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Identification of key genes and their association with immune infiltration in 
adipose tissue of obese patients: a bioinformatic analysis
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ABSTRACT
Immune cell-mediated adipose tissue (AT) inflammation contributes to obesity-related metabolic 
disorders, but the precise underlying mechanisms remain largely elusive. In this study, we used 
the R software to screen key differentially expressed genes (DEGs) in AT from lean and obese 
individuals and conducted function enrichment analysis. We then analysed their PPI network by 
using the STRING database. Hub genes were screened by cytohubba plugin. Subsequently, 
CIBERSORTx was used to predict the proportion of immune cells in AT from lean and obese 
subjects. Finally, the correlation between hub genes and immune cell proportions was analysed. 
These studies identified 290 DEGs in the AT between lean and obese subjects. Among them, IL6, 
CCL19, CXCL8, CXCL12, CCL2, CCL3, CCL4, CXCL2, IL1B, and CXCL1 were proved to be hub genes in 
regulating the protein-protein interaction (PPI) network. We also found that CXCL8 is positively 
correlated with resting NK cells, monocytes, activated mast cells, and eosinophils, but negatively 
correlated with CD8+ T cells and activated NK cells in obese individuals. Taken together, our study 
identified key genes in AT that are correlated with immune cell infiltration, uncovering potential 
new targets for the prevention and treatment of obesity and its related complications via 
regulating the immune microenvironment.

ARTICLE HISTORY
Received 24 May 2022  
Revised 18 July 2022  
Accepted 18 July 2022  

KEYWORDS
Obesity; adipose tissue; 
immune cell infiltration; 
gene expression omnibus; 
bioinformatic analysis

Introduction

Obesity, which increases the risks for many metabolic dys-
functions including insulin resistance (IR) and type 2 dia-
betes mellitus (T2DM), has now become a global epidemic 
[1]. Accumulating evidence has revealed that obesity- 
induced low-grade chronic inflammation in AT plays 
a vital role in the progression of obesity and its related 
metabolic complications [2–4]. Numerous studies have 
shown that adipose-resident immune cells, such as T cells 
and macrophages, greatly contribute to adipose inflamma-
tion in obese humans and animals [5–8], which highlights 
the importance of maintaining the immune homoeostasis 
of AT and provides a potential therapeutic target for pre-
venting obesity-associated diseases. However, the precise 
molecular mechanisms in recruiting the immune cells in 
AT in the context of obesity are still waiting for a full 
elucidation.

In this study, we used bioinformatic analysis to 
screen genetic alternation in the subcutaneous AT of 
obese individuals and identified several top-changed 

differentially expressed genes (DEGs) whose role in 
obesity is not clear. The Gene Ontology (GO) and the 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) 
enrichment analyses of DEGs suggested the vital role of 
pathways including immune response and extracellular 
matrix (ECM) organization in the progression of obe-
sity. We also screened several hub genes and analysed 
their correlation with immune cell proportions in AT 
of obese subjects. Our study revealed potential key 
genes and molecular mechanisms underlying obesity.

Results

Identification of 290 DEGs in adipose tissue 
between lean and obese individuals

After normalization of the microarray data from 
GSE2508, DEGs were screened based on defined cri-
teria. A total of 290 DEGs including 245 up-regulated 
genes and 45 down-regulated genes were detected in 
obese individuals compared with lean individuals. The 

CONTACT Liwen Wang wanglw1526@yeah.net Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital, Central South 
University, Changsha, Hunan 410008, China

Supplemental data for this article can be accessed online at https://doi.org/10.1080/21623945.2022.2104512

ADIPOCYTE                                                                                                                                                
2022, VOL. 11, NO. 1, 401–412 
https://doi.org/10.1080/21623945.2022.2104512

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/21623945.2022.2104512
https://crossmark.crossref.org/dialog/?doi=10.1080/21623945.2022.2104512&domain=pdf&date_stamp=2022-07-26


most significantly up-regulated and down-regulated 
genes were GPR183 (logFC = 4.28) and CA3 
(logFC = −2.89). GPR183 is a newly identified gene 
that dramatically increased in AT of obese patients 
whose role in obesity is unknown. The lower expression 
of CA3 in obese AT is consistent with previous findings 
[9]. Other top changed DEGs such as SERPINE1, FN1, 
TIMP1, AZGP1, and ACADL were shown in Figure 1 
(a), and the expression of the top 50 up-regulated DEGs 
and all down-regulated DEGs in each sample was 
visualized in Figure 1(b).

DEGs are highly enriched in pathways involved in 
inflammation and extracellular matrix organization

All DEGs were subjected to GO and KEGG pathway 
enrichment analysis. The results of GO enrichment indi-
cated that for biological processes analysis, DEGs were 
mainly enriched in leukocyte migration, ECM organiza-
tion, and extracellular structure organization (Figure 2 and 
Table 1). As for cellular components analysis, DEGs were 
enriched in the collagen-containing extracellular matrix, 
external side of the plasma membrane, and endoplasmic 
reticulum lumen (Figure 2 and Table 1). For molecular 
functions, DEGs were predominantly enriched in receptor- 

ligand activity, signalling receptor activator activity, and cell 
adhesion molecule binding (Figure 2 and Table 1). The 
results of KEGG pathway enrichment indicated that the 
DEGs were mainly enriched in cytokine-cytokine receptor 
interaction, IL-17 signalling pathway, TNF signalling path-
way, and NF-kappa B signalling pathway, as well as path-
ways including Rheumatoid arthritis and some infective 
diseases, for instance, the Malaria, Pertussis, and 
Legionellosis. (Figure 3 and Table 2). Altogether, the 
DEGs of AT between lean and obese individuals are mostly 
enriched in the pathways associated with inflammation and 
ECM organization demonstrated by GO and KEGG 
analysis.

PPI network construction, module analysis and hub 
genes selection

As shown in Figure 4, the PPI network of DEGs was 
generated and visualized in Cytoscape software based 
on the results obtained from the STRING database, 
which includes 169 nodes (genes) and 458 edges 
(interactions). The top significant module was iden-
tified by MOCEDE, which contains 12 nodes 
(MOCEDE score = 11.273, Figure 5(a)). The top 10 
hub genes were selected by the MCC method in the 

Figure 1. Differentially expressed genes (DEGs) between lean and obese individuals. (a) Volcano plot of all DEGs. Data points in red 
are up-regulated genes, and in blue are down-regulated genes. The top up-regulated and down-regulated genes are shown. (b) 
A Heatmap of the top 50 up-regulated DEGs and all down-regulated DEGs are shown.
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Cytohubba plug-in, which are IL6, CCL19, CXCL8, 
CXCL12, CCL2, CCL3, CCL4, CXCL2, IL1B, and 
CXCL1 (Figure 5(b). All of them are chemokines 
and cytokines, which highlight the immune dysfunc-
tion as a key point in obesity. Investigating the cor-
relation between these hub genes and immune 
infiltration is necessary and requires further 
exploration.

Analysis of immune cell proportion in adipose 
tissue

Adipose depots show high cellular heterogeneity [10]. Over 
15 populations of immune cells were identified in AT, and 
these immune cells participate in regulating the develop-
ment and function of AT [11]. Investigating the changes in 
immune cell proportions or functions will be helpful in 
understanding the role of AT immunity in obesity. Then, 
we analyzed the difference in immune cell populations in 

AT from lean and obese subjects by the CIBERSORTx 
algorithm (Figure 6(a). To be noted, the 20 samples 
uploaded to CIBERSORTx did not match the generally 
accepted P-value <0.05. However, we consider the results 
drawn from CIBERSORTx to be reliable to some extent. 
Briefly, the quality of our data is high and PCA analysis 
exhibits distinct groups of integral gene expression (Fig. S1) 
and immune cell populations (Figure 6(c)). Additionally, 
the results from CIBERSORTx are consistent with those 
from other studies [8,12,13]. Obese individuals showed 
higher proportions of M1 macrophages, activated mast 
cells, and follicular helper CD4+ T (Tfh) cells. A negative 
correlation was observed between obesity and several cell 
types including CD8+ T cells, activated NK cells, and rest-
ing dendritic cells. However, our results showed no signifi-
cant change in the proportion of M2 macrophages even 
though there is a trend of increase (Figure 6(b)), which 
could attribute to the small sample size and the differences 
within the group.

Figure 2. Gene Ontology (GO) enrichment analysis of all DEGs. The bubble shows the top 10 significant items according to the 
adjust P-value. BP, biological processes; CC, cellular components; MF, molecular functions.
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The correlation analysis of hub genes with immune 
cell populations in adipose tissues of obese 
individuals

All of the hub genes identified in Figure 5(b) are higher 
expressed in the AT of obese individuals. The association 
between these hub genes and the proportions of immune 
cells in AT were analysed by correlation analysis (Figure 7 
(a) and 7 (b)). We found that IL1B is negatively associated 
with the proportions of CD8+ T cells (r = −0.78, p < 0.01), 
regulatory T (Treg) cells (r = −0.76, p < 0.05) and activated 
NK cells (r = −0.7, p < 0.05), but positively related to 
resident NK cells (r = 0.77, p < 0.01), monocytes (r = 0.66, 
p < 0.05), M2 macrophages (r = 0.74, p < 0.05), activated 
mast cells (r = 0.64, p < 0.05) and eosinophils (r = 0.68, 
p < 0.05). CXCL2 showed a negative correlation with acti-
vated NK cells (r = −0.87, p < 0.001).CXCL8 is positively 
correlated with the proportions of resting NK cells (r = 0.8, 
p < 0.01), monocytes (r = 0.84, p < 0.01), activated mast cells 
(r = 0.71, p < 0.05), and eosinophils (r = 0.82, p < 0.01). 
CCL4 showed positive correlation with M2 macrophage 
(r = 0.66, p < 0.05) and activated mast cells (r = 0.74, 
p < 0.05), but negatively correlated with activated NK cells 
(r = −0.78, p < 0.01). Moreover, CXCL12 is positively 
correlated with M0 macrophage (r = 0.76, p < 0.05) and 
resting dendritic cells (r = 0.74, p < 0.05). The expression 
level of CXCL1 is positively correlated with M2 macrophage 
(r = 0.63, p < 0.05) and negatively with Tregs (r = −0.64, 
p < 0.05). Another hub gene negatively associated with 
CD8+ T cells (r = −0.66, p < 0.05) and activated NK cells 
(r = −0.86, p < 0.01) is CCL3. The negative regulation effect 
of several hub genes in CD8+ T cells and activated NK cells 
may contribute to the lower proportions of them in obese 
AT as exhibited before (Figure 6(b)).

Discussion

In this study, we identified and analysed 290 DEGs in AT 
between lean and obese subjects from the GSE2508 micro-
array dataset in GEO. As demonstrated by GO and KEGG 
enrichment analysis (Figure 2 and 3), these DEGs were 
mainly correlated to immune responses, ECM organiza-
tion, and infective diseases. We further identified IL6, 
CCL19, CXCL8, CXCL12, CCL2, CCL3, CCL4, CXCL2, 
IL1B, and CXCL1 as the hub genes that play vital roles in 
the pathogenesis of obesity. Moreover, our results suggested 
a negative correlation of CXCL8 with CD8 + T cells and 
activated NK cells, and a positive correlation between them 
with resting NK cells, monocytes, activated mast cells, and 
eosinophils. In this paper, we uncovered several genes that 
may play central roles in regulating the immune infiltration 
in AT during the progression of obesity, which suggests 
possible novel targets for the future research or treatment of 
obesity in humans.

Although the correlations between most of the DEGs we 
identified in this study and obesity are well-established, 
such as SERPINE1, PLAUR, CA3, and TIMP1 [9,14–16]. 
However, the function of other DEGs like GPR183 and 
PGAM2 in the progress of obesity is lacking and remains 
to be explored. GPR183 encodes G protein-coupled recep-
tor 183, which is one of the receptors of oxysterols and has 
been reported to be induced in the liver by high-fat diet 
feeding [17]. The well-known role of GPR183 is to regulate 
lymphoid cell migration and activity [18,19]. However, no 
one revealed its function in AT. We proposed the possibility 
that upregulated GPR183 may contribute to recruiting 
immune cells in AT under obesity conditions due to its 
crucial role in immune modulation. PGAM2 encodes the 

Table 1. Top Gene Ontology (GO) enrichment analysis of different genes expression.
Category ID Description Count Gene Ratio p.adjust

Biologic process GO:0050900 leukocyte migration 46 0.162544 1.59E-19
GO:0097529 myeloid leukocyte migration 29 0.102473 2.36E-16
GO:0030595 leukocyte chemotaxis 29 0.102473 9.69E-16
GO:0030198 extracellular matrix organization 35 0.123675 3.09E-15
GO:0043062 extracellular structure organization 35 0.123675 3.09E-15

Cellular component GO:0062023 collagen-containing extracellular matrix 38 0.131944 2.13E-17
GO:0009897 external side of plasma membrane 23 0.079861 3.33E-06
GO:0031091 platelet alpha granule 11 0.038194 1.05E-05
GO:0005788 endoplasmic reticulum lumen 19 0.065972 1.39E-05
GO:0031093 platelet alpha granule lumen 9 0.03125 3.83E-05
GO:0062023 collagen-containing extracellular matrix 38 0.131944 2.13E-17

Molecular function GO:0005178 integrin binding 20 0.072202 9.86E-12
GO:0005201 extracellular matrix structural constituent 20 0.072202 2.94E-10
GO:0048018 receptor ligand activity 32 0.115523 7.12E-10
GO:0005125 cytokine activity 22 0.079422 7.12E-10
GO:0030546 signalling receptor activator activity 32 0.115523 7.48E-10
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key enzyme that participates in the glycolytic pathway and 
is highly expressed in heart tissue. Since the glycolytic beige 
fat has been emphasized in promoting energy metabolism 
and thermogenesis [20], regulating glycolysis in AT via 
targeting PGAM2 could be a potential approach for obesity 
treatment. But all these possibilities need to be validated by 
future studies.

Enrichment analysis showed that significantly changed 
pathways are associated with immune response and ECM 
organization, for example, leukocyte migration, cell chemo-
taxis, extracellular structure organization, and ECM struc-
tural constituent. Our results confirmed the vital role of 
immunity and inflammation in the pathogenesis of obesity 

[21]. The dysregulation of immunity makes obese indivi-
duals suffer from persistent local and systematic low-grade 
inflammation. When these patients are faced with patho-
gens invasion, amounts of immune cells already existing in 
AT could trigger an excessive immune response and con-
sequently induce the cytokine storm. These findings may 
partly explain why obesity is a risk factor for worse COVID- 
19 outcomes [22] and other infective diseases like malaria, 
pertussis, and legionellosis as shown in KEGG results 
(Figure 3). Meanwhile, we found ECM-related pathways 
occupies a large proportion in the results of GO analysis. 
During the obesity progression, AT undergoes dynamic 
remodelling which is composed of adipocyte expansion, 
immune cell accumulation, angiogenesis, collagen deposi-
tion, and fibrosis [23], most of which required ECM reor-
ganization. Extra and abnormal deposition of ECM 
components may cause adipocyte necrosis and damage- 
associated molecular patterns (DAMPs) release, which 
will subsequently induce adipose inflammation and insulin 
resistance [23]. Hence, the regulation of ECM organization 
is essential for the treatment of chronic low-grade inflam-
mation in obesity and its related complications.

AT is an energy-storage and endocrine organ, but 
also an immune organ [24]. A wide range of immune 
cells is involved in AT development and homoeostasis. 
Although CD8+ T cells exert important roles in the 
initiation and propagation of AT inflammation and 
remodelling during obesity [25], it is suggested that 
a high-fat diet reduces the total numbers and anti- 
tumour activities of CD8+ T cells in the tumour micro-
environment [26]. Our study showed a reduced pro-
portion of CD8+ T cells in AT from obese individuals 

Figure 3. Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis of DEGs. Bubble shows the top 10 significant 
items according to the adjust P-value.

Table 2. Top KEGG enrichment analysis of different genes 
expression.

ID Description Count
Gene 
Ratio p.adjust

hsa05323 Rheumatoid arthritis 17 0.092391 5.57E-09
hsa05144 Malaria 12 0.065217 9.96E-08
hsa04668 TNF signalling 

pathway
16 0.086957 3.29E-07

hsa04061 Viral protein 
interaction with 
cytokine and cytokine 
receptor

14 0.076087 2.63E-06

hsa04610 Complement and 
coagulation cascades

13 0.070652 2.63E-06

hsa04064 NF-kappa B signalling 
pathway

14 0.076087 3.49E-06

hsa05133 Pertussis 12 0.065217 4.34E-06
hsa04657 IL-17 signalling 

pathway
13 0.070652 5.60E-06

hsa05134 Legionellosis 10 0.054348 1.43E-05
hsa04060 Cytokine-cytokine 

receptor interaction
22 0.119565 2.13E-05
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Figure 4. Protein-protein international network. Red represents up-regulated genes, blue represents down-regulated genes.

Figure 5. Modules and hub genes analysis. (a) Top 1 module of the PPI network is identified and visualized, all of them are up- 
regulated genes. (b) Top 10 hub genes of PPI network. Node colour reflects the degree of connectivity (Red colour represents 
a higher degree, and yellow colour represents a lower degree).
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Figure 6. Immune cell proportions in adipose tissue from lean and obese individuals. (a) The stacked bar chart shows the proportion 
of immune cell populations in each sample. (b) The bar chart exhibits the difference of immune cell proportions in lean and obese 
subjects. (c) Principal component analysis (PCA) is performed on all samples. *p < 0.05, **p < 0.01, and ***p < 0.001.
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Figure 7. Correlation index between the expression of hub genes and proportions of immune cells in the obese group. (a) Numbers 
represent the correlation index. (b) Correlations represented by colour and statistic differences are shown. *p < 0.05, **p < 0.01, and 
***p < 0.001.
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compared to lean individuals, which may result from 
less CD8+ T cell accumulation in the late stage of 
obesity. Our results also showed more mast cells in 
the AT of obese subjects. It’s interesting given that 
mast cells have previously been shown to affect ECM 
remodelling and promote inflammatory cell recruit-
ment and proliferation [27]. Meanwhile, accumulated 
mast cells in AT are regarded as critical contributors to 
obesity [28], which is in agreement with our findings. 
Tfh cells are important for germinal centre formation 
and maintenance [29]. Dysregulated Tfh cells in the 
intestine lead to microbiota dysbiosis and enhanced 
lipid absorption, which contribute to increased obesity 
[30]. No information is currently available on the role 
of Tfh cells in AT. We propose that, unlike Tfh in the 
intestine, Tfh cells may exert a detrimental role in AT 
homoeostasis. Further investigation would be needed to 
fully address this issue. Despite lower frequencies and 
reduced cytotoxic abilities of NK cells being observed in 
the blood of obese than in lean subjects [31], high-fat 
diet feeding increased NK cell numbers in epididymal 
AT and led to insulin resistance in animal models [32]. 
However, activated NK cells were downregulated in 
obesity in our result, suggesting a potential difference 
in NK cell regulation between humans and mice.

To explore the key factors that participate in 
regulating the immune microenvironment and dete-
riorating immune dysfunction in obese patients, we 
screened out the top 10 hub genes including IL6, 
CCL19, CXCL8, CXCL12, CCL2, CCL3, CCL4, 
CXCL2, IL1B, and CXCL1 (Figure 5(b)) and ana-
lysed their correlation with immune infiltration in 
AT. Some of the hub genes have already been stu-
died in obesity. And our results are consistent with 
these findings, proving high reliability for our sub-
sequent correlation analysis. All of the hub genes 
are significantly upregulated in the AT of obese 
subjects, and several of them were top changed 
DEGs as shown in the heatmap (Figure 1(b)). The 
most significant hub gene identified in our study 
was IL6, which exerts pleiotropic roles in inflamma-
tion and metabolic diseases [33]. Previous studies 
suggest that IL-6 is a proinflammatory cytokine 
that plays an important role in white adipose tissue 
dysfunction and hepatic insulin resistance [12,34], 
which was consistent with our results. But we failed 
in linking IL6 with immune infiltration due to its 
major role in aggravating inflammation but not 
attracting cells. Other chemokines, for instance, 
IL1B, CXCL8, CCL4, CXCL12, CCL19, CXCL1, and 
CCL3 exhibited positive or negative correlations 
with the proportions of some immune cells. 
CXCL8 expression is upregulated in AT of obese 

individuals, which induces chemotaxis of neutro-
phils and other granulocytes to AT [13,35]. 
CXCL12 could promote cancer progression and is 
a potent chemoattractant for haematopoietic 
cells [36].

CXCL8 is largely produced by immature noncytoly-
tic NK cells and regulates early NK cell differentiation 
[37]. Tumour-infiltrating monocytes also secret 
CXCL8, which is positively associated with human 
hepatocellular carcinoma [38]. In addition, CXCL8 pro-
duced by circulating eosinophils also contributes to the 
airway inflammatory responses within allergic lesions 
[39]. However, to our knowledge, the roles of CXCL8 
within NK cells, monocytes, and eosinophils in the 
progression of obesity have not yet been identified. 
Our results propose that CXCL8 may be a potential 
target of obesity in these cells. CXCL12 has been 
reported as an adipokine that recruits macrophages to 
AT and induces obesity-related inflammation and sys-
tematic insulin resistance [40]. The proinflammatory 
property of CXCL12 is inversely correlated with M2 
macrophages (Figure 7).

This study also has some limitations. Firstly, the 
sample size was relatively small, although part of the 
results could be validated by others’ reports. Secondly, 
the parameters of specific individuals were not offered. 
Lastly, our results still need future experiments to 
uncover the role of these genes in the pathogenesis of 
obesity and to explore their possibilities as therapeutic 
targets for obesity. Nevertheless, we comprehensively 
studied the correlation between gene expression and 
immune cell populations in AT of lean and obese 
individuals. Through this bioinformatic analysis, we 
identified several unreported genes that are closely 
related to obesity and revealed unrecognized molecular 
mechanisms in immune cells infiltration during obe-
sity, which may provide potential cellular and molecu-
lar targets to be explored for their roles in the 
progression of obesity.

Materials and methods

Microarray data

We downloaded the gene expression dataset 
GSE2508, which contains a total of 20 human white 
AT samples from lean (BMI≤30, n = 10) and obese 
(BMI>30, n = 10) individuals [41], from the Gene 
Expression Omnibus (GEO) database (https://www. 
ncbi.nlm.nih.gov/geo/), a public functional genomic 
data repository. The microarray data of the GSE2508 
dataset was identified by GPL8300 platforms 
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(HG_U95Av2; Affymetrix Human Genome U95 
Version 2 Array).

Identification of differentially expressed genes

After annotating the dataset with the R script in R 4.0.0 
software (https://www.r-project.org/), we used the 
‘limma’ V3.44.3 package to screen DEGs in AT between 
lean and obese individuals [42]. The data were first 
normalized using the ‘normalize Between Arrays’ func-
tion from ‘limma’ (Fig. S2). The t-test and eBayes meth-
ods were then used to calculate the fold change (logFC) 
and the P-value [43]. Lastly, significantly changed DEGs 
were identified using the cut-off thresholds of |logFC| >1 
and p < 0.05. The ‘pheatmap’ V1.0.12 package was used 
to draw a heatmap of top 50 up-regulated and all down- 
regulated DEGs in R software. The volcano of DEGs was 
visualized by ‘ggplot2’ V3.3.2 package.

Function and pathway analysis of DEGs

GO analysis offers a model that categorizes gene func-
tion into three parts: biological processes, cellular com-
ponents, and molecular functions [44]. The KEGG is 
a database that provides a comprehensive set of bio- 
interpretation of genomic sequences and protein inter-
action network information [45]. In our study, GO and 
KEGG analyses of DEGs were completed by 
‘clusterProfiler’ V3.16.0 package [46].

Construction of protein-protein interaction (PPI) 
network, module analysis and identification of hub 
genes

The Search Tool for the Retrieval of Interacting 
Genes (STRING 11.0; https://string-db.org/) is an 
online tool to predict the interactions of genes at 
the protein level, including direct (physical) and 
indirect (functional) interactions [47]. The PPI net-
work of DEGs was constructed with a high confi-
dence > 0.7. Subsequently, the PPI network was 
visualized in Cytoscape software 3.8.0 (https://cytos 
cape.org/) [48]. The significant modules of the PPI 
network were selected by Molecular Complex 
Detection (MCODE) V1.6.1 plug-in with the default 
parameters (degree cut-off, 2; K-Core, 2; max depth, 
100; node score cut-off, 0.2) [49]. Moreover, cyto-
hubba, another plug-in in Cytoscape, was used to 
explore important nodes with 11 methods (the 
MCC method is widely used and meets a satisfying 
comparative performance), subsequently for studying 
hub genes [50].

Immune cells proportion analysis

CIBERSORTx is an online analytical tool that estimates 
the relative levels of 22 phenotypes of human haemato-
poietic cells in a mixed cell population using gene expres-
sion data [51]. Gene expression data was uploaded to 
CIBERSORTx (https://cibersortx.stanford.edu/), then the 
algorithm was run using signature matrix LM22 provided 
by CIBERSORTx and 500 permutations. Principal com-
ponent analysis (PCA) was performed by ‘ggplot2’ V3.3.2 
package to determine whether different immune cell 
populations existed between the two groups.
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