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ABSTRACT Coxsackievirus B3 (CVB3) contributes to the development of myocarditis, an inflammatory
heart disease that predominates in males, and infection is a cause of unexpected death in young individuals.
Although gonadal hormones contribute significantly to sex differences, sex chromosomes may also
influence disease. Increasing evidence indicates that Chromosome Y (ChrY) genetic variants can impact
biological functions unrelated to sexual differentiation. Using C57BL/6J (B6)-ChrY consomic mice, we show
that genetic variation in ChrY has a direct effect on the survival of CVB3-infected animals. This effect is not
due to potential Sry-mediated differences in prenatal testosterone exposure or to differences in adult
testosterone levels. Furthermore, we show that ChrY polymorphism influences the percentage of natural
killer T cells in B6-ChrY consomic strains but does not underlie CVB3-induced mortality. These data un-
derscore the importance of investigating not only the hormonal regulation but also ChrY genetic regulation
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of cardiovascular disease and other male-dominant, sexually dimorphic diseases and phenotypes.

Coxsackievirus infection of the heart can lead to myocarditis and cause
unexpected death in individuals less than 40 years old (Woodruff
1980). Like most heart diseases, myocarditis predominates in males
by a 2:1 ratio and displays a greater severity of disease over females.
Susceptibility is greatest in men during the first year of life and after
puberty. However, females are often rendered susceptible to myocar-
ditis during pregnancy, during the postpartum period, and in indi-
viduals over 40 years of age, suggesting a role for hormonal influences
on disease development (Woodruff 1980).

The coxsackievirus B3 (CVB3)-induced mouse model of experi-
mental myocarditis exhibits many of the same characteristics as the
human disease (Gauntt et al. 1979; Grodums and Dempster 1959b;
Huber et al. 1982; Matsumori and Kawai 1980; Reyes and Lerner
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1985; Wong et al. 1977). Adult male mice less than 40 weeks of age
are more susceptible to CVB3-induced myocarditis than females of
the same age. However, both males and females less than 3 weeks of
age or over 40 weeks of age are equally susceptible, indicating that age-
related changes in sex-associated hormones may influence exper-
imental myocarditis susceptibility (Grodums and Dempster 1959a;
Lyden et al. 1987a). In this regard, susceptibility was significantly
reduced in male mice that were orchiectomized prior to infection
(Huber et al. 1982). However, when orchiectomized males received
exogenous testosterone or progesterone prior to infection, disease
susceptibility returned to similar levels seen in intact males (Huber
et al. 1982). In contrast, treatment of orchiectomized males with
estrogens provided protection from disease. Moreover, in vitro
experiments revealed that male and female cardiomyocytes
exhibited enhanced infectivity when cultured in the presence of
progesterone or testosterone, but not estradiol, due to increased
virus binding to the cell surface (Lyden et al. 1987b). Further
studies demonstrated that testosterone induced an approximately
6-fold increase in virus receptor expression in cardiomyocytes
(Lyden et al. 1987a). Therefore, these studies indicate that andro-
gens enhance virus receptor expression and disease susceptibility,
whereas estrogens provide protection from disease.

Sex hormones also influence the immune response mounted against
CVB3 infection in mice. Susceptibility to CVB3-induced myocarditis in
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males is dependent on the induction of a CD4* Th1 cellular response,
and the immune bias toward a Thl phenotype requires activated yd
Tcells (Huber and Pfaeffle 1994; Huber et al. 2001). Orchiectomy led to
an increase in immune regulatory cells in the heart, including regulatory
T cells, suggesting that testosterone inhibits anti-inflammatory cell re-
cruitment and enhances susceptibility to disease (Frisancho-Kiss et al.
2009). In contrast, resistance to disease in females was associated with
a preferential Th2 response to infection (Huber and Pfaeffle 1994).
However, treatment of female mice with testosterone in vivo caused
a shift from the protective Th2 cell response toward the Th1 phenotype,
leading to enhanced susceptibility in these mice (Huber and Pfaeffle
1994).

Clearly, testosterone plays a critical role in the sexual dimorphism
in susceptibility to myocarditis by regulating not only viral infectivity
but also differences in innate and adaptive antiviral immune
responses. While a clear role for sex-associated hormones, and
particularly testosterone, can be observed in the male-specific sexual
dimorphism during CVB3 pathogenesis, the effect of Chromosome Y
(ChrY) on disease has not been examined. Here, we provide direct
evidence that ChrY regulates survival following CVB3 infection and
suggest that the mechanism is unrelated to biological differences in
testosterone production among the strains.

MATERIALS AND METHODS

Mice

C57BL/6J, C57BL/6J-ChrY!29SUSIml/NaJ,  C57BL/6J-ChrYA/NaJ,
C57BL/6J-ChrYMET/],  C57BL/6JEi-ChrYAKRJ/Ei], C57BL/6JEi-
ChrYBUB/BN/Ei], C57BL/6JEi-ChrYEWES/Ei], C57BL/6JEi-ChrYRF/)/
EiJ, C57BL/6JEi-ChrYSY/Ei], C57BL/6JEi-ChrYST™/Ei], C57BL/
6JEi-ChrYWSP/E/Ei], B6Ei.MA-AChrYMAMYI/E{], and B6Ei.SWR-
AChrYSWRI/Ei] were purchased from the Jackson Laboratory (Bar
Harbor, ME) and bred and maintained on the C57BL/6] background
in the animal facility at the University of Vermont. B6-ChrY!2°F11/Pas
and B6-ChrYNK-129/Pas mice were obtained from the Pasteur Insti-
tute (Paris, France) and bred and maintained in the animal facility at
Brown University. Only male mice were used in the experiments. All
animal protocols were approved by the Animal Care and Use Com-
mittees of the University of Vermont and Brown University.

Virus and infection

The H3 variant of CVB3 was made from an infectious cDNA clone as
previously described (Knowlton et al. 1996). Mice were infected by
intraperitoneal injection of 0.5 ml of PBS containing 100 or 50 PFU
CVB3 and killed seven days after infection.

Serum testosterone

Eight-week-old mice were bled by tail vein, and the samples were spun
down for 20 min at 16,000 g to extract serum. Serum testosterone
levels were measured using a testosterone enzyme immunoassay (EIA)
kit according to the manufacturer’s instructions (Assay Designs, Ann
Arbor, MI). Briefly, serum samples were diluted with 1 part steroid
displacement reagent for every 99 parts sample. Each sample was
diluted 1:10 and 1:20 in PBS and added to the 96-well plate in dupli-
cate, followed by the primary antibody, and incubated at room tem-
perature for 1 hr while shaking. Wells were washed and conjugate was
added to each well and incubated at room temperature for 1 hr while
shaking. Wells were washed, and the pNpp substrate was added to
each well and incubated at 37° for 1 hr without shaking. Stop solution
was added, and the plate was read immediately with optical density at
405 nm.
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Lymphocyte isolation

Perfused and intact liver, spleen, and thymus were extracted from 8-
week-old mice and placed in 50 ml tubes containing RPMI 1640
media with 10% FCS and shipped overnight on ice to Brown
University. Thymocytes were minced and washed once in 1% PBS-
serum. To obtain splenic lymphocytes, spleens were minced, passed
through nylon mesh (Tetko, Kansas City, MO), washed once in 1%
PBS-serum, and then cell suspensions were layered on lympholyte-M
(Cedarlane Laboratories Ltd., Canada). Hepatic lymphocytes were
prepared by mincing and passing through a 70 mm nylon cell strainer
(Falcon, Franklin Lakes, NJ). After washing three times in 1% PBS-
serum, cell suspensions were layered on a two-step discontinuous
Percoll gradient (Pharmacia Fine Chemicals, Piscataway, NJ). Sple-
nocytes and hepatic lymphocytes were collected after centrifugation
for 20 min at 900 g.

Antibodies and flow cytometric analysis

TCRB-FITC (or APC), CD8a-efluor 450 (or Pacific blue), CD4-APC
(or perCP), CD44-efluor 780, NK1.1-PE-Cy7, and CD24-FITC were
purchased from eBioscience (San Diego, CA). CD1d Tetramer-PE was
obtained from the National Institute of Allergy and Infectious Disease
MHC Tetramer Core Facility at Emory University (Atlanta, GA). Cells
were suspended in buffer composed of PBS containing 1% FCS. Cells
were first incubated with 2.4G2 mAb and stained with mAbs specific
for cell surface markers for 20 min at room temperature. Depending
on the experiment and the tissue, from 2.5 X 10° to 1 x 10° events
were collected in the lymphoid gate on a FACSAria. The data were
analyzed using FlowJo (Tree Star Inc., Ashland, OR).

Statistics

Statistical analyses were performed using GraphPad Prism version 5.0c
(GraphPad Software, San Diego, CA). The specific tests used are detailed
in the figure legends. A P value = 0.05 was considered significant.

RESULTS AND DISCUSSION

ChrY polymorphism regulates CVB3-induced mortality

To test whether ChrY polymorphism influences survival following
CVB3 infection, we utilized a panel of consomic strains in which
C57BL/6] (B6) mice inherit ChrY donated from either Mus musculus
musculus (musculus) or Mus musculus domesticus (domesticus)
subspecies (B6-ChrY). The B6-ChrY consomic strains used include
B6-ChrY¥L, B6-ChrYSWR, B6-ChrYAKR, B6-ChrYMA, B6-ChrY®T,
B6-ChrY'EWES B6-ChrYBYB, B6-ChrYRF, B6-ChrYMET, B6-ChrYWsB,
B6-ChrY4/, and B6-ChrY!?*S!, in which the mouse strain donating
ChrY to B6 is indicated in superscript. Male mice from the panel of
B6-ChrY consomic strains, as well as wild-type B6 male mice, were
infected intraperitoneally with either 100 or 50 PFU CVB3 and
monitored for survival for eight days following infection. The sur-
vival data obtained from each B6-ChrY consomic strain at each virus
dose was compared with wild-type B6 and tested for significant
differences using a log-rank (Mantel-Cox) test (supporting informa-
tion, File S1).

B6-ChrYST and B6-ChrYMET mice were the only strains that did
not display a decrease in survival following infection with either 100
or 50 PFU CVB3 when compared to B6. B6-ChrYLEWES, B6-ChrYSWR,
B6-ChrYSIL, B6-ChrY'2/8! and B6-ChrYBUB mice only showed a de-
crease in survival compared with B6 when infected with 100 PFU
CVB3 but not at the 50 PFU dose. Conversely, B6-ChrYRF, B6-ChrYM4,
B6-ChrY2KR B6-ChrYSWR, B6-ChrYWSE, and B6-ChrY#/) mice were
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significantly more susceptible to CVB3-induced mortality at both the
100 and 50 PFU doses compared with B6 (Figure 1). Transforming the
data into a single susceptibility value by averaging the 100 and 50
PFU response groups for each strain indicated that B6-ChrY con-
somic strains exhibit a continuous distribution of CVB3-induced
mortality phenotypes (Figure 2). Because the only genetic difference
among these strains is the inheritance of ChrY, the differences in
mortality rates can be directly attributed to polymorphic differences
in ChrY. We have designated this locus as "3 (CVB3 susceptibility
region of ChrY). With respect to candidates for YCv03 there are three
loci that are biologically relevant to CVB3-induced mortality: YN
(INKT-determining region of ChrY) (Wesley et al. 2007), Sry
(sex determining region of ChrY), and Y¢ (cardiomyocyte size-
determining region of ChrY) (Llamas et al. 2007, 2009).

Differences in basal invariant natural killer T cell

numbers do not influence the mortality of

CVB3-infected B6-ChrY consomic mice

Invariant natural killer T (iNKT) cells are an important immune
regulator during CVB3 infections, and the treatment of mice with
a-galactosylceramide, an agonist for iINKT cells, protects the mice

Bs_cthHBFﬂfPas

from CVB3-induced disease (Liu and Huber 2011; Wu et al. 2010).
Consequently, Y™, a locus that leads to a profound deficiency in
iNKT cells in male B6-ChrYNk-129F11/Pas mjce (Wesley et al. 2007),
is a functionally relevant candidate for Y©"%3. Therefore, we analyzed
the number of iNKT cells in the liver, spleen, and thymus of all B6-
ChrY consomic strains by staining leukocytes for TCRB* and CD1d-
tetramer* cells and assessing the percentage of iNKT cells by flow
cytometry (File S1).

As the various B6-ChrY consomic strains were analyzed through-
out multiple experiments, the data derived from each consomic line
was normalized to the B6 data from each independent experiment to
control for interexperimental variability. Interestingly, we observed
a continuous distribution of iNKT cells across the ChrY strains. The
analysis of thymic iNKT cells produced three significant groupings
(Figure 3A). Similar continuous distributions of iNKT cells were also
observed for liver and splenic iNKT cell numbers (data not shown).

Our data confirm that natural ChrY polymorphism results in
differences in the percentage of basal iNKT cells in mice. However, it
is important to note that further investigation is required to determine
whether CVB3 infection itself changes the distribution of iNKT cells
among the B6-ChrY consomic strains. Nonetheless, as the strain
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Figure 3 YNt polymorphism influences the frequency of iINKT cells in B6-ChrY consomic strains. (A) Thymocytes were analyzed by flow cytometry
for the percentage of INKT cells by staining for TCRB- and CD1d-expressing cells for each B6-ChrY consomic strain and then normalizing to Bé
controls. The data are represented as the difference in the percentage iNKT from B6 (B6 is the baseline). The X-axis labels indicate the mouse
strain donating ChrY to B6. The hatched line represents the normalized percentage of iINKT cells seen in B6-ChrYNkt-129/Pas mice. The significance
of observed differences among the strains was determined by one-way ANOVA followed by Bonferroni’s multiple comparison test. (B) Repre-
sentative liver and thymus staining from (left) male B6-ChrY129F11/Pas inheriting the ChrY'29F11/Pas from mice by natural breeding and (right) male
B6-ChrYNkt129/Pes mice carrying the ChrY'29/Pas transmitted from male founder mice derived from 129/Pas embryonic stem cells. n = 4 mice per

group. *P < 0.01; ***P < 0.001; ***+P < 0.0001.
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Figure 4 Differences in CVB3-induced mortality are not the result of
changes in adult serum testosterone levels among the B6-ChrY
consomic strains. Serum testosterone was measured in 8-week-old
B6-ChrY consomic male mice and compared with wild-type Bé by EIA.
X-axis labels indicate the mouse strain donating ChrY to Bé. Only B6-ChrYRF
mice exhibited a significant elevation in testosterone compared with
Bé. Significance of observed differences was determined by one-way
ANOVA, followed by a Dunnett’s multiple comparison test. n = 5 mice
per strain. ***P = 0.001.

distribution pattern (SDP) for mortality is discordant with the SDP for
iNKT cells in naive B6-ChrY consomic strains, these data suggest that
Y3 is not YNk, and that the variations in basal iNKT cell numbers
do not contribute to the phenotypic differences in CVB3-induced
mortality. Moreover, these data indicate that the YNK-129Pas jllele
transmitted by male founder mice derived from 129F11/Pas embry-
onic stem cells is unique, as male mice that inherited the wild-type
ChrY!2F11/Pas by natural breeding differed markedly in iNKT cell
numbers (Figure 3B). A direct comparison of these two ChrYs could
in theory lead to the identification of the locus controlling iNKT cell
numbers and possibly, as with yaa (Pisitkun et al. 2006; Subramanian
et al. 2006), the identification of a unique translocation in ChryN<t-129/Pas
giving rise to a dramatic reduction in iNKT cell numbers compared to
naturally occurring YN alleles.

Sry allele-dependent variations in prenatal testosterone
production do not underlie YCvb3

Sry is a particularly intriguing candidate for Y¢*%3 because Sry expres-
sion by the bipotential cells of the primordial gonad initiates testis
differentiation by activating male-specific transcription factors, in par-
ticular Sox9, to induce Sertoli cell differentiation. This drives testis
formation (Kashimada and Koopman 2010), including differentiation
of fetal Leydig cells (Brennan et al. 2003; Clark et al. 2000; Gnessi et al.
2000; Yao et al. 2002), which produce the androgens required for
masculinization of the male fetus during embryogenesis (Sriraman
et al. 2005). Sertoli cells also contribute to the proper differentiation
and function of adult Leydig cells (Loveland and Schlatt 1997; Russell
et al. 2001; Yan et al. 2000) responsible for pubertal production of
testosterone and sexual maturation (Ge and Hardy 2007). There is
increasing evidence that testis determination may not be the only
function of Sry, as it is also expressed in the brain, kidney, and adrenal
glands of adult males (Ely et al. 2010). The existence of functionally
significant Sry polymorphisms is well documented in studies using
B6-ChrY consomic strains in which Sry alleles give rise to varying
degrees of sex reversal, ranging from normal testis development to
permanent sex reversal (Albrecht et al 2003; Biddle and Nishioka
1988; Eicher and Washburn 1986; Eicher et al. 1982; Nagamine
et al. 1987, 1999). Therefore, Sry polymorphisms could lead to differ-
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Table 1 B6-ChrY strains grouped by Sry polymorphism

Domesticus ChrY Domesticus ChrY

Musculus ChrY Group A Group B
B6 2 B6-ChrYAKR b B6-ChryBUB
b B-Chry12951 b B4-ChrYLEWES b B6-Chrysit
a B6-ChrYA a B6-ChrYMA ¢ B6-ChrYsT

a B6-ChrYRF b B6-ChrYSWR

a B6-ChrYWse
¢ B6-ChrYMET

? Increased susceptibility to CVB3-induced mortality at 100 and 50 PFU
compared with B6.
Increased susceptibility to CVB3-induced mortality at 100 PFU compared
with B6.

c Equal susceptibility at both virus doses to CVB3-induced mortality compared
with B6.

ences in neonatal and/or adult testosterone levels, thereby impacting
susceptibility to CVB3-induced mortality.

To test our hypothesis, we compared the SDP of Sry polymorphisms
with the SDP of CVB3-induced mortality. The B6-ChrY consomic lines
can be separated into two categories based on the evolutionary or-
igin of the Mus musculus species donating ChrY, including musculus
and domesticus. Within the domesticus ChrY consomic lines, two groups
of mice exist based on their Sry alleles (Table 1) (Washburn et al. 2001).
Domesticus Group A is defined as having Sy alleles with 13 CAG repeats
in glutamine repeat cluster 3, which results in sex reversal when inherited
by B6 mice heterozygous for the Chr17 TOrleans mutation. Mice within
this group have reduced Sry expression in the fetal gonad, which is
insufficient for normal development. Domesticus Group B is defined as
having Sry alleles with 12 CAG repeats in glutamine repeat cluster 3 and
a 10 bp deletion in the 5" UTR that allows for normal development in B6
mice heterozygous for the TOrleans mutation and normal Sry expression
levels in the fetal gonad. However, our analysis of the consomic lines
revealed that the SDP for CVB3-induced mortality is discordant with the
SDP for Sry alleles (Table 1). These data suggest that the Sry allelic
variations having the potential to influence testis development and neo-
natal testosterone production are not likely to underlie Y©"%3.

Variation in adult testosterone levels do not account for
ChrY regulation of CVB3-induced mortality

Testosterone clearly plays a critical role in the sexual dimorphism in
susceptibility to myocarditis by regulating both viral infectivity and
differences in innate and adaptive antiviral immune responses.
Therefore, we hypothesized that allelic differences in Sry could also
in theory influence the production of postpubertal testosterone in
CVB3-infected B6-ChrY consomic mice and lead to differences in
mortality among the strains. To test this, blood was collected from
male mice at eight weeks of age that were bled between 1 and 3 pm
to minimize daily fluctuations in testosterone production. Serum tes-
tosterone levels were measured using a testosterone EIA kit (File S1).
First, adult testosterone levels did not correlate with Sry alleles, sug-
gesting that Sry allelic variations with the potential to influence testis
development do not influence adult testosterone levels (Table 1). Only
B6-ChrYRF consomic mice exhibited significant differences in adult
testosterone levels compared with B6 Figure 4. Thus, elevated testos-
terone levels may contribute to increased mortality in B6-ChrY®F, but
an increase in adult testosterone levels does not explain the enhanced
mortality seen in the other 11 B6-ChrY consomic strains. However,
whether ChrY influences other steroid hormones and whether ChrY
influences virus receptor expression in the heart independently of
testosterone levels remain under consideration.
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Our data suggest that Sry polymorphisms neither underlie Y©%3
nor control adult serum testosterone levels. Nevertheless, dependence
of CVB3-induced mortality on both testosterone and ChrY polymor-
phism makes Y¢¢, a ChrY polymorphism that impacts the sensitivity
of cardiomyocytes to the hypertrophic effects of postpubertal testos-
terone, a strong candidate for Y3, Llamas et al. (2007) showed that
the surface area of cardiomyocytes from B6 mice is significantly larger
than cardiomyocytes from B6-ChrY#/7 mice. Orchiectomy of B6 and
B6-ChrY2 consomic mice resulted in a decrease in the size of B6
cardiomyocytes but not in the size of B6-ChrYA/ cardiomyocytes
(Llamas et al. 2007, 2009). Furthermore, treatment of orchiectomized
mice with exogenous testosterone effectively increased the size of
cardiomyocytes in B6 mice but not in B6-ChrY”/ mice (Llamas
et al. 2009). Therefore, these differences are not due to inherent
changes in testosterone production between the strains but, rather,
due to the insensitivity of cardiomyocytes from B6-ChrYA” mice to
the hypertrophic effects of postpubertal testosterone, which is a direct
consequence of Y¢"<, This same effect may contribute to the differ-
ences in CVB3-induced mortality among the B6-ChrY consomic lines,
and it is being actively investigated.

The location of Y3, as well as YN and Y&, with respect to the
pseudoautosomal (PAR) and nonpseudoautosomal (NPAR) regions of
ChrY remains to be determined. However, the fact that PAR is free to
recombine with the B6 background and that all of the ChrY mice have
been backcrossed over 10 generations to B6 excludes Sts (steroid sulfa-
tase), the only full-length functional gene within the murine PAR, as
a candidate (Park et al. 2005). Therefore, Y©**3 presumably resides within
the NPAR where there are 9 pseudogenes (Gm2098, Gm4017, Gm8498,
Gm8502, Gm8506, Gm8510, Gm2303, Gm2316, and Gm2357), 8 vali-
dated protein-coding genes of unknown function (Gm2191, Gm6026,
Gm16501, Gm4064, Gm10256, Gm10352, Gm3376, and Gm3395), and
13 known genes [Ddx3y (DEAD (Asp-Glu-Ala-Asp) box polypeptide 3,
Y-linked); Eif2s3y (eukaryotic translation initiation factor 2, subunit 3,
structural gene Y-linked); Kdm5d (lysine (K)-specific demethylase 5D
histocompatibility Y); Rbmylal (RNA binding motif protein, Y
chromosome, family 1, member Al); Sly (Sycp3 like Y-linked); Sry
(sex-determining region of ChrY); Sstyl (spermiogenesis-specific
transcript on the Y 1); Ssty2 (spermiogenesis-specific transcript on
the Y 2); Ubelyl (ubiquitin-activating enzyme E1, ChrY 1); Usp9y
(ubiquitin-specific peptidase 9, Y chromosome); Uty (ubiquitously
transcribed tetratricopeptide repeat gene, Y chromosome); Zfyl
(zinc finger protein 1, Y linked); and Zfy2 (zinc finger protein 2, Y
linked)].

Our data suggest that the functional Sry alleles influencing testis
differentiation are unlikely to be responsible for Y°**3 or YN¥. More-
over, a comparison of the available ChrY sequence data (phenome.jax.
org) indicates that there are no single nucleotide polymorphisms
within the NPAR candidates that uniquely distinguish the Y¢*%3 alleles
influencing mortality (Table 1). Thus, it is important to also consider
the impact that ChrY structural polymorphism may have on pheno-
typic differences among the B6-ChrY consomic strains. Structural
polymorphism can arise through variations in the number of repeat
sequences, inverted sequences, and retroelements composing hetero-
chromatin. As seen in Drosophila, Y-linked heterochromatin can in-
fluence the epigenetic regulation of autosomal and ChrX gene
expression through its interaction with chromatin, thereby epigenet-
ically regulating differences in males (Lemos et al. 2008, 2010). There-
fore, the differences in CVB3-induced mortality observed among the
consomic strains may be the consequence of epigenetic regulation by
ChrY resulting from heterochromatic polymorphism.
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Delineating the underlying biological components regulating sex
differences is critical to appropriate therapeutic treatment of sexually
dimorphic diseases. Increasing evidence indicates that ChrY poly-
morphism can impact biological functions unrelated to male re-
production, such as autoimmune and cardiovascular diseases and
hypertension, but the mechanisms behind these alternative functions
remain unknown (Llamas et al. 2007, 2009; Teuscher et al. 2006).
Fortunately, the use of ChrY consomic strains of mice presents the
opportunity to reveal the polymorphism underlying these unconven-
tional biological functions. Clearly, defining the genetic basis of ChrY
functional polymorphism is of considerable importance to human
health and disease, particularly in those settings where a male-specific
sexual dimorphism dominates.
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