
“fncir-07-00194” — 2013/12/9 — 19:40 — page 1 — #1

ORIGINAL RESEARCH ARTICLE
published: 11 December 2013
doi: 10.3389/fncir.2013.00194

Effect of phase response curve skew on synchronization
with and without conduction delays
Carmen C. Canavier1,2*, Shuoguo Wang1† and Lakshmi Chandrasekaran1†

1 Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, Louisiana State University Health Sciences Center,
New Orleans, LA, USA

2 Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA

Edited by:

A. Ravishankar Rao, IBM Research,
USA

Reviewed by:

Timothy J. Buschman, Princeton
University, USA
Sachin S. Talathi, University of Florida,
USA

*Correspondence:

Carmen C. Canavier, Department of
Cell Biology and Anatomy, Louisiana
State University School of Medicine,
Louisiana State University Health
Sciences Center, 1901 Perdido Street,
New Orleans, LA 70112, USA
e-mail: ccanav@lsuhsc.edu
†Present address:

Shuoguo Wang, Department of
Genetics and the Human Genetics
Institute of New Jersey, Rutgers, The
State University of New Jersey,
Piscataway, NJ, USA;
Lakshmi Chandrasekaran, Stowers
Institute for Medical Research,
Kansas City, MO, USA

A central problem in cortical processing including sensory binding and attentional gating
is how neurons can synchronize their responses with zero or near-zero time lag. For a
spontaneously firing neuron, an input from another neuron can delay or advance the next
spike by different amounts depending upon the timing of the input relative to the previous
spike. This information constitutes the phase response curve (PRC). We present a simple
graphical method for determining the effect of PRC shape on synchronization tendencies
and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response
to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs,
which include the pulse-coupled leaky integrate and fire model. For pairs with mutual
excitation, exact synchrony can be stable for strong coupling because of the stabilizing
effect of the causal limit region of the PRC in which an input triggers a spike immediately
upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive
during a refractory period and cannot trigger an immediate spike. Right skew destabilizes
antiphase and enables modes with time lags that grow as the conduction delay is increased.
Therefore, right skew favors near synchrony at short conduction delays and a gradual
transition between synchrony and antiphase for pairs coupled by mutual excitation. For
pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging
from zero to a substantial fraction of the period for pairs. However, for right skew there
is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew
destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as
well. These pairwise synchronization tendencies constrain the synchronization properties
of neurons embedded in larger networks.
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INTRODUCTION
A role has been proposed for synchronous oscillations in bind-
ing of sensory experiences (Singer, 1993) and attention (Fries
et al., 2001). Synchronization that occurs between distal brain
regions is almost always associated with oscillatory activity (Konig
et al., 1995). This synchrony is achieved rapidly (Singer, 1999)
and persists only transiently. The role of reciprocal coupling in
synchronizing neural oscillators is supported by the observation
that strong inter-hemispheric phase locking in the gamma fre-
quency band with zero phase lag occurred in cat visual cortex
could be disrupted by severing the corpus callosum (Engel et al.,
1991). The inter-hemispheric conduction delays were on the order
of 4–6 ms, which is about a sixth to a third of a gamma cycle.
A role for altered synchronization tendencies in disease states
(Uhlhaas and Singer, 2006) is supported by the observations that
long distance synchronization is reduced in schizophrenia and
epilepsy, whereas local synchronization in epilepsy is enhanced.
Phase resetting theory (Glass and Mackey, 1988; Winfree, 1990;
Ermentrout and Terman, 2010) is often used to study the syn-
chronization tendencies of regularly spiking neurons. A phase
response curve (PRC) shows how much an input advances or

delays the next spike as a function of where in the cycle the
input is applied. Type 1 PRCs (Hansel et al., 1995) are com-
prised of either all advances (for excitation) or all delays (for
inhibition), whereas type 2 PRCs exhibit both advances and
delays.

Neurons with type 1 PRCs tend not to synchronize via
weak mutual excitation (Hansel et al., 1995; Ermentrout, 1996).
Nonetheless, the ability of pulse-coupled leaky integrate and fire
(LIF) and other oscillators with type 1 PRCs to synchronize due
to strong mutual excitation is well known (Peskin, 1975; Mirollo
and Strogatz, 1990). The PRC of this model at late phases has a
strongly stabilizing slope due to the ability of an input to trigger
a spike immediately on arrival at very late phases, which creates a
linear “causal limit” region in the PRC. This region accounts for
synchrony at zero delay (Canavier and Achuthan, 2010), and as
we show in this study, also accounts for the existence of a grad-
ual transition between synchrony and antiphase as the conduction
delay is increased, regardless of PRC skew. In contrast, a criti-
cal role for PRC skew in networks of type 1 neurons connected
by mutual synaptic excitation was demonstrated by Ermentrout
et al. (2001). If the maximum resetting (of either sign) occurs
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in the first half of the cycle, the PRC is left skewed; on the
other hand if it occurs in the right half, it is right skewed. If
the right skew is increased, the tendency to approximately syn-
chronize with small time lags is increased for pairs of type 1
neurons coupled via mutual synaptic excitation or electrical cou-
pling (Pfeuty et al., 2003; Zahid and Skinner, 2009), and skewing
the PRC toward the left stabilizes the antiphase mode. In con-
trast, the antiphase mode is stabilized by skewing the PRC to the
right (Ladenbauer et al., 2012) for pair with type 1 mutual inhi-
bition. There are several ways in which altering the conductances
(Ermentrout et al., 2001, 2012; Pfeuty et al., 2003; Gutkin et al.,
2005; Stiefel et al., 2009) can change the shape of a type 1 PRC for
a regularly spiking neuron. Therefore, one way to quickly reverse
the synchronization tendencies of neurons is to modulate the
intrinsic ion channels that alter the PRC shape (Ermentrout et al.,
2012), which could provide a switch to turn synchrony on and off
rapidly.

Here we examine the effect of changing the skew of a type
1 PRC on the ability of pairs of neurons characterized by these
PRCs to synchronize in the presence of conduction delays. We
quantify the tendency of a network to synchronize using a global
method that requires the identification of the unstable solutions
comprising the boundaries between the attractive basins of the
stable solutions, and compares the size of the sets of initial con-
ditions, or basins of attraction, that lead to synchrony versus
any other competing stable modes. In some cases we also use a
local measure that infers the rate of convergence to synchrony
in the neighborhood of a stable solution using the slopes of
the PRC at the phases at which inputs are received with a pos-
sibly non-zero delay after spikes in the presynaptic neuron(s).
The solution structure for pairs of coupled neurons with type
1 PRCs in the presence of conduction delays is highly dependent
upon the skew of the PRC. In particular, right skew enhances
the ability of mutually excitatory pairs to preserve synchrony in
the presence of small delays, but diminishes that of inhibitory
pairs. Overall, inhibitory synchrony (Van Vreeswijk et al., 1994;
Wang et al., 2012) is much more robust to conduction delays.
These results have implications for synchronization in larger net-
works as well (see Implications of Generic Modes for Larger
Networks).

MATERIALS AND METHODS
WANG–BUZSAKI MODEL
The Wang and Buzsaki (1996) conductance-based model neuron
has the following parameters unless otherwise noted. The rever-
sal potentials ENa, EK, and EL were set to 55, −90, and −65 mV,
respectively and the capacitance was set to 1 μF/cm2. The max-
imal sodium (gNa), potassium (gK), and leak (gL) conductances
were set to 35, 9, and 0.1 mS/cm2, respectively. I stim is the applied
current and was set at 1.0 μA/cm2. The synaptic current is given
by I syn = g syns(V − Esyn), where g syn is the maximum synaptic
conductance and Esyn is equal to −75 mV for inhibitory synaptic
connectivity and equal to 0 mV for excitatory synaptic connectiv-
ity. The rate of change of the gating variable s in units of ms−1 is
ds/dt = 6.25(1 − s)/[1 + exp(−V pre/2)] − s/τsyn, where V pre is
the voltage of the presynaptic cell, and τsyn is the synaptic decay
time constant of 1.0 ms.

MEASUREMENT OF PRC IN ISOLATED WANG–BUZSAKI NEURONS
Figure 1A1 shows the measurement of the PRC for a Wang–
Buzsaki model neuron where the input is the synaptic conductance
waveform (Figure 1A1, bottom trace) that results from a spike in
the presynaptic neuron. The phase φ is 0 at an upward crossing
of a predetermined threshold (here −14 mV), and the phase φ

at which a stimulus is received is ts/P0, where P0 is the intrinsic
period and ts = φP0 is the stimulus interval, defined as the inter-
val between the time of the action potential and the receipt of an
input. The recovery interval tr is defined as the interval between
the receipt of an input by a neuron and the next action potential
in the same neuron: tr = P0 − ts + P0f(φ), where the phase reset-
ting f(φ) is given by the normalized change in the cycle length that
contains the perturbation f(φ) = (P1 − P0)/P0. In this study we do
not focus on second order resetting that is evidenced by changes
in length of the second cycle following the perturbation, but in
some cases the second order phase resetting must be considered
(Oprisan et al., 2004; Maran and Canavier, 2008; Woodman and
Canavier, 2011). A positive resetting signifies a phase delay and a
negative resetting signifies a phase advance. Figure 1A2 shows a
typical PRC for the Wang–Buzsaki model, consisting of all delays
in response to an inhibitory synaptic input.

LEAKY INTEGRATE AND FIRE NEURON MODEL PRC
The LIF model is given by dV /dt = −γV (t) + S0, where V (t) is
the membrane potential, γ is the magnitude of the leak, and S0 is
the applied current. When V (t) = 1 the neuron is presumed to
fire and V (t) is reset to 0 (Figure 1B1). Following the methods of
Peskin (1975) and Mirollo and Strogatz (1990), the neurons are
instantaneously pulse-coupled such that an input depolarizes the
membrane by a fixed amount ε or brings the membrane poten-
tial to threshold, whichever among the two values is less. For
two coupled neurons i and j, when V i(t) = 1, meaning one neu-
ron reaches spike threshold, then the potential in the partner is
set to V j(t) = min [1,V j(t)+ε], j �= i, meaning that inputs that
occur late within the cycle can immediately trigger a spike. At
an initial condition of V (0) = 0, we can explicitly solve for the
voltage such that V (t) = (S0/γ)(1 − e−γt ). From this expres-
sion, solving for the elapsed time (ts) to reach a given value of
voltage V (t), we obtain ts = (1/γ) ln{S0/[S0 − γV (t)]}. The
intrinsic period of the oscillator is the elapsed time required to
reach V (t) = 1, which is C/γ, where C = ln[S0/(S0 − γ)]. We
can solve for the phase advance due an instantaneous jump from
V j(t) to V j(t) + ε by taking the difference between the elapsed time
required to reach V j(t) corresponding to a given phase φ = ts γ/C
and the elapsed time required to reach V j(t) + ε in the absence
of a perturbation. For V j(t) + ε < 1, this difference is equal to
(−1/γ){ln[(S0 − γ)/(S0 − γεeCφ)] − 1}, which is then normalized
by the intrinsic period in Eq. 1. For V j(t) + ε ≥ 1, the resetting
is limited by the fact that an input cannot advance the next spike
time to a time before the neuron receives an input, so the phase
is advanced by exactly the normalized time remaining until the
next input (1 − φ), with a sign reversal due to our definition of
phase resetting in which advances are negative. The resetting at 0
and 1 are not the same because the effect of an input is assumed
to end when a spike is produced; a more physiological model for
coupling would assume any excess charge beyond that required
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FIGURE 1 | Phase response curve (PRC) measured in isolated neurons

and used to predict network activity. (A1) PRC measurement in a
Wang–Buzsaki model neuron. Inset shows open loop configuration without
feedback. A perturbation in the form of a synaptic conductance waveform
evoked by a single spike in the presynaptic neuron (lower trace) is applied at a
phase of φ = ts/P0, and the phase resetting f (φ) is the normalized change in
cycle length f (φ) = (P1 − P0)/P0. Alternatively, the perturbed cycle length
P1 is equal to the sum of the stimulus (ts) and recovery (t r) intervals.
(A2) Typical PRC for an inhibitory input to a Wang–Buzsaki neuron with
gsyn = 0.35 mS/cm2, τsyn = 1 ms, Istim = 2.0 μA/cm2, and otherwise as the
Methods. (B1) PRC measurement in a leaky integrate and fire model neuron.
An instantaneous increment in membrane potential (black arrow) either
advances the phase or immediately causes the neuron to reach threshold.
(B2) Typical PRC for leaky integrate and fire neuron. Beyond a phase of about
0.8, a spike is triggered immediately by the input. In this “causal limit” region,

the resetting is equal to φ − 1. (C) Stimulus and recovery intervals in the
network. Inset shows closed loop configuration with feedback. In an
alternating firing pattern, each spike affects the timing of the very next spike
(k = 1) in the same neuron via a feedback loop through the partner neuron. In
a phase-locked mode with constant firing intervals, the gray shaded area
indicates that the stimulus interval in neuron 1 is equal to the recovery
interval in neuron 2 plus twice the delay δ, and the pink shaded area illustrates
a similar constraint for the stimulus interval in neuron 2. The time lags, or
firing intervals between neurons, can be inferred from the stimulus and
recovery intervals. (D). Predicting closed loop modes with open loop data.
Plotting the algebraic combination of intervals with quantities that must be
equal in a phase-locked mode on the same axis ensures that the intersections
represent the stimulus and recovery intervals in phase-locked modes. The
delay was 20% of the intrinsic period P0. The axes are all normalized by the
intrinsic period of the component oscillators and therefore dimensionless.
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to evoke a spike is applied in the next cycle, causing an advance
in that cycle, which at a phase of 1 would equal the resetting at a
phase of 0.

Given the constraints on how much a spike can be advanced,
the phase resetting (see Figure 1B2) is given by

f(φ) = − min(|(−1/C){ln[(S0-γ)/(S0-γεeCφ)] − 1}|, |φ − 1|) (1)

The negative sign in Eq. 1 was necessary to make the sign of
the PRC consistent with the convention used in this work. The
PRC in Figure 1B2 was calculated directly from Eq. 1. This non-
physiological feature by which an input instantaneously triggers
a spike introduces a linear region in the PRC at late phases in
which the phase advance is φ − 1, exactly equal in magnitude and
opposite in sign to the fraction of the cycle remaining when the
input is applied. Since this limit is imposed by causality, we call
this linear region the causal limit region of the PRC.

PREDICTION OF NETWORK ACTIVITY USING PHASE RESETTING
The assumptions required to apply the stimulus and recovery
intervals measured in isolated neurons with no feedback to the
closed loop circuit are simply that the spikes remain essentially the
same in the presence of feedback, and that the effect of each pertur-
bation dies out within a single network period after it is received.
Detailed stability calculations are given in Woodman and Canavier
(2011). We use a method (Woodman and Canavier, 2011; Wang
et al., 2012) very similar to the spike time difference method (Acker
et al., 2003) with the advantage that it is easily extendable to longer
conduction delays.

Our method takes advantage of the algebraic relationship
shown in Figure 1C between the stimulus and recovery intervals
in one to one phase-locked periodic modes. The stimulus interval
(in the absence of any second order resetting) is simply P0φ as
described above, and the dependence of the recovery interval on
the phase was determined using the phase resetting protocol also
described above. The key idea (Woodman and Canavier, 2011) is
that there is a feedback loop through which a spike in one neuron
influences, after a conduction delay, the timing of a spike in its
partner, and this spike in turn, after another conduction delay,
affects the timing of a spike in the original neuron. The duration
of this feedback loop is always the sum of the two delays plus the
recovery interval in the partner. For short equal conduction delays,
the duration of this feedback loop is exactly the stimulus interval
in the original neuron, as illustrated in Figure 1C. This condition
must be met with respect to both the stimulus interval in neuron 1
(Figure 1C, gray shaded area) and the stimulus interval in neuron
2 (Figure 1C, red shaded area), so there are two symmetric criteria
that must both be satisfied in order to establish a periodic one to
one phase locking. However, longer feedback loops are also possi-
ble, in which the duration of the feedback loop is still equal to twice
the conduction delay plus the recovery interval in the partner, but
one or more spikes occur in the original neuron before the feed-
back from a given spike is received. The duration of the feedback
loop in the original neuron is then equal to the stimulus interval
in the original neuron plus k − 1 network periods PN, where the
parameter k − 1 is the number of spikes that occur before the
feedback loop is closed, and the network period is the sum of the

stimulus and recovery intervals associated with any given input
phase.

The stimulus and recovery intervals measured using the PRC
protocol can be plotted for each isolated neuron with the axes
arranged as in Figure 1D so that the intersection points meet both
criteria for the duration of the feedback loop described above that
must be satisfied in a periodic one to one locking by the stimulus
and recovery intervals in each neuron. The observable time lags
between neural firings can be calculated using the algebraic rela-
tionships shown in Figure 1C (Woodman and Canavier, 2011). In
addition to the phasic relationships within a periodic mode, we
also need to know the stability of each mode. The stability can also
be read from the graph in Figure 1D (Wang et al., 2012), at least
for k = 1. The stability criterion for the k = 1 mode mandates that
if the absolute value of the slope of the black curve is greater than
the slope of the red curve at an intersection, then that intersection
is stable, hence a steeper black curve at the intersection point guar-
antees stability. The derivation follows from the stability criterion
for modes with k = 1, which is −1 < [1 − f ′(φ1)][1 − f ′(φ2)] < 1
where f ′(φ1) and f ′(φ2) are slopes of the PRC evaluated at the
phase locking points of φ1 and φ2. Stability is guaranteed if the
slope of the PRC at both locking points is positive and <2. Since ts
depends only on phase, and tr depends on both the phase and the
phase resetting, algebraic manipulation reveals that the slope of the
black curve for neuron 1 for k = 1 is [f ′(φ1) − 1]−1 and the slope
of the red curve for neuron 2 for k = 1 is [f ′(φ2) − 1]. Dividing all
terms in the stability criterion by [1 − f ′(φ1)] and considering the
cases for which [1 − f ′(φ1)] is positive or negative gives the stability
criterion in terms of the relative steepness of the slopes. For k = 2,
the stability criterion is −1 < [1 − f ′(φ1) − f ′(φ2)] < 1. For higher
values of k, the appropriate stability criterion must be applied
(Woodman and Canavier, 2011).

RESULTS
TWO LIF NEURONS PULSE COUPLED BY EXCITATION TRANSITION
GRADUALLY BETWEEN SYNCHRONY AND ANTIPHASE AS THE
CONDUCTION DELAY IS INCREASED
Solutions that were obtained as the conduction delay was varied
in pairs of LIF model neurons coupled via excitatory pulses are
shown in Figure 2. With no delay, all initial conditions converged
to synchrony (Figure 2A), as expected (Peskin, 1975; Mirollo and
Strogatz, 1990). For delays >0 but up to about 40% of the intrin-
sic period, a “leader–follower” mode was obtained in which the
smaller time lag between the firing of the two neurons was equal
to the delay (second blue bar in Figure 2B). This mode is observed
because the follower fires exactly when the delayed input from
its partner arrives, but the leader does not fire immediately upon
receiving an input from the follower. Convergence occurs within
a single cycle for reasons explained below. The lack of robustness
of synchrony mediated by excitatory pulse coupling to delays was
also expected (Ernst et al., 1995). For delays equal to about 40–50%
of the intrinsic period (see Figure 4C), an exact antiphase mode
was obtained (Figure 2C) in which the time lags are each equal
to half the network period, and because each neuron fired imme-
diately upon receiving an input, the delays (horizontal blue bars)
were exactly equal to the time lags. For delays equal to about 50–
85% of the network period, we again obtained a leader–follower
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FIGURE 2 |Typical patterns observed in a pair of pulse-coupled LIF

oscillators as the delay is varied. Blue horizontal bars show the conduction
delay. (A) For short delays, all initial conditions converge to synchrony. (B) For
short delays, the shorter time lag (asterisk over blue bar indicating delay)
between one neuron (black curve) and the other (red curve) is exactly equal to
the delay. Note that the other time lag is not equal to the delay. (C) For
midrange delays antiphase is observed in which each time lag (asterisks) is

equal to the delay. This is not generic for antiphase, but rather a special case
as explained in the text. (D) For longer delays, again only one time lag is equal
to the delay, this time the longer time lag (see asterisk). (E) For delays almost
equal to an intrinsic period, the trajectories do not converge to synchrony,
instead the neurons switch their firing order on each cycle. The delays are
equal to the time lags (asterisks). Parameters for the coupled LIF are γ = 0.9,
S0 = 1, ε = 0.05.

mode in which one neuron, but not the other, fired immedi-
ately after the delayed input from its partner arrived (second blue
bar in Figure 2D). In this case the longer of the two time lags
is equal to the delay, but convergence generally does not occur
within one cycle. Finally, for delays longer than 90%, a nearly
synchronous mode emerged in which the firing order of the two
neurons switched on every cycle (leapfrog mode in Maran and
Canavier, 2008; Oh and Matveev, 2008).

We can understand how the modes in Figure 2 arise by exam-
ining how the delays alter the generic periodic solutions for two

identical, identically coupled oscillators in which the receipt of an
input at late phases can immediately trigger a spike. We consider
as generic only 1:1 modes, in which no oscillator fires twice in a
row before the other oscillator fires. The inset in Figure 3 shows
two oscillators coupled with equal conduction delays. Figure 3
shows a schematic representation of the generic modes: the two
oscillators can fire together in exact synchrony (Figures 3A,E),
they can alternate in exact antiphase with the same time lags
(Figure 3C), or they can fire alternately with different intervals
between spikes (Figures 3B,D). The meaning of the integer k can
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FIGURE 3 | Five generic modes in identical, identically pulse-coupled LIF

oscillators with identical conduction delays. Pink shaded regions show
relationship of delay to the phase, blue show the relationship to the time lags.
(A) For a synchronous mode and identical oscillators with short delays, the
stimulus interval ts in each oscillator is equal to the delay δ. The dashed lines
show that the first spike in the top neuron does not affect the timing of the
very next spike in the same neuron, but rather the one after that, so k = 2.
(B) In the leader–follower mode for k = 1, the stimulus interval in the follower
(top) is equal to the network period, the time lag between the firing of the
leader and that of the follower is equal to the delay, and the stimulus interval

in the leader is twice the delay. The dashed lines show that the first spike in
the top neuron does affect the timing of the very next spike in the same
neuron, so k = 1. (C) Antiphase. For identical oscillators, both stimulus
intervals are equal to twice the delay plus the recovery interval. (D) In the
leader–follower mode for k = 2, the sum of the stimulus intervals is twice the
delay, hence their average gives the delay. (E) Causal limit synchrony for long
delays. In this case the stimulus intervals in both neurons are equal to the
delay as in (A), but because the recovery intervals are equal to 0, the stimulus
intervals are also equal to both the network period and the delay. The delay is
also equal to one time lag if the other is considered to be 0.

be better understood by observing the paths marked by dashed
lines in Figures 3A,B. The path begins with a spike in the top neu-
ron and shows whether the timing of that spike affects the timing
of the next spike in the spike neuron via the feedback loop through
the other neuron. Figure 3A shows that after one delay, an input is
received by the other neuron, then one recovery interval later the
other neuron spikes, then after one more delay an input is received
by the first neuron. This input arrives too late to affect the timing
of the very next spike in the first neuron, but will affect the timing
of the second, so k = 2. On the other hand, the dashed lines in
Figure 3B show that the first spike in the top neuron does affect the

timing of the very next spike in the same neuron via the feedback
loop though the other neuron, so k = 1 for this case.

The pink shaded areas in Figure 3 show the relationship of the
stimulus intervals to the conduction delay, and the infinity symbol
represents the steady value of the intervals in a periodic mode after
all transients have decayed. This relationship is important because
it allows us to predict the phase that at which inputs will be receive
in a given model directly from the value of the conduction delay.
For synchrony at both early (Figure 3A) and late phases (causal
limit synchrony, Figure 3E), the conduction delay is equal to the
stimulus interval in each neuron (δ = ts = φP0). Therefore the
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phase at which an input is received in the synchronous modes
is always equal to the normalized delay (φ = δ/P0). We refer to
Figure 3E as causal limit synchrony because a spike is triggered
immediately when the delayed input is received; this is not the
case in Figure 3A. The pink shaded area in Figure 3B shows that
the delay is half the stimulus interval (tsL) for the leader, so the
phase at which an input is received is half the normalized delay. The
pink shaded area in Figure 3C shows that in the antiphase mode
the stimulus interval in one neuron is equal to twice the delay plus
the recovery interval in the other neuron. There is no pink shaded
area in Figure 3D because there is no integral relationship between
one stimulus interval and the conduction delay; instead the delay
is half the sum of the two stimulus intervals. This result is obtained
by noting tsF + t lFL + tsL = t lFL + 2δ and canceling the time lag
term tlFL.

The blue shaded areas in Figure 3 show the relationship of
the time lags observed in each mode to the conduction delay.
Figures 3B,D show that for leader–follower modes with k = 1 and
2 respectively, the delay is equal to the time lag between the leader
and the follower (t lLF), meaning that a spike is triggered in one
neuron, but not the other, immediately when a delayed input is
received. The blue shaded area in Figure 3E shows that in the causal
synchrony mode, a spike is triggered in both neurons immediately
upon receipt of the delayed input, and consequently both stimulus
intervals as well as the network period are equal to the conduction
delay. These relationships are a direct consequence of the ability
of a delayed input to immediately trigger a spike upon its arrival.

Each of the generic modes in Figure 3 corresponds to the
panel with the same letter in Figure 2. However, in order to
complete our analysis on the coupled LIF system, we need to
apply the insights gained in Figure 3 to the PRC for the indi-
vidual LIF neurons given the assumed form of pulse coupling
described in Section “Materials and Methods.” Figure 4 uses only
the information in the PRC (shown in both Figures 4A,B) to
predict the two time lags (defined in Figure 1C) that comprise
one to one periodic locked modes (shown in Figure 4C) asso-
ciated with each mode obtained in Figure 2 by integrating the
differential equations for the pair of pulse-coupled LIF oscillators.
The time lags are the intervals between a spike in one neuron
and the next spike in its partner (Figure 1C). For synchrony, one
lag is arbitrarily set to 0 and the other to the network period.
For antiphase, both time lags are equal (indicated by filled cir-
cles) so only one is visible. Only stable modes (black symbols)
can be observed as a result of simulations, but the prediction
method also identified the unstable (red symbols) and neutrally
stable (blue circles) modes. Both the axes with the time lags
(intervals) and delay are normalized with respect to the intrinsic
period; the phase is the stimulus interval normalized by the intrin-
sic period. The lowercase letters along the middle of Figure 4C
indicate the delays corresponding to the solutions in the corre-
sponding panels in Figure 2 and the schematic representation in
Figure 3.

The overall picture given in Figure 4 with respect to the generic
modes is as follows. There are three solution branches, corre-
sponding to synchrony, leader–follower and antiphase. Synchrony
is stable (a) at zero delay (open black circles) but in region (b)
splits into an unstable synchronous branch (pairs of open red

FIGURE 4 | Predicting the solution structure for pulse-coupled LIF

pairs. (A) Phase response curve for a leaky integrate and fire neuron with
parameters as in Figure 2. The unstable branch is to the left of φCL. The
stable, causal limit branch of the PRC is to the right of φCL, and neurons
receiving an input on this branch fire immediately upon receipt of the input.
The input phases in leader–follower mode φL and φF lie on the left and right
branches, respectively, and must have equal phase resetting f (φL) = f (φF )
as indicated by horizontal dotted line. Open circle denotes the average of
φL and φF . The vertical dotted lines from (A) to (C) give the boundaries in
(C) of the leader–follower mode for k = 2 and the causal limit synchrony
region. The dashed line labeled y = 2φ − 1 give the input phase for the
antiphase mode φAP with zero delay. If the center of the PRC (open circles)
falls to the right of this line, the leader–follower k = 1 branch exists. (B) The
PRC is replotted at half scale to show the generic relationships between
the normalized stimulus interval, phase (φ = ts/P0) and the normalized
delay (δ/P0) in the leader–follower mode for k = 1 and the antiphase mode.
The phase φL at which the leader receives an input for the k = 1
leader–follower mode is twice the normalized delay (φL = tsL/P0; tsL = 2δ,
see Figure 3B, so φL = 2δ/P0). The follower receives an input at phase φF
and fires immediately. This leader–follower mode ceases to exist when
twice the normalized delay value reaches φCL; beyond that point, the
antiphase mode gains stability. In this antiphase mode, both neurons
receive an input at the same phase (see Figure 3C) on the right stable
branch indicated in (B), and fire immediately upon receiving the input. On
this branch, the normalized stimulus interval for each neuron is equal to
twice the normalized delay. (C) Predicted solution structure as delays are
varied for two neurons coupled via the PRC in (B1). The two time lags

(Continued)
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FIGURE 4 | Continued

between the firings of the two neurons are represented by a pair of red
symbols (unstable mode), a pair of black symbols (stable mode) or a pair of
blue circles (neutrally stable mode). In an antiphase mode, both time lags
are the same, which is indicated by a filled symbol. For synchrony, one time
lag of each pair must be 0 and the other is equal to the network period. The
leader–follower mode for k = 1 persists for normalized delays up to φCL/2
indicated by the leftmost vertical dotted line from (B) to (C). In the stable
antiphase mode for normalized delays from φCL/2 to 0.5, both time lags are
exactly equal to the delay (see Figure 3C). The leader–follower mode re-
establishes itself for normalized delays >0.5 and persists until the normalized
delay reaches φCL.This leader–follower mode has a k = 2 and the normalized
delay is equal to (φL + φF )/2 (see Figure 3D). Neutrally stable causal limit
synchrony (see Figure 3E) is observed starting at normalized delays greater
than φCL indicated by rightmost vertical dashed line from (A) to (C). Note the
diagonal line formed by the black and blue symbols indicates that in every
stable or neutrally stable mode, at least one time lag is equal to the delay.
The lower a, b, c, d, and e in (C) correspond to the labels of the same letter
in Figures 2 and 3.

circles) and a stable leader–follower branch (open black squares).
In the same regions, antiphase is unstable (solid red circles). Unlike
the weak coupling approach, the network period is not equal to
the intrinsic period, because the network period includes a non-
negligible contribution from the phase resetting in the circuit.
Therefore, the normalized time lag is not 0.5 for antiphase because
the normalization is by the intrinsic period and not the network
period. At the start of the region labeled (c), the stable leader–
follower branch and the unstable antiphase branch coalesce into
a stable antiphase branch. Therefore, the stable leader–follower
branch allows for a gradual transition between synchrony and
antiphase as the delay is lengthened. At the start of the region
(d) these two branches again diverge with antiphase losing stabil-
ity and leader–follower regaining existence. At the start of region
(e) the stable leader–follower and unstable synchronous branches
merge into neutrally stable causal limit synchrony (open blue cir-
cles). Neutrally stable synchrony implies that near synchronous
solutions, like the one shown in Figure 2E, do not converge to
synchrony.

The diagonal line of symbols in Figure 4C indicates that for
every predicted one to one stable or neutrally stable phase-locked
mode, one or both time lags are equal to the delay. We will show
that the PRCs in Figures 4A,B, along with the understanding of the
generic modes presented in Figure 3, can explain the relationship
of these time lags to the delay as well as why solution branches
coalesce, diverge, or change stability. The key characteristic of
the PRCs in Figures 4A,B is that they have two branches, a left
branch with a negative destabilizing slope and a right branch with
a maximally stabilizing slope to the right of the phase marked
φCL, which is the causal limit (CL) region described in Section
“Materials and Methods.” Inputs received at phases in the causal
limit region immediately trigger a spike.

WHY IS EXACT SYNCHRONY STABILIZED BY THE CAUSAL LIMIT
REGION OF THE PRC AND DISRUPTED BY CONDUCTION DELAYS?
At zero delay, indicated by the point labeled “a,” there is a stable
synchronous solution (black circles in Figure 4C) and an unstable
antiphase solution (solid red circle). For the synchronous solution,
Figure 3A shows that both neurons receive an input at a phase
equal to the normalized delay. Synchrony at zero delay is a special

case because k = 1 for that case, and the relevant stability criterion
for synchrony with no delay depends upon the slope of the PRC at
the two ends, f ′(0+) and f ′(1−). Specifically for synchrony stability
requires that −1 < [1 − f ′(0+)][1 − f ′(1−)] < 1 where the + and −
superscripts indicate the limit from the right and left, respectively
(Oprisan and Canavier, 2001; Achuthan and Canavier, 2009). The
quantity [1 − f ′(0+)][1 − f ′(1−)] is a scaling factor that operates
in the vicinity of synchrony and multiplies the phasic deviation
from synchrony on one cycle to give the deviation on the next
cycle.

If infinitesimally small delays are introduced, each spike no
longer affects the timing of the very next spike in the same neuron
via the feedback loop through the partner (Figure 3A). Instead,
the effect is felt on the second spike after the spike that trig-
gered the input, so k = 2 and the stability criterion becomes
−1 < [1 − f ′(0+) − f ′(0+)] < 1 (Woodman and Canavier, 2011).
For the negative slopes just to the right of zero, the scaling factor
1 − f ′(0+) − f ′(0+) is >1, resulting in deviations from synchrony
that grow and render synchrony unstable. The major effect is not
the change in the form of the stability criterion, but rather the
loss of the stabilizing slope at a phase just to the left of one (1−),
where the slope is nearly 1 so the scaling factor is nearly 0. The
bottom line is that the slope of the left branch of PRC for excita-
tion does not favor synchrony at short delays; therefore, zero time
lag synchrony with mutual excitation is not robust to delays for
this PRC shape. Since the stimulus interval is equal to the delay,
the normalized delays and input phases on the PRC are numeri-
cally equal and synchrony remains unstable along the left branch
of the PRC in Figure 4A until the normalized delay exceeds φCL

(blue circles in region including the label e in Figure 4C). The
neutrally stable causal limit branch emerges at that point with one
time lag equal to the delay and the network period as shown in
Figure 3E. Recall that the scaling factor that determines stabil-
ity is 1 − f ′(φ1) − f ′(φ2) for k = 2. Both input phases are the
same (φ1 = φ2) and fall on the causal limit line with a slope of
1 [f ′(φ1) = f ′(φ2) = 1]. Therefore, the scaling factor that deter-
mines whether perturbations from synchrony grow or decay is
equal to −1. This implies that synchrony is neutrally stable, which
means that perturbations do not decay; also the negative sign
of the scaling factor guarantees that the firing order switches on
every cycle preventing convergence to exact synchrony as shown in
Figure 2E.

WHEN DO YOU GET UNEQUAL TIME LAGS THAT TRANSITION BETWEEN
SYNCHRONY AND ANTIPHASE?
In the leader–follower mode shown in Figure 2B, the follower
neuron (red trace) but not the leader (black trace) fires immedi-
ately upon the delayed receipt of an input (see Figure 3B), thus its
phase locking point lies in the causal limit region of the PRC. This
particular mode has a conduction delay of 20% of the period,
and is indicated by the open circles in the predictive plot for
k = 1 in Figure 1D as well as by the black squares above and
below the letter b in Figure 4C. As illustrated schematically in
Figure 3B, one time lag (t lLF) is equal to the delay δ, and the
stimulus interval for the leader (tsL) is exactly twice the delay.
Therefore the PRC in Figure 4B is plotted so that the normalized
stimulus intervals for the leader (the phase φL) line up with the
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corresponding normalized delay (half the stimulus interval). For
each φL on the left branch, the leader–follower mode for k = 1
exists if there is a corresponding φF point on the right, causal limit
branch with the same resetting value, as illustrated by the horizon-
tal dashed line. This leader–follower solution branch ends at φCL

and coincides with the stabilization of the antiphase mode. The
ability of a delayed input to immediately trigger a spike guarantees
stable solutions for which the time lag is equal to twice the delay
(see caption of Figure 3D) and enables near synchrony with short
time lags. For k = 1, the scaling factor for deviations from the
phase-locked mode is [1 − f ′(φF )][1 − f ′(φL)], which is 0 given
that f ′(φF ) is 1, so convergence is rapid.

The defining characteristic of the antiphase mode (Figures 2C
and 3C) is that the two time lags are equal, the two stimulus
intervals are equal and the two recovery intervals are equal. Each
stimulus interval is also equal to the recovery interval plus twice
the delay: PφAP = P − PφAP + Pf(φAP) + 2δ. This implies that
the phase at which an input is received in the antiphase mode is
φAP = [1 + f(φAP)]/2 + δ/P. For zero delay, the intersection of the
line y = 2φ − 1 with the PRC occurs at φAP, because on that line
φ = [1 + f(φ)]/2. In Figure 4, for normalized delays less than φCL,
the phase corresponding to the antiphase mode falls on the left,
unstable branch of the PRC. The stability of antiphase at zero delay
is critical: the stability of this mode at 0 usually implies the absence
or lack of stability of the near-synchrony modes (squares with
short delays) and competes with synchrony if it exists. Beyond φCL

the recovery intervals become 0, so the stimulus intervals become
equal to twice the delay and the region between the vertical dashed
lines in Figure 4B forms the boundaries for the stable antiphase
mode (black circles in the vicinity of c in Figure 4C), as the time
lags become exactly equal to the delay, and the phase at which an
input is received in the stable antiphase model falls on the stable
causal limit branch in Figure 4B, where the phase is twice the
normalized delay. The scaling factor for k = 1 antiphase is given
by [1 − f ′(φAP)][1 − f ′(φAP)], which is 0 on the causal limit line
and implies convergence within a single cycle in the neighborhood
of the fixed point.

The antiphase mode loses stability because φAP “wraps around”
and falls on the destabilizing left branch of the PRC for delays
greater than half the intrinsic period (Woodman and Canavier,
2011). For normalized delays between 0.5 and φCL, the leader–
follower mode reappears (Figure 2D and region near d in
Figure 4C). For the k = 2 leader–follower mode, the sum of the
stimulus intervals equal to twice the delay (Figure 3D). Using the
definition of the stimulus intervals, we obtain that the normalized
delay is equal to (φL + φF )/2, marked as open circles in the PRC in
Figure 4A. The horizontal dashed lines show a minimum normal-
ized delay of about 0.5 is required for φL = 0 and φF = 1 + f(0),
and a maximum normalized delay of φCL, beyond which causal
limit synchrony emerges as described above. The scaling factor
for the k = 2 leader–follower mode is 1 − f ′(φL) − f ′(φF ). Since
f ′(φF ) = 1, the scaling factor reduces to −f ′(φL), which is positive.
If the latter slope is <1, which it generally is, stability is guaranteed.

In order to confirm that our graphical analysis of the PRC
yields the correct predictions for modes with unequal time lags
(specifically leader–follower modes for the LIF model) regardless
of whether the PRC is right or left skewed, as well as to confirm

that the stable synchronous modes results from the steep slope at
1− and not directly from right skew, we constructed the coun-
terexample in Figure 5. The pulse coupling was made to be very
strong in order to extend the causal limit region of the PRC in
Figure 5B leftward. Figure 5A illustrates with one example set
of initial conditions that for zero delay, all initial conditions con-
verge to synchrony. Synchrony at zero delay remains stable, and
the intersection of the line y = 2φ − 1 with the PRC that gives the
stability of the antiphase mode at zero delay still falls on the unsta-
ble branch, and the leader–follower modes with unequal time lag
still mediate a gradual transition from synchrony to antiphase as
the conduction delays are lengthened. At a delay corresponding
to the value φCL, the antiphase mode is stabilized. This extreme,
artificial example that shows that right skew is not required for
synchrony at zero delay nor the gradual transition with near syn-
chronous modes at small delays. However, in the more realistic
examples given in the next section, increasing right skew does
promote synchrony and near synchrony for excitatory coupling.

LEFT SKEW STABILIZES ANTIPHASE AT SHORT DELAYS AND
PROMOTES BISTABILITY FOR CONDUCTANCE-BASED MODEL
WITH EXCITATORY COUPLING, UNLIKE THE LIF RESULTS
The pulse-coupled LIF is not very physiological, especially with
respect to the instantaneous pulse coupling in the voltage wave-
form. The generic modes observed in the LIF are modified in
networks of real neurons, and their closer analogs, conductance-
based models, because a spike in one neuron cannot immediately
trigger a spike in another – there must be a finite delay. Figure 6A1
shows a typical left skewed type 1 PRC for a Wang–Buzsaki model
neuron receiving excitatory synaptic input. The PRC has a left
branch with a destabilizing slope and a right branch with a stabi-
lizing slope. The vertical dotted line separates the branches. Unlike
the extreme example of left skew for a pulse-coupled LIF neu-
ron given in Figure 5, the left skew in a more realistic model
does not give rise to synchrony with zero delay, nor to the leader–
follower branch with near synchrony at small delays. Instead, the
synchronous mode is unstable for zero delay because the destabi-
lizing slope at 0+ dominates the less steep stabilizing slope at 1−.
Synchrony remains unstable for normalized delays to the left of
the vertical dotted line (red circles to the left of the dotted line in
Figure 6A2). The leader–follower branch does not emerge at small
delays because of the left skew as explained below. One important
consequence of the non-zero recovery intervals in realistic mod-
els (and real neurons) is that synchrony with normalized delays
greater than φCL is stabilized, as opposed to neutrally stable and
unobservable as for the case of the pulse-coupled LIF. The slope
on the right branch is less steep ensuring convergence because the
scaling factor 1 − 2f ′(φ) is guaranteed to have an absolute value
<1 for positive slopes <1. Optimal convergence occurs when the
slope at the locking point equals 0.5.

The most critical result of this paper, which is the effect of skew
on the existence of unequal modes, can be explained as follows.
The key idea is that the same line that determines the location
and hence the stability of the antiphase mode also determines
whether a positive value of the conduction delay can support the
near synchrony that is part of the leader–follower solution branch.
For k = 1, for identical oscillators with identical delays, we obtain
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FIGURE 5 | Right skew is not rigorously required for zero lag synchrony

or leader–follower modes in excitatory pairs. An extreme example was
constructed to show that right skew is not required for these phenomena.
Parameters for the coupled LIF pair are γ = 0.9, S0 = 1, ε = 0.05. (A)

Convergence to synchrony with no conduction delay. (B) Left skewed
phase resetting curve enters the causal limit region beyond the phase φCL
at about 0.4. Again, the dashed line labeled y = 2φ − 1 give the input phase
for the unstable antiphase mode φAP with zero delay. (C) Solution structure
for delays less than half the intrinsic period shows a stable leader–follower
mode with time lags proportional to the delay emanating from synchrony at
zero delay. The symbols have the same meaning as in Figure 4, and all
quantities are normalized by the intrinsic period.

2δ = tsL − trR (see Figure 7A), where trR is recovery interval for
the phase locking point on the right branch and tsL, the stimu-
lus interval for the phase locking point on the left branch of the
PRC. Therefore the recovery interval has to be less than the stim-
ulus interval. [Note that if f(φR) = φR − 1, which occurs when
φR falls in the causal limit region and trR = 0, this condition
is automatically satisfied, as in Figures 4C and 5C.] Substituting
for the recovery and stimulus intervals yields a normalized delay
δ/P0 = (φL+φR)/2 − [1 + f(φR)]/2, where f(φR) = f(φL). Since the
normalized delay has to be non-negative, unequal interval modes
with k = 1 only exist if the average (φL + φR)/2, indicated by the
open circles in Figure 6A1, is greater than or equal to [1 + f(φ)]/2.
Since the phase resetting corresponding to each open circle is given
by the y-axis value, this condition is satisfied for phases that lie
to the right of the dashed line y = 2φ − 1, the same line that
determines the phase φAP for antiphase at zero conduction delay,
because along this line φ = [1 + f(φ)]/2. Since all possible circles
lie to the left of this line in Figure 6A2, no k = 1 branch of solutions
with unequal time lags emerges. However, the vertical dotted line
shows that a k = 2 solution branch (red squares to the right of the
line in Figure 6A2 with unequal time lags does emerge at delays
equal to (φL+φR)/2. In fact, it is easy to see that the k = 2 unequal
times lags (including leader–follower) mode always exists, because
it is not possible for the delay to be negative in this scheme. How-
ever, this mode is not guaranteed to be stable. Figure 7B shows
that for unequal time lag modes with k = 2, δ − tsL = tsR − δ

which implies that the sum of the stimulus tsL and the recovery
intervals trR equals twice the delay: 2δ = tsL + tsR. In this case,
the normalized delay δ/P0 is the average (φL + φR)/2, which is the
same expression as that of the leader–follower mode for k = 2. In
contrast to the LIF example, this branch of solutions with unequal
time lags is unstable because the slope on the destabilizing left
branch dominates due to the shallower slope of a right branch
that does not fall on the causal limit.

The same line representing y = 2φ − 1 gives the phase φAP

antiphase mode for zero delay at the intersection with the PRC
(Figure 6A1). The left skew favors the stability of the antiphase
mode for zero delay because it extends the stabilizing right branch
of the PRC to smaller phases, and this stability persists for a
range of delay values (black circles marked k = 1 in Figure 6A2).
Since φAP = [1 + f(φAP)]/2 + δ/P, increasing the delay shifts the
antiphase mode rightward. The synchronous solution (k = 2) with
φ = δ/P is stabilized by its arrival on the right branch before the
antiphase solution reaches the end of the right branch and loses
stability as it jumps to the left branch. This overlap enables bistabil-
ity for some delays. As delays are further increased, the k increases
to 3 and the generic solutions recur (Woodman and Canavier,
2011). Left skew promotes bistability by increasing the length
of the stabilizing branch compared to the destabilizing branch,
increasing the likelihood that solutions for different k values at the
same delay can be concurrently stable.

RIGHT SKEW FAVORS A GRADUAL TRANSITION FROM NEAR
SYNCHRONY TO ANTIPHASE IN CONDUCTANCE-BASED MODELS
WITH EXCITATORY COUPLING, SIMILAR TO LIF RESULTS
A right skewed PRC (Figure 6B1) was obtained by increasing
the potassium conductance. The antiphase mode again emerges
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FIGURE 6 | Skew influences solution structure of Wang–Buzsaki type 1

excitatory model neuron. (A1) Left skewed type 1 PRC due to excitation.
Simulated at gsyn = 0.06 mS/cm2 and Istim = 1 μA/ms for both neurons. The
intersection of the dashed line y = 2φ − 1 with the PRC gives the phase for
the stable antiphase mode φAP with zero delay. Open circles are the average
(φL + φR)/2 for pairs of phases on the left and right branches with equal
phase resetting. They fall to the left of the dashed line, so there is no
leader–follower branch at early phases. (A2) Predicted solution structure as
delays are varied for two neurons coupled via the PRC in (A1). The two time
lags between the firings of the two neurons are represented by a pair of red

symbols (unstable mode), or a pair of black symbols (stable mode). Only one
symbol is visible for antiphase because the two time lags are equal, indicated
by a filled symbol. For synchrony one time lag is 0. (B1) Right skewed type 1
Wang–Buzsaki PRC with gK = 40 mS/cm2. The antiphase mode for zero delay
falls on the unstable branch. The open circles that indicate the center
between the two branches fall to the right of the dashed line, so there is an
unequal time lag branch at short delays (black squares for k = 1 in B2). The
blue bar shows a delay that falls on this branch. (B2) Predicted solution
structure as delays are varied for two neurons coupled via the PRC in (B1).
k Values are given for the stable (black) branches.

for zero delay at the intersection of the line y = 2φ − 1 (gray
line in Figure 6B1) with the PRC, but the right skew destabi-
lizes the antiphase mode by causing it to fall on the destabilizing
left branch, and the destabilization persists for short delays. The
slope on the right branch at 1− is not in the causal limit region,
and is insufficiently steep to stabilize synchrony with zero delay.
The synchronous solution branch is qualitatively similar to that

for left skew. However, the right skew enables the existence of
the modes with unequal time lags by the same mechanism that
it stabilizes antiphase; shifting the PRC with respect to the line
y = 2φ − 1. In contrast to the open circles representing the aver-
age phase (φL + φR)/2 of a pair with the same resetting, there
are open circles in Figure 6B1 that lie to the right of this line.
The blue bar indicating the phase gap between the line and the
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FIGURE 7 |The leader–follower modes persists approximately as

unequal time lag modes in models with more realistic coupling.

Unlike the leader–follower mode here the recovery interval of the neuron
on the right branch is not 0. (A) For k = 1, 2δ + t rR = tsL, where 2δ + t rR
is shaded in pink and tsL in blue. The normalized delay after substitution of
the recovery and stimulus interval can be rewritten as
δ/P = (φL + φR)/2 − [1 + f (φR)]/2. This gives a criterion for non-negative
delay. (B) For k = 2, 2δ = tsL + tsR . This is obtain by noting that the sum of
the pink intervals tsL + t rR + t lLR + tsR is equal to the sum of the blue
intervals t lLR + δ + t rR + δ and canceling t rR + t lLR from both sides.
Normalized delay is equal to the average of the phase locking points:
δ/P = (φL + φR)/2.

open circle gives the magnitude of the normalized delay for that
mode. The pairs of black squares in Figure 6B2 at short delays
show that the time lag can be quite short for small delays, so near
synchrony can potentially be enabled by right skew in oscillators
with type 1 PRCs. These modes are stable because the right skew
tends to make the slope on the stabilizing right branch steeper
than that on the left, favoring stability by keeping the scaling factor
[1 − f ′(φL)][1 − f ′(φR)] below 1. A positive slope (≤1) decreases
the magnitude of [1 − f ′(φR)], which compensates for [1 − f ′(φL)]
being >1. The unequal modes lose existence at a delay equal to
δ/P0 = (φL + φR)/2 − [1 + f(φR)]/2, where φL = φR, exactly the
same delay δ/P0 = φAP − [1 + f(φAP)]/2 at which the antiphase
mode gains stability because φAP also shifts to the stable right
branch at the point on the PRC at which φL = φR in a bifurcation
that is generic for pairs of oscillators coupled by excitation with
right skewed type 1 PRCs. This is evidenced by the pairs of black

squares coalescing to a region with only one filled circle visible in
Figure 6B2.

A k = 2 branch of unequal time lag solutions emerges before
antiphase loses stability. As in the case of left skew, the average
phase (φL + φR)/2 of a pair with the same resetting is equal to
the normalized delay (see also schematic in Figure 7B) as indi-
cated by the vertical dotted line emanating from the open circle in
Figure 6B1 and demarcating the end of the leader–follower k = 2
branch in Figure 6B2. Unlike the analogous mode for left skew,
this mode is stabilized by the steeper slope of the PRC on the right
branch compared to the left, again caused by the rightward skew,
because the scaling factor 1 − f ′(φL) − f ′(φR) is <1.

LEFT SKEW FAVORS SYNCHRONY THAT IS ROBUST TO SUBSTANTIAL
DELAYS IN PAIRS COUPLED WITH INHIBITION
The effect of potassium conductance on the skew of PRCs mea-
sured in response to synaptic inhibition is opposite the effect
for excitation. Therefore the potassium conductance was reduced
to obtain a left skewed PRC (Figure 8A1) for a Wang–Buzsaki
model neuron receiving an inhibitory synaptic input. For type
1 PRCs in response to inhibition, the slope of the left branch
is stabilizing and the slope of the right branch is destabilizing,
which is the opposite of the situation for excitation. Synchrony
with zero delay is stable for this example with left skew because
the stabilizing slope at 0+ is steeper than the destabilizing slope
at 1−. The robustness of the synchronous solution to delays
is striking, as the synchronous solution (pairs of black circles
with one time lag equal to 0 in Figure 8A2) persists for delay
values nearly half the intrinsic period. The scaling factor for
early synchrony with k = 2 is 1 − 2f ′(φ), where the phase
corresponds to the normalized delay, so for small positive PRC
slopes, the synchronous mode remains stable in the presence of
conduction delays. Intuitively and in contrast to the case for exci-
tation in Figures 3C and 5C, the slope at 1− is not required
for stability, and the loss of the effect of this slope when con-
duction delays are introduced does not affect the stability of
synchrony. Stability of synchrony is lost only when the normal-
ized delay value exceeds the phase that marks the beginning
of the right branch of the PRC with a negative, destabilizing
slope.

Since the antiphase mode for zero delay occurs at a phase deter-
mined by the intersection of the line 2φ − 1 = f(φ) with the PRC,
left skew destabilizes the antiphase mode by extending the unsta-
ble right branch to earlier phases such that this intersection occurs
on the unstable branch as in Figure 8A1. The antiphase mode
is unstable for delays up to about half the intrinsic period (indi-
cated by red filled circles in Figure 8A2 for short delays for k = 1)
because that is the length of the unstable branch. The same mech-
anism that destabilizes antiphase prevents the existence of modes
with unequal time lags for short delays, and also for the most part
destabilizes the k = 2 leader–follower branch of unequal time lags
at delays near 0.5 in Figure 8A2. The open circles in Figure 8A1
marking the average phase for pairs of phases with equal phase
resetting on the left and right branches of the PRC fall to the left
of the 2φ − 1 = f(φ), so they correspond to unrealizable negative
delay values and the k = 1 unequal time lags mode (Figure 7A)
does not exist. The location of the squares in Figure 8A2 indicates
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FIGURE 8 | Synchrony is robust to conduction delays for skewed type 1

PRCs in response to inhibition, although right skew favors antiphase for

small conduction delays. k Values are given for the stable (black) branches.
(A1) Typical type 1 left skewed Wang–Buzsaki PRC with inhibitory coupling,
gsyn = 0.06 mS/cm2 and Istim = 1 μA/ms, gK = 5 mS/cm2. The intersection
of the dashed line y = 2φ − 1 with the PRC gives the phase for the unstable
antiphase mode φAP with zero delay. Open circles are the average (φL + φR)/2
for pairs of phases on the left and right branches with equal phase resetting,
and since they fall to the left of the dashed line, there is no unequal time lag
mode at short delays. (A2) Predicted solution structure as delays are varied
for two neurons coupled via the PRC in (A1). The two time lags between the
firings of the two neurons are represented by a pair of red symbols (unstable
mode) or a pair of black symbols (stable mode). Only one symbol is visible for

antiphase because the two time lags are equal, indicated by a filled symbol.
Synchrony is stable for delays less than about half the intrinsic period, and
antiphase is stable for delays greater than half the intrinsic period. (B1) Type 1
Wang–Buzsaki model right skewed PRC with gsyn = 0.06 mS/cm2 and
Istim = 1 μA/ms, gK = 9 mS/cm2. The line y = 2φ − 1 intersects the PRC on
the stable left branch, so antiphase with zero delay is stable. The open circles
that indicate the center between the two branches fall to the right of the
dashed line, so there is an unequal time lag branch at short delays (red
squares for k = 1 in B2), but it is unstable. The blue bar shows a delay that
falls on this branch. (B2) Predicted solution structure as delays are varied for
two neurons coupled via the PRC in (B1). At the shortest delays, synchrony
and antiphase are bistable. The basin of attraction for antiphase is large at zero
delay but shrinks with increasing delay until antiphase loses stability.

the delay values for the unequal time lags near a delay of 0.5, but
since the destabilizing slope on the right branch is in general less
steep than that on the stabilizing left branch, these modes are
mostly unstable because the scaling factor 1 − f ′(φL) − f ′(φR)
is usually >1. For longer delays, at k = 3 the generic solutions
recur.

RIGHT SKEW FAVORS ANTIPHASE AND BISTABILITY FOR SHORT
DELAYS IN PAIRS COUPLED WITH INHIBITION
Figure 8B1 shows a right skewed PRC of the Wang–Buzsaki model
neuron for the same parameter values as in Figure 6A1 except
for the reversal potential of the synaptic conductance, which is
inhibitory for the PRC in Figure 8B1. The synchronous branch is
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qualitatively the same as for the left skewed PRC in Figure 8A1, and
it is stable for conduction delays up to half the intrinsic period for
the same reasons. However, the antiphase solution branch is qual-
itatively different. Since the antiphase mode for zero delay occurs
at a phase determined by the intersection of the line 2φ − 1 = f(φ)
with the PRC, right skew stabilizes the antiphase mode by extend-
ing the stable left branch to later phases such that this intersection
occurs on the stable branch as in Figure 8B1. The antiphase mode
is stable for delays up to about a 10th of the intrinsic period (indi-
cated by black circles in Figure 8B2 for time lags of about 0.5 at
short delays for k = 1) because that is the length of stable branch
at phases greater than φAP. In contrast to Figure 6B for inhibition,
here the same mechanism that stabilizes antiphase also enables
the existence of modes with unequal time lags for short delays.
The open circles in Figure 8B1 marking the average phase for
pairs of phases with equal phase resetting on the left and right
branches of the PRC fall to the right of the 2φ − 1 = f(φ), so
they correspond to the delay values for the k = 1 unequal time
lags mode indicated by the red squares in Figure 8B2 that fall
between stable synchrony and stable antiphase at short delays.
The blue bar in Figure 8B1 indicating the phase gap between
the line and the open circle gives the magnitude of the delay for
that mode. Because the destabilizing slope on the right branch is
steeper than that on the stabilizing left branch, the scaling factor
[1 − f ′(φL)][1 − f ′(φR)] is < −1, so these modes are unstable.
Significantly, the structure of the unequal modes solution with
small time lags at early delays transitioning into delays equal to
half the network period causes the basin of attraction for syn-
chrony to be quite small for very short delays such that most
initial conditions lead to antiphase. However, this effect quickly
dissipates with increasing delay and synchrony quickly becomes
robust over a significant region of delays as in the case for left
skew.

The location of the open circles in Figure 8B1 indicates the
delay values for the unequal time lags for k = 2 near a delay of
0.5, but because the destabilizing slope on the right branch is
steeper than that on the stabilizing left branch, the scaling factor
1 − f ′(φL) − f ′(φR) exceeds 1, destabilizing these modes as indi-
cated by the second set of red squares in Figure 8B2. For type 1
inhibition, right skew rather than left skew promotes bistability,
because bistability depends upon lengthening the stable branch
and the slopes and synchronization tendencies of the left and
right branches of the PRC are inverted compared to excitation.
For longer delays, at k = 3 stable antiphase recurs. The bottom
line is that for type 1 PRCs in response to inhibition, left skew
destabilizes and right skew stabilizes the antiphase mode, there-
fore left but not right skew favors synchrony at short conduction
delays.

DISCUSSION
SUMMARY
The major result of this paper is to understand how the shape of
the PRC determines the generic modes that are observed in pairs
of neurons (or other oscillators) with no delays, and how conduc-
tion delays affect the tendency of pairs of neurons to synchronize.
Specifically, a gradual transition from synchrony to antiphase with
increasing conduction delay exists only if the center of the two

branches lies to the right of the invariant line whose intersection
with the PRC determines the intrinsic phase at which each neu-
ron receives an input in the antiphase mode with no delay. For
type 1 PRCs and mutual excitation, right but not left skew enables
near synchrony at short delays by shifting the center of the two
branches to the right of this invariant line. In contrast, for type
1 PRCs and mutual inhibition, left but not right skew favors syn-
chrony at short delays by destabilizing the competing antiphase
mode by causing the intersection with the invariant line to occur
on the unstable right branch. We show that exact synchrony with
no delay for type 1 inhibitory but not excitatory PRCs is robust
to conduction delays, because only the PRC for excitation relies
on the stabilizing slope of the PRC at late phases to stabilize syn-
chrony with no delay. A recent experimental study (Wang et al.,
2012) confirmed the fragility of the synchronous mode for exci-
tatory synaptic coupling in the presence of conduction delays and
the robustness of this mode for inhibition. Generic solution struc-
tures are given herein for type 1 PRCs; however, the existence and
stability criteria for all generic modes are general and apply to
any shape PRC. Consistent with previous work, the effect of skew
also manifests itself via differential effects on the slopes of the
two PRC branches. Several stability features of the generic solu-
tions for excitatory coupling depend critically on the increase in
the steepness of the slope of the PRC at late phases mandated by
causality.

EXTENSION TO OTHER PRC SHAPES
For PRCs with more than two branches, any two branches could
in principle give rise to the solutions with unequal time lags that
provide a gradual transition between synchrony and antiphase. For
example, a type 2 PRC in response to excitation typically has two
lobes (Ermentrout, 1996): at early phases the first lobe consists
of delays and the second lobe of advances. If the center of the
second lobe lies to the right of the invariant line, then modes with
unequal time lags and relatively short delays could be enabled
and stabilized, so right shift of the extremum of the second lobe
would favor such modes. Furthermore, the branch between the
maximum advance and the maximum delay is unstable, so shifting
the peaks so that the intersection with the invariant line does not
fall on this branch removes bistability of antiphase with synchrony
at zero delay, favoring synchrony. As the frequency is increased, the
first lobe of the type 2 PRC shrinks (Fink et al., 2011). In principle
the effect of any PRC shape can be understood by applying the
methods described in this study. The only critical assumptions are
that each neuron emits one spike for every spike emitted by the
partner, that the PRC of each isolated neuron in response to an
input from the partner is known, that the PRC still characterizes
the response of the neuron to an input received within the coupled
network, and that the effect of each input does not persist after the
next spike in the same neuron that received the input.

GENERIC NATURE OF OUR RESULTS COMPARED WITH SPECIFIC MODEL
APPROACHES
The three major approaches (Ermentrout and Chow, 2002) to
studying coupled oscillators are (1) to study specific model such
as the LIF model or the Hindmarsh–Rose model, (2) to use a
weak coupling assumption, or (3) to use a pulsatile coupling
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assumption. We chose to use the latter. Previously, Dhamala et al.
(2004) showed that time delays can enhance neural synchrony
by calculating the largest Lyapunov exponent for time delayed
networks of diffusively coupled Hindmarsh–Rose model neurons.
Clearly our methods also illustrate how delays can enhance neural
synchrony. For example, in Figure 6A, synchrony is unstable for
delays less than about a third of the intrinsic period, but is sta-
ble for delays from a third of an intrinsic period to an intrinsic
period. For a 40-Hz gamma oscillation, regions separated by 8–
25 ms would synchronize optimally. Our approach does not rely
on knowledge of the differential equations that describe particular
neurons, only of the relevant PRC, therefore it is quite general.

Our work on the LIF oscillator was motivated by studies of pul-
satile coupling (Ernst et al., 1995, 1998) that extended the results
of Peskin (1975) and Mirollo and Strogatz (1990) to the case of
two pulse-coupled oscillators reciprocally coupled with delays up
to half the intrinsic period. Their assumptions implicitly defined
a PRC and allowed the construction of return maps. The stable
fixed points of these maps revealed that for small delays and strong
excitatory coupling, at all coupling strengths synchronization with
a phase lag equal to the delay was found to be always stable, anal-
ogous to our leader–follower mode. For inhibition, bistability
between synchrony and antiphase was observed but as the cou-
pling strength was increased only synchrony remained. Zeitler
et al. (2009) studied the bifurcation structure of pairs of similar
oscillators also coupled via conduction delays and noted that for
these systems, only antiphase and synchrony could be stable for
identical, identically coupled oscillators, but modes with unequal
time lags could acquire stability in pairs coupled by excitation, sim-
ilar to what we have found. The solution structure of simplified
models such as the pulse-coupled LIF is not always representa-
tive of that obtained for conductance-based models. Real neurons
(and conductance-based models) can exhibit much more nuanced
PRCs, and the theoretical framework presented here includes and
expands previous work on pulse-coupled oscillators with delay.

DIVERGENT PREDICTIONS OF PULSATILE COUPLING THEORY VERSUS
WEAK COUPLING THEORY
Weak coupling theory cannot be used to analyze pulsatile coupling
of the type proposed by Peskin (1975) and Mirollo and Strogatz
(1990), in which a finite and constant perturbation in voltage
results from a presynaptic threshold event, with the caveat that an
increase in the postsynaptic membrane potential beyond threshold
has no additional effect. The PRC for an infinitesimal perturbation
in membrane potential (equivalent to an infinitesimal perturba-
tion in membrane current) has been derived for the LIF oscillator
(Brown et al., 2004), and the PRC given in Eq. 1 for strong cou-
pling cannot be derived from the infinitesimal PRC. Furthermore,
the stability results for weakly coupled LIF oscillators and pulse-
coupled oscillators are not in agreement. Weakly coupled type 1
oscillators do not synchronize with excitation (Hansel et al., 1995),
but pulse-coupled oscillators synchronize both for the two oscil-
lator circuit (Peskin, 1975) and all-to-all coupled circuits of N
oscillators (Mirollo and Strogatz, 1990). Weak coupling does not
account for the increase in the slope on the right branch imposed
by causality as the conductance is increased, but instead assumes
the PRC scales with increasing coupling the same way at all phases.

This is an important limitation of weak coupling theory that has
not been previously documented, and applies to synchrony in all
circuits of oscillators that have PRCs with a destabilizing slope at a
phase of 0 but a stabilizing slope at a phase of 1. Another disagree-
ment between weak coupling theory and strongly pulse-coupled
theory is that weak coupling (for example, Ladenbauer et al., 2012)
assumes that in the presence of delays, synchrony always exists with
both neurons receiving an input at zero phase, but clearly for oscil-
lators coupled by strong excitation, at sufficiently long delays, the
synchronizing input actually occurs at a late phase on or near the
causal limit region of the PRC. Finally, weak coupling does not
recognize how the stability criterion changes with the duration of
the feedback loop.

FUNCTIONAL SIGNIFICANCE: PRC SKEW AND THUS
SYNCHRONIZATION PROPERTIES CAN BE MODULATED
Ermentrout et al. (2012) proposed that modulation of intrinsic
ion channels could quickly reverse the synchronization tendencies
of neurons by altering the PRC shape, providing a switch to turn
synchrony on and off rapidly. There are several ways in which alter-
ing the conductances (Ermentrout et al., 2001, 2012; Pfeuty et al.,
2003; Gutkin et al., 2005; Stiefel et al., 2009) can change the shape
of a type 1 PRC for a regularly spiking neuron. Reducing restora-
tive potassium currents or increasing regenerative sodium currents
favors left skew if these currents are active at rest, whereas manip-
ulations in the opposite direction favor right skew. This principle
was used to manipulate the skew of the PRC in the Wang–Buzsaki
model neuron used in this study. For the baseline potassium con-
ductance value gK = 9 mS/cm2, the PRC for the Wang–Buzsaki
model neuron in response to excitation was left skewed but the
PRC in response to inhibition was right skewed. For excitation,
gK was increased to change the PRC skew from left to right, and
for inhibition, the gK was decreased to change the skew from right
to left. Taken to the extreme, manipulations of currents active
at rest that favor right skew can change the underlying bifurca-
tion and PRC type from 1 to 2 (Ermentrout et al., 2001; Prescott
et al., 2008; Stiefel et al., 2008), which often changes the stability
by changing the sign of the slope at zero phase. On the other hand,
manipulations of currents that are only activated by spikes can-
not in general change the PRC type, but they can alter its shape
(Ermentrout et al., 2001, 2012; Gutkin et al., 2005). Ermentrout
et al. (2001) also showed that adding either recurrent inhibition
or adaptation with a sharp, depolarized threshold such that it was
only evoked by spikes, preserved the type 1 character of the PRC
but shifted the skew to the right as expected for increases in out-
ward current. However, an exception to this general pattern was
found in which increasing an outward current that contributes to
the afterhyperpolarization following a spike promoted left rather
than right skew, because the primary effect of the change was
to increase sodium channel availability (Ermentrout et al., 2012).
Thus, there are many plausible modulatory targets available for
changing the synchronization tendencies of biological networks.

PREVIOUS STUDIES EXAMINING SKEW IN THE CONTEXT OF WEAK
COUPLING WITH NO DELAY
Weak coupling (Ermentrout and Kopell, 1990, 1991;
Ermentrout, 2002) identifies one to one phase-locked modes
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in identical coupled pairs by finding the zero crossings of
H(φ) − H(1 − φ), in which the H function is equivalent to our
phase resetting f(φ) except opposite in sign. Instead of neglecting
changes in frequency caused by the coupling, our method finds
the equivalent of the zero crossings of H(φ) − H[1 − φ − H(φ)],
which contains an extra H function within the argument of
another H function in order to update the elapsed time by the
non-negligible resetting in the partner neuron. One consequence
of neglecting the contribution of phase resetting to the network
period is that for weak coupling, antiphase is always assumed to
occur at an intrinsic phase of 0.5 instead of 2φAP − 1 = f(φAP). A
critical role for PRC skew in networks of type 1 neurons connected
by mutual synaptic excitation was demonstrated by Ermentrout
et al. (2001), who showed that for certain model neuron pairs with
slightly right skewed type 1 PRCs in response to excitation, both
synchrony and antiphase were unstable, and near antiphase was
the only stable solution. They used weak coupling to explain their
results, and plotted H(1 − φ) − H(φ) to get the phase-locked
modes from the zero crossings and the stability from the slope
H ′(1 − φ) − H ′(φ), which must be >0 for stability. The stabil-
ity criterion is slightly different than the ones we utilize because
changes in the network period due to resetting are neglected as
explained above. Nonetheless, the stability analysis is usually quite
similar, for example, the stability of synchrony is determined
entirely by whether the slope of the PRC is steeper before or after
the spike, with the former case implying stability for the case of
pairs of neuron coupled via type 1 PRCs in response to excita-
tion. Ermentrout et al. (2001) then skewed type 1 PRCs farther
to the right by flattening the slope at early phases while increas-
ing the steepness at late phases. The increased skew caused the
stable zero crossings to shift toward near synchrony, in which
one neuron of the pair fires just before the other, as shown in
our Figure 6B. Our extension of their work is that we explain
directly in terms of the shape of the PRC how the stabilization
occurs by bringing the unequal time lags solution branch into
existence.

Ermentrout et al. (2012) also give an example of a different
stabilization mechanism for a pair of Golomb and Amitai (1997)
model neurons with reciprocal synaptic excitation and type 1 PRCs
in which exact synchrony is stable for the baseline parameters
given because of the right skew of the PRC. In this mechanism
the right skew preferentially steepens the stabilizing slope at 1−
compared to the nearly flat destabilizing PRC slope at 0+. Pfeuty
et al. (2003) had complementary results showing that skewing
the PRC toward the left stabilized the antiphase mode for two
mutually electrically coupled neurons by causing the antiphase
mode near a phase of 0.5 to fall in the region of stable slope.
Similarly, Zahid and Skinner (2009) showed that for pairs of elec-
trically coupled neurons, right skew favors small phase lags because
both synchrony and antiphase were unstable for the type 1 PRCs
they observed, but sufficient left skew can stabilize antiphase and
cause it to be globally attracting. In that study, skew was quan-
tified by the fraction of the area under the PRC that fell to the
left of a phase of 0.5, and weak coupling theory was invoked to
show how destabilization of the antiphase mode by right skew led
to the emergence of nearly synchronous modes with one small
time lag. Electrical coupling is more analogous to excitation than

inhibition in spiking neurons if the effect of the depolarizing
effect of the suprathreshold spike dominates (Chow and Kopell,
2000), so these results are consistent with the framework pre-
sented in this paper. The advance in theory presented in this paper
is that we do not make the weak coupling assumption, but instead
show graphically that the destabilization of antiphase mode and
the emergence of near synchrony depends on the location of the
peak of the PRC relative to the location of the line that gives the
phase of the antiphase mode at zero delay in terms of the intrinsic
period.

PREVIOUS STUDIES EXAMINING SKEW IN THE CONTEXT OF WEAK
COUPLING WITH CONDUCTION DELAY
Remme et al. (2009) examined oscillatory dendritic compartments
separated by passive cylindrical dendritic compartment of dif-
ferent electrotonic lengths, somewhat analogous to introducing
a delay. Under weak coupling assumptions, they found that a
left skewed PRC, or interaction function H(φ), yields bistabil-
ity between synchrony and antiphase, whereas a right skewed
interaction function yields gradual transitions between the two
modes as the delay was increased. Again, results for electrical
coupling parallel our results for synaptic excitation in Figure 6.
Ladenbauer et al. (2012) also showed that increasing right skew
in pairs of type 1 neurons coupled by synaptic excitation favored
smaller phase lags decreasing to 0 at no delay, and favored the
leader–follower mode by destabilizing the antiphase mode in the
presence of conduction delays. For inhibition, increasing right
skew stabilized the antiphase mode and promoted bistability with
synchrony that persisted with short conduction delays. The weak
coupling analysis of an adaptive exponential integrate and fire
neuron (aEIF) in Figure 6 of that paper is consistent with our
Figures 6 and 8.

EFFECT OF DISCONTINUITIES
The criteria for exact synchrony given in this paper are only strictly
valid if there is no resetting in the cycle following the perturbation
(Oprisan et al., 2004; Achuthan and Canavier, 2009), called sec-
ond order resetting. Second order resetting is most prominent for
inputs given just before a spike, so adding conduction delays for
the most part precludes receipt of an input just before a spike and
minimizes the importance of second order resetting. A complete
treatment of stability with discontinuities must take into account
that the first order phase resetting at a phase of 1 is 0 because
an input applied after the cycle is over cannot affect that cycle.
Effects of discontinuities are treated in Ladenbauer et al. (2012),
Dodla and Wilson (2013), and Wang et al. (2012, supplementary
material).

IMPLICATIONS OF GENERIC MODES FOR LARGER NETWORKS
Some of the results presented herein may also be extendable to net-
works of all to all connected neurons. For type 1 PRCs in response
to excitation, the right branch of the PRC tends to stabilize syn-
chrony, since if a neuron spikes later than the group, it receives
an input at a late phase (1−, just to the left of 1) that advances
it more than the group on the next cycle bringing it closer to
synchrony. On the other hand, the left branch tends to destabi-
lize, since a neuron that spikes before the group receives an input
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at an early phase (0+, or just to the right of 0) that advances it
more than the group, taking it farther from synchrony. Simula-
tions of pulse-coupled LIF neurons (Ernst et al., 1995; Coombes
and Lord, 1997) have previously shown that the globally attract-
ing synchronization of N pulse-coupled oscillators (Peskin, 1975;
Mirollo and Strogatz, 1990) with type 1 PRCs comprised of all
advances (excitation) is easily disrupted by conduction delays.
Therefore the population activity is predicted by the activity of
a single pair, in which synchrony is also disrupted by conduction
delays.

Another possible extension is to clustering in larger networks.
Bistability between synchrony and antiphase supports cluster-
ing (Gutkin et al., 2005; Jeong and Gutkin, 2007; Achuthan and
Canavier, 2009). Chandrasekaran et al. (2011) have shown how
two clusters that fire even slightly out of phase with each other
can enforce synchrony within each cluster, even if exact synchrony
within the isolated cluster in unstable, so this mechanism should
generalize to enforce near synchrony in larger networks with
one cluster firing slightly before the other. The leader–follower
mode has been shown to stabilize clusters to some degree in
networks with delay (Ernst et al., 1995). The strongly stabiliz-
ing effect of the causal limit region of excitatory PRCs is only
adequately considered using the methods for strong coupling
described herein.

The most important extension of these results is to synchro-
nization between distal brain regions. Previously it was thought
that long projections connecting brain regions were excitatory,
but recently long distance inhibitory connections have also been
identified (Melzer et al., 2012). For two mutually coupled popu-
lations in two different brain regions, the results from this study
and our previous study (Wang et al., 2012) show that inhibitory
projections may more reliably synchronize these populations in
the presence of conduction delays between distal regions, and that
some heterogeneity and noise can be tolerated. Alternatively, if
the connections are excitatory and the PRCs type 1, then right
skew in the PRC is likely required during episodes of near syn-
chrony. If the unit oscillator is not a single neuron, but rather
a network oscillator, the relevant PRCs for the network oscilla-
tion can be measured and analyzed for synchronization tendencies
in a similar fashion to that for a single neuron (Akam et al.,
2012).

A final possible extension relates to the dynamic relay hypoth-
esis which suggests that synchronization among distal neurons
can be achieved via symmetric coupling through a hub neuron.
Viriyopase et al. (2012) studied the simplest such system with two
outer neural oscillators each reciprocally connected to a third
neuron, the relay neuron via identical reciprocal delays. They
identified a “pacemaker” regime in which all three neurons fired
simultaneously in the causal limit synchrony mode, that is, all
neurons fired immediately upon receiving delayed input from the
neuron or neurons to which it is connected. They also identified
two other modes, “slave synchrony” in which the outer neurons
were leaders and the relay neuron was a follower, and a “driven
synchrony” mode in which the converse was true. Therefore the
concepts developed herein for two neurons are directly extend-
able to N neurons each reciprocally connected to a hub (but not
directly to each other).
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