
Cumulative Exposures to Environmental and Socioeconomic
Risk Factors in Milwaukee County, Wisconsin
John K. Kodros1,2, Ellison Carter3, Oluwatobi Oke3,4, Ander Wilson5 , Shantanu H. Jathar1 , and
Sheryl Magzamen6,7

1Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA, 2Now at Clarity Movement,
Berkeley, CA, USA, 3Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO,
USA, 4Now at Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg,
MD, USA, 5Department of Statistics, Colorado State University, Fort Collins, CO, USA, 6Department of Environmental
and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA, 7Department of Epidemiology,
Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA

Abstract The environmental justice literature demonstrates consistently that low‐income and minority
communities are disproportionately exposed to environmental hazards. In this case study, we examined
cumulative multipollutant, multidomain, and multimatrix environmental exposures in Milwaukee County,
Wisconsin for the year 2015. We identified spatial hot spots in Milwaukee County both individually (using local
Moran's I) and through clusters (using K‐means clustering) across a profile of environmental pollutants that
span regulatory domains and matrices of exposure, as well as socioeconomic indicators. The cluster with the
highest exposures within the urban area was largely characterized by low socioeconomic status and an
overrepresentation of the Non‐Hispanic Black population relative to the county as a whole. In this cluster,
average pollutant concentrations were equivalent to the 78th percentile in county‐level blood lead levels, 67th
percentile in county‐level NO2, 79th percentile in county‐level CO, and 78th percentile in county‐level air
toxics. Simultaneously, this cluster had an average equivalent to the 62nd percentile in county‐level
unemployment, 70th percentile in county‐level population rate lacking a high school diploma, 73rd percentile in
county‐level poverty rate, and 28th percentile in county‐level median household income. The spatial patterns of
pollutant exposure and SES indicators suggested that these disparities were not random but were instead
structured by socioeconomic and racial factors. Our case study, which combines environmental pollutant
exposures, sociodemographic data, and clustering analysis, provides a roadmap to identify and target
overburdened communities for interventions that reduce environmental exposures and consequently improve
public health.

Plain Language Summary Our study focused on Milwaukee County, Wisconsin, where we
examined how people in this region were exposed to different types of pollutants. We found that areas with the
highest levels of pollution (e.g., lead, nitrogen dioxide) had a higher proportion of Black residents and residents
that experienced social and economic challenges (e.g., unemployment, poverty, and low education). Our work
adds to the growing evidence that patterns of pollution and economic challenges are not random, but rather,
racially and socially structured. By understanding these patterns, we can develop policies that reduce pollution
in these areas and improve the health for residents in these overburdened communities.

1. Introduction
Previous research has established an association between health risks and exposure to various anthropogenic
environmental pollutants. Ambient air pollution has been consistently associated with an array of adverse health
impacts and is one of the leading risk factors contributing to morbidity and premature mortality (Apte et al., 2018;
Bell et al., 2004; Dockery et al., 1993; Miller et al., 2007). As a result, the US Environmental Protection Agency
(EPA) enforces national ambient air quality standards (NAAQS) for six common air pollutants (“criteria air
pollutants”), which are known to have adverse health effects (EPA, 2023a). In addition to the criteria air pol-
lutants, the EPA also mandates the reporting of emissions of hundreds of chemicals with known cancer‐causing or
chronic/acute health effects (EPA, 2023b). Other exposure matrices (e.g., soil, water) are also known to have
health risks. Lead exposure, which may occur through air, water, paint, or soil, has been shown to adversely
impact health (Chowdhury et al., 2018; Lamas et al., 2021) and intellectual development (Amato et al., 2013;
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Bellinger et al., 1992; Kordas et al., 2007; Lanphear, 2005; Magzamen et al., 2015; Wright et al., 2008). Yet,
understanding how exposures across multiple matrices jointly affect health, in tandemwith potential management
and mitigation strategies for multiple exposures, remains poorly understood.

Current regulations are often based on single pollutant exposures, which do not consider the possible synergistic
effects of cumulative exposures (Benka‐Coker et al., 2020; Mauderly & Samet, 2009). Individuals are rarely
exposed to single pollutants in isolation (e.g., Molitor et al. (2011)). Instead, people and communities are
commonly exposed to numerous pollutants within a regulatory domain (e.g., different criteria air pollutants such
as, PM2.5 and O3) as well as multiple pollutants across regulatory domains (for instance, criteria air pollutants and
air toxics) (Benka‐Coker et al., 2020). Here, we use the term multipollutant to describe multiple chemical
compounds within one pollutant class (e.g., a multipollutant air pollution study may include PM2.5, O3, NO2, etc).
We further consider multiple pollutants across more than one environmental matrix (e.g., air, soil) to reflect a
multimatrix approach. Lastly, we define a multidomain approach, as described in Benka‐Coker et al. (2019), as
“an approach that considers the joint effect of multiple classes of environmental agents along the theme of the
“total environment” paradigm, which takes into consideration a more comprehensive range of concurrent ex-
posures experienced by a population.”

In addition to environmental exposures, environmental epidemiology has increasingly considered exposures
within the context of socioeconomic status (SES) (Ferguson et al., 2020; O’Neill et al., 2003). A wealth of
literature has illustrated the relationship between SES and health (e.g., Adler et al., 1993; Isaacs and
Schroeder, 2004; Lynch et al., 2004), as well as the concept that low SES and negative environmental exposures
are interrelated (Hajat et al., 2021; Magzamen et al., 2008). This association may occur because individuals living
in areas of low SES may be exposed to higher concentrations of environmental pollutants and/or may be more
susceptible to environmental pollutants (O’Neill et al., 2003). In addition to SES, numerous studies have high-
lighted disparities in exposure to environmental pollutants across racial and ethnic lines (Clark et al., 2014;
Jbailey et al., 2022; Morello‐Frosch & Jesdale, 2006); recent modeling work suggests that Black and Hispanic
populations in the US are exposed to a higher air pollution exposure burden relative to the expected exposure
originating from emissions associated with these population groups (Tessum et al., 2019, 2021). Communities of
color and low SES are exposed to higher concentrations of environmental pollutants and may be more susceptible
to the effects of this exposure (Clark et al., 2014; Tessum et al., 2021), as evidenced by the higher rates of adverse
health outcomes among communities of color (Apelberg et al., 2005; Hill et al., 2011).

Recently, several methodological approaches have been proposed to address the independent and joint contri-
bution of environmental exposures and social factors to health outcomes (Martenies, Hoskovec, et al., 2022;
Martenies, Zhang, et al., 2022; Martenies et al., 2023). Identification of relevant social or environmental factors
associated with disease outcomes are an important pathway to identify effective intervention and mediation
strategies to improve health. Informed by earlier work (Lalloué et al., 2013; Molitor et al., 2011; Shrestha
et al., 2016), it is necessary to develop indicators that highlight communities of high risk due to elevated cu-
mulative exposure to environmental pollutants and/or low SES. For instance, CalEnviroScreen develops an index
based on percentile rankings across a set of environmental and social indicators (Faust et al., 2014). While the
single index score approach for tools like CalEnviroScreen might be useful for categorizing health impacts, this
method does not necessarily improve the understanding of the spatial patterns of clusters of contaminants within a
community.

Cumulative multipollutant, multimatrix, and multidomain exposures may lead to complex health responses not
captured by considering single exposure to pollutants. Complicating matters, interventions are rarely designed to
target multidomain and multimatrix exposures. We have employed a multidomain approach in prior studies (e.g.,
Benka‐Coker et al. (2019)) to investigate joint effects of ambient air pollutants and agricultural pesticides, two
exposures that are not often examined together, but may occur together in high levels in agricultural communities.
We extend our framework to Milwaukee, an urban community with multiple environmental and chemical ex-
posures that adversely impact health. In this study, we examine associations between environmental exposures
known to have adverse health risks and demographic and SES indicators across multiple pollutants, domains, and
matrices. We focus on the urban/suburban area of Milwaukee County, Wisconsin due to the multiple adverse
environmental exposures that co‐occur in the area, including lead exposure, air pollution exposure, housing
quality and housing insecurity, as well as sociodemographic factors that are associated with poor health outcomes,
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including poverty. We highlight communities with cumulative exposures to elevated concentrations of envi-
ronmental pollutants and indicators of low SES status that can be prioritized for regulatory interventions.

2. Methods
2.1. Study Area

Milwaukee County, Wisconsin (shown in the inset in Figure S1 in Supporting Information S1) includes the
densely populated city of Milwaukee and the suburban area outside it (Figure S2 in Supporting Information S1).
Milwaukee County is the most racially diverse county in the state of Wisconsin, with a Black population fraction
(38.6%) over twice as high as the national average (14%) (US Census Bureau, 2023). Milwaukee County has a
history of poor environmental pollution. It was designated a NAAQS maintenance area for 24‐hr PM2.5 in 2016
(Southeastern Wisconsin Regional Planning Commission, 2016) and received an “F” grade for O3 from the
American Lung Association's 2016 State of the Air report (American Lung Association, 2016). In 2014, the city
of Milwaukee had the highest prevalence of lead poisoning in Wisconsin, which rates among the states with the
highest incidence of childhood lead poisoning in the US (Wisconsin Department of Health Services, 2014).

2.2. Environmental Pollutants

We examined the cumulative exposure to blood lead levels (BLL), five of the six criteria air pollutants, and
inhalation toxicity‐weighted summed concentrations of air toxics. These pollutants spanned regulatory exposure
domains and exposure matrices. We used measurements and estimates of pollutants in the year 2015 (the most
recent year for all data sources) at the census block group (CBG) resolution (the highest resolution estimates
offered for all data sources).

2.2.1. Lead

The data set at the individual level for BLL consisted of samples collected from children who were part of the
Healthy Homes and Lead Poisoning Surveillance system (HHLPSS) overseen by the Wisconsin Department of
Health Services, Division of Public Health Services (WDHS, 2023). The participants were children aged five or
below, living in Milwaukee County between 2015 and 2019. These data, which received ethics approval from the
Wisconsin Division of Public Health data governance board, encompassed information such as the child's test ID,
test date, test type, age at testing, gender, race, primary address, and BLL. More details on BLL surveillance in
Wisconsin can be found in Christensen et al. (2019). Following data preprocessing, the BLL of 95,659 children in
Milwaukee County were assessed, with 71,162 residing within the city of Milwaukee; we aggregated BLL
measurements to the CBG resolution.

2.2.2. Criteria Pollutants

Estimates of criteria air pollutants (CO, NO2, PM2.5, O3, PM10, and SO2) were taken from the Center for Air,
Climate and Energy Solutions (CACES) land use regression model; for details refer to Kim et al. (2020). This
model does not include an estimate for airborne lead, which, as a result, is excluded from this analysis (although,
the present study does include estimates of BLL).

2.2.3. Air Toxics

Estimates of air toxics come from the EPA's Risk‐Screening Environmental Indicators (RSEI) model
(EPA, 2023b). RSEI aggregates point‐source data collected from the Toxic Release Inventory (EPA, 2023c). We
used the sum of the concentrations of all chemicals in each CBG weighted by toxicity (i.e., the concentration
multiplied by the relative inhalation toxicity weight summed over all chemicals in the CBG). Thus, this analysis
was sensitive to estimates of both concentration of each chemical as well as its toxicity.

2.3. Demographic and Socioeconomic Data

To examine the association of cumulative environmental exposure with SES and racial/ethnic disparities, we
downloaded data from the 5‐year American Community Survey (years 2015–2019) available from the US Census
Bureau (US Census Bureau, 2023). We used estimates of the percent of the population 16 years or older within the
civilian labor force that is unemployed, percent of the population older than 25 years without a high school
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diploma, median household income, and percent of the population living below the poverty line. These risk
factors have been used in previous studies as measures of social vulnerability. To examine disparities along racial
and ethnic lines, we used the percent of the population in each CBG identifying as non‐Hispanic White (NHW)
and non‐Hispanic Black (NHB). We focused on these two groups due to the historical record of racial residential
segregation in Wisconsin between NHW and NHB populations (Paulson et al., 2016).

2.4. Statistical Analysis

To investigate the degree of spatial structure in the data set, we calculated measures of global and local spatial
autocorrelation for the environmental pollutants and SES indicators. We reported Moran's I as our metric for
global spatial autocorrelation (Moran, 1948). Moran's I was normalized to range from − 1 to+1 with values closer
to +1 indicating a greater degree of positive spatial autocorrelation. Further, we calculated Local Indicators of
Spatial Association using Local Moran's I to identify statistically significant hot and cold spots across envi-
ronmental pollutants and SES indicators (Anselin, 1995). This measure of local spatial autocorrelation identifies
geographic clusters with high (low) values beyond what we would expect by random chance. Statistical sig-
nificance was assessed at the 95th percentile confidence interval. Both local and global spatial autocorrelation
were calculated using queen‐adjacent spatial weights matrices. Spatial statistics were calculated in Python using
the PySAL package (Rey &Anselin, 2010). We quantified inequality through the Gini index, which we calculated
for each environmental pollutant and SES indicator. The Gini index ranges from 0 to 1 with higher values
indicating a greater degree of inequality. This index, borrowed from economic studies (Gini, 1936), has also been
used frequently in previous studies investigating disparities in environmental pollutants (e.g., Levy et al., 2006).

To identify clusters of vulnerable populations across a profile of environmental pollutants and SES indicators, we
used K‐means clustering. As input features, we used standardized values for all environmental pollutants and SES
indicators with all features weighted equally. We did not include demographic or geographic data as inputs to the
clustering algorithm to explore the degree to which spatial and demographic factors are associated with the
predicted clusters. The number of predicted clusters was to some degree subjective.We chose three clusters as this
number demonstrated consistent environmental social profiles across the clusters. In addition, the three predicted
clusters occupied a roughly spatially homogeneous region.

3. Results
3.1. Geographic Distribution of Environmental Pollutants and Socioeconomic Indicators

Annual (year 2015) mean concentrations of BLL, criteria air pollutants, and air toxics exhibited substantial spatial
structure across Milwaukee, County; though, the spatial patterns differed by pollutant (Figure 1 and Table 1); we
note substantial variability in measurements of BLL within CBGs (Figure 3). The highest concentrations of BLL,
CO, NO2, PM2.5, and air toxics occurred within the city of Milwaukee (Figure 1), while O3 and PM10 had slightly
lower concentrations in this area relative to other parts of the county. For SO2, the highest concentrations were
found both inside and outside theMilwaukee city limits. Pollutants generally exhibited weak (less than 0.4) paired
correlations with the exception of CO and NO2 (0.72), CO, and O3 (− 0.65), and NO2 and PM2.5 (0.64) (Figure S4
in Supporting Information S1).

All pollutants exhibited a high degree of spatial structure (evidenced by Moran's I measure of global spatial
autocorrelation) across Milwaukee County (Table 1). This spatial structure is expected based on known differ-
ences in risk factors (such as housing age which has been shown to influence BLL levels) and emissions (such as
on‐road sources for NO2 and regional sources and chemistry for O3) across an urban area. In addition to the queen‐
adjacent spatial weights matrix, we conducted a sensitivity analysis of local spatial autocorrelation and rook‐
adjacent (Figure S5 in Supporting Information S1) and bishop‐adjacent (Figure S6 in Supporting Informa-
tion S1) spatial weights matrices and found the results and overall conclusions to be similar. To quantify the
degree of spatial inequality in environmental pollutants, we calculated the Gini coefficient for each pollutant for
Milwaukee County (Table 1). A value of the Gini coefficient of 0 indicates perfect equality with increasing values
indicating a higher degree of inequality (with a maximum of 1). We calculated the Gini coefficient based on the
distribution of annual means in the CBGs for each pollutant. BLL and air toxics had by far the highest degree of
inequality across the county, 0.2 and 0.3, respectively. The criteria air pollutants generally had low Gini co-
efficients, ranging from 0.006 to 0.09. O3 had the lowest measure of inequality (0.006) consistent with the low
spatial variability in concentration across the county.
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Similar to the environmental pollutants, the SES indicators also exhibited a high degree of spatial structure where
indicators of low SES were concentrated in the center of the city of Milwaukee (Table 1 and Figure 1). These
indicators were moderately correlated with the absolute value of the paired correlations ranging from 0.34 to 0.67
(Figure S6 in Supporting Information S1). The Gini coefficient was high for all indicators considered here,
ranging from 0.3 to 0.5, indicating a high degree of spatial inequality across Milwaukee County.

3.2. Local Hot and Cold Spots for Environmental Pollutants and SES Indicators

We identified statistically significant geographic hot and cold spots of individual environmental pollutants and
SES indicators. BLL, CO, NO2, and PM2.5 showed a similar geographic distribution, with a hot spot (a region of
elevated values) in the center of the county (and roughly the center of the city of Milwaukee) and cold spots (low
values) around the northern and southern parts of the county (Figure 2). BLL in the elevated clusters were 49%
higher than the county average, indicating an important area of elevated exposure and associated health risk to this
pollutant. In contrast, the average concentrations of CO, NO2, and PM2.5 in the elevated clusters were only
moderately higher than the county average: 8%, 15%, and 6%, respectively. Air toxics, which displayed the
greatest variability across the state (Table 1), were 165% higher in the elevated cluster on average than in the
county average. There were 503 CBGs identified as a hot spot for at least one of BLL, CO, NO2, PM2.5, and air
toxics (Figure S7 in Supporting Information S1). While the hot spots for BLL, CO, NO2, PM2.5, and air toxics had

Figure 1. Annual mean year 2015 values in Milwaukee County, Wisconsin of (a) blood lead levels, (b) CO, (c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics as
well as socioeconomic factors (i) unemployment rate, (j) percent of the population without a high school diploma, (k) median household income, (l) percent of the
population below the poverty line.
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Table 1
Summary Statistics (Annual Mean, Standard Deviation As Well As the 5th, 25th, 50th, 75th, and 95th Percentile) in 2015, Global Spatial Autocorrelation (Moran's I),
and Gini Index for Blood Lead Levels, Criteria Air Pollutants, Air Toxins, and Socioeconomic Indicators Across Milwaukee County, Wisconsin

Pollutant Mean SD 5th 25th 50th 75th 95th Moran's I Gini

BLL [μg dL] 2.99 1.18 1.54 2.13 2.73 3.66 5.17 0.51 0.21

CO [ppm] 0.29 0.02 0.25 0.28 0.29 0.31 0.32 0.85 0.04

NO2 [ppb] 10.1 1.74 6.53 9.13 10.7 11.3 11.9 0.93 0.09

PM2.5 [μg m
− 3] 9.17 0.48 8.28 8.88 9.25 9.53 9.83 0.82 0.03

O3 [ppb] 44.1 0.46 43.2 43.8 44.1 44.4 44.7 0.96 0.01

PM10 [μg m
− 3] 17.2 1.32 15.2 16.3 17.1 17.9 19.4 0.61 0.04

SO2 [ppb] 1.01 0.12 0.8 0.93 1.02 1.10 1.20 0.70 0.07

Air Toxics [μg m− 3] 4,070 3,760 1,970 2,400 3,080 4,550 7,890 0.56 0.32

Unemployed [%] 6.29 6.61 0.00 1.65 4.35 8.51 20.29 0.26 0.53

No HS diploma [%] 17.1 13.9 1.42 6.59 13.6 23.6 48.2 0.69 0.44

Household Income [USD] 55,000 30,000 20,000 35,000 50,000 68,000 109,000 0.61 0.28

Poverty [%] 20.3 17.1 1.27 6.19 15.3 32.0 51.9 0.55 0.46

Figure 2. Statistically significant local clusters of high values (red) and low values (blue) for (a) blood lead levels, (b) CO,
(c) NO2, (d) PM2.5, (e) O3, (f) PM10, (g) SO2, (h) air toxics, (i) unemployment rate, (j) percent of the population without a
high school diploma, (k) median household income, (l) percent of the population below the poverty line in Milwaukee
County.
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roughly similar patterns, only eight CBGs, representing less than 1% of the county population, were considered a
statistically significant hotspot for all these pollutants. While central Milwaukee clearly showed a risk of cu-
mulative exposure across environmental pollutants, the individual hot and cold spots were not necessarily
overlapping when considering all pollutants.

The pattern of hot and cold spots for O3, PM10, and SO2 was notably different than for the other environmental
pollutants (Figure 2). O3 displayed the opposite pattern, with a cluster of low concentrations in the center of the
county. The variability of O3 across the county was much lower than for the other pollutants considered here
(Table 1). In contrast, PM10 and SO2 did not show a homogenous area in central Milwaukee of either high or low
concentrations. Similarly, the SES indicators showed regions of low SES in central Milwaukee; although, the
spatial patterns of these hot spots were varied. The clusters indicating low SES (the hot spots for unemployment,
lower education, and poverty and the cold spot for median household income) were on average 110%–160%
higher than the county average (and 48% lower for the median household income).

There was a clear difference in the demographics across CBGs in clusters with elevated values compared to lower
values of environmental pollutants. In the local clusters with elevated values for BLL, CO, NO2, PM2.5, and air
toxics the NHB population proportion ranged from 34% to 62% (the 66th–74th percentile in the county), while the
NHW population proportion in these same CBGs ranged from 11% to 42% (23rd–44th percentile across the
county). Conversely, in clusters of low values for these pollutants the NHB population percent ranged from 9% to
14% while the NHW population ranged from 71% to 75%.

Figure 3. (a) Geographic distribution of K‐means cluster predictions and distribution of annual mean values (expressed as a percentile ranking) across the three predicted
clusters for (b) blood lead levels, (c) CO, (d) NO2, (e) PM2.5, (f) O3, (g) PM10, (h) SO2, (i) air toxics, (j) percent unemployed, (k) percent without a high school diploma,
(l) median household income, (m) percent below the federal poverty line, (n) percent of the population identifying as non‐Hispanic White, (o) percent of the population
identifying as non‐Hispanic Black. Environmental pollutants (b–i), SES indicators (j–m), and population racial groups (n–o) are expressed as percentile rankings.
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3.3. Clustering Across the Profile of Environmental Pollutants and SES
Indicators

To identify the most vulnerable residential areas, we performed K‐means
clustering across the profile of environmental pollutants and SES in-
dicators. While geographic information was not included in the clustering
algorithm, we selected 3 clusters of roughly homogeneous spatial extent. We
chose this number of clusters as it provided insight into geographic areas of
elevated values across the profile of environmental pollutants and consistent
low SES indicators.

The three clusters chosen showed consistent environmental and social pro-
files. The first cluster was located in the center of the county and was char-
acterized by the highest BLL (the average was equivalent to the 78th
percentile in county‐level BLL), NO2 (67th percentile), CO (79th percentile),
and air toxics (78th percentile) across the three clusters considered here
(Table 2 and Figure 3). The third cluster, located in the northern/southern
parts of the county, had the lowest concentrations of these pollutants (ranging
from the 13th–28th percentile across the pollutants). PM2.5 (46th percentile in
county‐level concentrations) and SO2 (48th percentile) also showed elevated
concentrations in the first cluster; however, their concentrations were on
average higher in the second cluster, which was geographically sandwiched
between the first and third clusters. Still, concentrations of PM2.5 and SO2
were clearly elevated in the first and second clusters relative to the third

cluster. O3 showed a different trend with the lowest concentration in the first cluster and highest in the third
cluster. This was consistent with the moderate anticorrelation of O3 with NO2.

Similarly, the first cluster showed a consistent social profile of low SES indicators. This cluster had the highest
rate of unemployment (an average rate equivalent to the 62nd percentile across the county), highest rate of people
without a high school degree (70th percentile), lowest median household income (28th percentile), and highest
rate of poverty (73rd percentile) relative to the other two clusters (Table 2 and Figure 3). Demographic data were
not included in fitting the clustering algorithm; however, applying the predicted labels to this data clearly showed
a pattern across racial and ethnic lines (Table 2 and Figure 3). The first cluster, characterized by elevated BLL,
NO2, CO, air toxics, PM2.5 and SO2, had the lowest population fraction of NHW (30th percentile in the county)
and the highest population fraction of NHB (63rd percentile). Of the total NHB population in Milwaukee County,
a plurality resided in the first cluster (46%) compared to 43% in the second cluster and 11% in the third cluster. On
the other hand, only 8% of the NHW resided in the first cluster.

The CBGs that made up the first cluster experience elevated multipollutant, multidomain, and multimatrix ex-
posures to environmental pollutants. Moreover, this cluster was characterized by low SES with an over-
representation of the NHB population (relative to the rest of the county). The environmental and social profile of
this area indicated the most vulnerable population to exposure to environmental pollutants.

The selection of the number of clusters was subjective to some degree. We show alternate choices of the number
of clusters in Figure S8 in Supporting Information S1. A choice of two clusters results in a cluster in the center of
the county, characterized by high pollutant concentrations and low SES indicators (Figure S9 in Supporting
Information S1). The primary difference between a choice of two and three clusters is shown in the profiles for
NO2 and PM2.5 concentrations, where in the case of three clusters there is a cluster with notably lower NO2 and
PM2.5 pollution while with only two clusters these pollutant profiles are overlapping.

4. Discussion
Across the United States, environmental justice communities, in both urban and rural areas, contend with multiple
environmental pollutants from multiple domains. Residential segregation due to discriminatory mortgage lending
practices (Home Owners Loan Corporation or “redlining”) have resulted in historically minoritized communities
residing in close proximity to industrial sources of pollution, traffic related air pollution from roadways, and lack
of beneficial resources for health, such as green spaces (Kowalski & Conway, 2023; Nardone et al., 2024). Yet,

Table 2
The Average Percentile Ranking for Blood Lead Levels, Criteria Air
Pollutants, Air Toxins, Demographic Indicators, and Socioeconomic
Indicators Across the Three Predicted Clusters

Variable Cluster 1 Cluster 2 Cluster 3

BLL 0.78 0.42 0.28

CO 0.79 0.47 0.17

NO2 0.67 0.56 0.13

PM2.5 0.46 0.67 0.17

O3 0.21 0.59 0.69

PM10 0.37 0.56 0.54

SO2 0.48 0.58 0.35

Air toxics 0.78 0.43 0.27

% NHW 0.30 0.53 0.72

% NHB 0.63 0.50 0.33

% Unemployed 0.62 0.48 0.38

No high school diploma 0.70 0.46 0.32

Median Income 0.28 0.54 0.71

% Below Poverty 0.73 0.45 0.30
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within reason, environmental regulatory strategies in the United States have been developed to focus on in-
terventions within the same regulatory domain (e.g., air, water). As a result, they are not intentionally designed to
address the cumulative and synergistic effects of exposure to multiple pollutants nor the systemic nature of
exposure disparities. Tools that leverage existing data resources for the identification of localized spatial clusters
of high cumulative exposures lead to better identification of at‐risk communities where investments could be
made to address multiple systemic disparities at once through place‐based, multi‐pronged interventions. Here, we
applied a novel approach to identify vulnerable populations where regulatory interventions across multiple do-
mains could be braided to reduce exposure to a wider range of environmental pollutants than would be achieved
by a single regulatory domain. The first cluster, characterized by high pollutant concentrations, low SES, and high
representation of NHB residents represents an exemplar output of this approach to cluster analysis, that is, a high‐
risk population in need of interventions across multiple regulatory domains. If implemented with data resources
like existing and emerging federal (e.g., EPA EJScreen (2024)) and state (e.g., California OEHHA (2024))
environmental screening and mapping tools, the approach presented here may also be useful in other settings
where the spatial structure of environmental exposures, socioeconomic factors, and racial/ethnic demographics
overlaps. Furthermore, this example may be also the most useful for urban areas where there is a legacy of lead
pollution as well as air pollution from anthropogenic (e.g., transportation, oil and gas) sources.

Several features of air pollution chemistry and source apportionment help contextualize our findings. For
example, low O3 concentrations in the center of the county (higher areas for PM2.5 and NO2) are likely due to
titration by urban NO emissions. In contrast, PM10 and SO2 did not show a homogenous area in central Mil-
waukee for either high or low concentrations, likely caused by the spatial pattern of emissions for these pollutants.
PM10 is commonly associated with resuspension of mineral dust and may be linked to natural emissions or
agriculture while SO2 is linked to the use of coal and petroleum at electric utilities and industrial facilities.

We note several limitations in this analysis. First, we weighted all environmental pollutants equally in this
analysis; however, the health risks due to exposure to each in isolation are likely unequal. Moreover, we note that
the association between exposure and health risk also varies by health outcome being considered (e.g., hospital
admissions for asthma compared to stroke). Second, application of this approach to other cities may not result in
clear spatial designations. In our analysis, predicted clusters tended to be spatially homogeneous, reflecting the
underlying distributions of the environmental pollutants and SES indicators. Third, when determining local in-
dividual clusters, the hot and cold spots were determined relatively and may not necessarily indicate high or low
values in a broader context. Fourth, we note that the modeled criteria air pollutants from the CACES land use
regression model were developed and aggregated at the national level (Kim et al., 2020). Quantitative compar-
isons of this model at high spatial resolution are limited by lack of high‐spatial resolution monitoring data, which
highlights a need for enhanced monitoring of multiple pollutants. Finally, the time period used in this study
reflects the availability of data. Recent trends in environmental pollutants, demographics, and SES indicators may
continue to evolve. This work demonstrates a methodology that can continue to be applied as data sources are
updated.

The study described has several notable strengths as well. First, the study undertook a comprehensive approach by
considering multiple environmental pollutants across different domains and matrices. This approach was more
reflective of real‐world conditions where individuals are exposed to a mix of pollutants rather than a single
pollutant. This study went beyond just examining multipollutant exposures by also considering SES and racial
disparities. This allowed for a more nuanced understanding of environmental health risks and how they inter-
sected with social and ethno‐racial factors. Another strength of this study was the use of spatial analysis tech-
niques, such as Moran's I and Local Indicators of Spatial Association, which provided a detailed understanding of
the geographic distribution of environmental pollutants and SES indicators. This helped identify hot spots of
exposure and vulnerability. Further, the application of K‐means clustering to identify vulnerable populations
across a profile of environmental pollutants and SES indicators was a novel approach. This can help prioritize
areas for intervention and policy action. The use of the Gini coefficient to quantify spatial inequality in envi-
ronmental pollutant exposures and SES indicators was a significant strength. Another strength was the use of
multiple data sources in a localized context. The study's focus on Milwaukee County, Wisconsin, allowed for a
detailed examination of environmental, socioeconomic, and racial disparities in a specific geographic context.
This can provide valuable insights for local policymakers and stakeholders. Lastly, the study integrated data from
multiple sources, including measurements and estimates of pollutants, demographic and socioeconomic data from
the US Census Bureau, and data from the Healthy Homes and Lead Poisoning Surveillance system. This allowed
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for a more comprehensive analysis of environmental exposures and their social determinants using publicly
available data sets.

In conclusion, this study provided valuable insights into the spatial distribution of environmental pollutant
exposure and its association with SES and racial disparities in Milwaukee County. The findings underscore the
need for comprehensive interventions that address multipollutant, multidomain, and multimatrix exposures,
particularly in communities with low SES and high minority populations. Future research should focus on un-
derstanding the health impacts of cumulative exposure to multiple pollutants and developing effective strategies
to reduce these exposures and mitigate their health effects.
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