSF during
infection and that CXCL1 supplementation only partially restored
control of fungal growth (12). In contrast, in the current study, G-CSF
treatment had no effect on CXCL1 levels, yet completely restored the
ability of IL-1R1-/- mice to control fungal growth in vivo. Taken
together, our data suggest that the effects of IL-1 receptor signaling on
maintaining neutrophil viability plays an important role in mediating
host defense during A. fumigatus airway infection through
maintaining neutrophil viability within the lungs, while IL-1
A B

C

D

FIGURE 7 | IL-1 receptor-deficient neutrophils have impaired antifungal activity. (A) Fungal biomass was measured by calcofluor white staining following 16 hours of
co-culture with neutrophils isolated from the bone marrow of the indicated mouse strains. Results represent the mean ± SD of 6 independent experiments, **p ≤

0.01, (one-way ANOVA test). (B) ROS production of bone marrow isolated neutrophils of the indicated mouse strains stimulated with PMA as measured by CM-
H2DCFDA based assay kit. Results represent the mean ± SD of 2 independent experiments (one-way ANOVA test). (C) IL-17 immunohistochemistry staining (brown)
of lungs from wild-type and IL-1R1-/- mice 3 days after infection with A. fumigatus-containing beads. (D) Ex vivo IL-17 production in lungs of the indicated mouse
strains infected for 3 days with A. fumigatus beads. Results represent the mean ± SEM of groups of at least 10 mice across 2 experiments, ***p ≤ 0.001, (one-way
ANOVA test).
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FIGURE 8 | G-CSF secretion is IL-1 receptor-dependent, and reduces neutrophil cell death and increases anti-apoptotic gene expression. (A) Pulmonary G-CSF
production in lungs of the indicated mouse strains infected for 3 days with A. fumigatus beads. Results represent the mean ± SEM of groups of at least 16 mice
across 2 experiments, ***p ≤ 0.001, (Student’s t-test). (B) G-CSF quantified from the serum of the indicated strains of mice before and 3 days after infection with
A. fumigatus. Results represent the mean ± SEM of groups of at least 10 mice, **p ≤ 0.01, (two-way ANOVA). (C) Neutrophil cell death from bone marrow isolated
neutrophils of the indicated strains as measured by LDH release with or without 24 hours incubation with 600ng/mL of G-CSF as indicated. Results represent mean ±
SD of 2 independent experiments, **p ≤ 0.001 and ***p ≤ 0.001, (one-way ANOVA test). (D) Neutrophil cell death as measured by 7-AAD staining and flow cytometry
analysis directly after isolation (0 Hour) or after 24 hours of culture in 10% FBS supplemented RPMI. Cultures were supplemented with 600ng/mL of G-CSF where
indicated. Results represent means ± SD of 2 independent experiments, *p ≤ 0.05, (one-way ANOVA test). (E) Neutrophil apoptosis as measured by Annexin V staining
either directly after isolation (0 hour) or after 24 hours of culture with or without supplementation with 600ng/mL of G-CSF. Results represent mean ± SD of 2
independent experiments, **p ≤ 0.01, (one-way ANOVA test). (F, G) Fold change in gene expression of anti-apoptotic genes BCL-xL and MCL-1 as measured by qPCR
from bone marrow isolated neutrophils after 24 hours of culture. IL-1R1-/- neutrophils were also treated with 600ng/mL of G-CSF. Results represent mean ± SD of 3
independent experiments, **p ≤ 0.01, (one-way ANOVA test).
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receptor-dependent CXCL1-mediated neutrophil recruitment is
dispensable in this condition. Although these data clearly implicate
IL-1R-driven G-CSF inmaintaining neutrophil viability, this does not
rule out a direct role for IL-1 cytokines or other IL-1 dependent
factors in contributing to this process.

The animal model of chronic airway infection differs
significantly from those used in prior studies of IL-1a and IL-
1b during A. fumigatus infection in which mice were infected
with either a high dose of conidia, or were immunosuppressed to
render them susceptible to infection (12, 13, 21). The model of
airway infection used in this study uses immunocompetent mice,
and by encapsulating conidia in agar beads, the immune
response is generated in response to emerging hyphae or
Frontiers in Immunology | www.frontiersin.org 11
soluble factors elaborated by hyphae (21). Hyphae, but not
conidia, of A. fumigatus produce the mycotoxin gliotoxin and
the secreted polysaccharide galactosaminogalactan, which have
both been reported to induce neutrophil apoptosis (33, 34).
Thus, it is possible that IL-1R signaling plays a more
important role in protecting neutrophils from undergoing
apoptosis and death in the presence of significant numbers of
hyphae and their secreted products.

Previously, IL-1a, and IL-1b have been reported to induce the
production of G-CSF by pulmonary endothelial cells (29, 35, 36).
G-CSF promotes bone marrow granulopoiesis, as well as the
survival, recruitment, and killing capacity of neutrophils at the
site of infection (29, 37–40). Our study expands on the currently
A B

C
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D

FIGURE 9 | IL-1 receptor-dependent G-CSF secretion increases resistance to A. fumigatus airway infection. (A) Pulmonary fungal burden of C57BL/6, IL-1R1-/- and IL-1R1-/-

mice treated with G-CSF (250µg of rhG-CSF, daily commencing the day of infection) following infection with A. fumigatus-containing beads. Fungal burden was measured by
galactomannan EIA 3 days after infection. Results represent the mean ± SEM of groups of > 15 mice across 2 experiments, *p ≤ 0.05, **p ≤ 0.01 (one-way ANOVA test).
(B) Pulmonary fungal burden of C57BL/6 mice treated with IL-1Ra with or without G-CSF (rhG-CSF) as measured by galactomannan EIA 3 days after infection with A.
fumigatus beads. IL-1Ra was given at a dose of 200 µg/day intraperitoneally commencing 24 hours prior to infection and rhG-CSF was administered as in (A). Results
represent the mean ± SEM of groups of > 15 mice across 2 experiments, **p ≤ 0.01 (one-way ANOVA test). (C) Total pulmonary neutrophils as determined by flow cytometry
analysis of collagenase-digested lungs from the indicated mouse strains 3 days after infection with A. fumigatus-containing beads. Results represent the mean ± SEM of
groups of n = 16 mice across 2 experiments, **p ≤ 0.01 (one-way ANOVA test). (D) Pulmonary ex vivo CXCL1 cytokine secretion as determined by ELISA three days after
infection. Results represent mean ± SEM of groups of n ≥ 7 mice across 2 experiments, ***p ≤ 0.001 (one-way ANOVA test). Note that the data in this graph for C57BL/6 and
untreated IL-1R1-/- mice is reproduced from Figure 4a for ease of comparison as these mice were studied in the same experiments. (E) Active caspase 3
immunohistochemistry staining of lungs from C57BL/6 mice infected with A. fumigatus-containing beads and IL-1R1-/- mice infected with A. fumigatus-containing beads and
treated with G-CSF. Note that this staining was done at the same time as those presented in Figure 6 and therefore for continuity it shares the same C57BL/6 image.
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known role of G-CSF by demonstrating that G-CSF production
is dependent on IL-1 receptor signaling. The mechanism by
which G-CSF mediates the inhibition of neutrophil apoptosis
requires further study. Although neutrophils from G-CSF
knockout mice are not known to undergo accelerated
apoptosis, it has been reported that G-CSF can inhibit
apoptosis by increasing transcription of anti-apoptotic proteins
(41). Our findings that G-CSF treated neutrophils display
increased expression of BCL-xL and MCL-1 is in agreement
with these reports, and suggests that the upregulation of these
anti-apoptotic genes may contribute to the increased viability of
neutrophils during infection.

The findings of this study provide insight into the host
immune response to non-invasive A. fumigatus airway
infection. This work establishes a role for the IL-1 pathway in
this condition and identifies a novel role for IL-1R-dependent G-
CSF production in antifungal defense through inhibiting
neutrophil apoptosis and maintaining neutrophil viability.
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