
2772  |   	﻿�  Magn Reson Med. 2020;84:2772–2787.wileyonlinelibrary.com/journal/mrm

Received: 9 December 2019  |  Revised: 25 March 2020  |  Accepted: 26 March 2020

DOI: 10.1002/mrm.28285  

F U L L  P A P E R

Deep learning-based reconstruction of in vivo pelvis conductivity 
with a 3D patch-based convolutional neural network trained on 
simulated MR data

Soraya Gavazzi1   |   Cornelis A. T. van den Berg1,2  |   Mark H. F. Savenije1,2  |    
H. Petra Kok3  |   Peter de Boer4  |   Lukas J. A. Stalpers3  |   Jan J. W. Lagendijk1  |   
Hans Crezee3  |   Astrid L. H. M. W. van Lier1

1Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
2Computational Imaging Group for MR diagnostics and therapy, University Medical Center Utrecht, Utrecht, The Netherlands
3Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, The Netherlands
4Radiotherapy Institute Friesland, Leeuwarden, The Netherlands

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, 
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine

Correspondence
Soraya Gavazzi, Department of 
Radiotherapy, University Medical Center 
Utrecht, Utrecht, The Netherlands.
Email: S.Gavazzi@umcutrecht.nl

Funding information
Dutch Cancer Society (KWF; project UVA 
2014-7197)

Purpose: To demonstrate that mapping pelvis conductivity at 3T with deep learning 
(DL) is feasible.
Methods: 210 dielectric pelvic models were generated based on CT scans of 42 cer-
vical cancer patients. For all dielectric models, electromagnetic and MR simulations 
with realistic accuracy and precision were performed to obtain ||
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phase (ϕ±). Simulated ||
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|
 and ϕ± served as input to a 3D patch-based convolutional 

neural network, which was trained in a supervised fashion to retrieve the conductiv-
ity. The same network architecture was retrained using only ϕ± in input. Both net-
work configurations were tested on simulated MR data and their conductivity 
reconstruction accuracy and precision were assessed. Furthermore, both network 
configurations were used to reconstruct conductivity maps from a healthy volunteer 
and two cervical cancer patients. DL-based conductivity was compared in vivo and 
in silico to Helmholtz-based (H-EPT) conductivity.
Results: Conductivity maps obtained from both network configurations were com-
parable. Accuracy was assessed by mean error (ME) with respect to ground truth 
conductivity. On average, ME < 0.1 Sm−1 for all tissues. Maximum MEs were  
0.2 Sm−1 for muscle and tumour, and 0.4 Sm−1 for bladder. Precision was indicated 
with the difference between 90th and 10th conductivity percentiles, and was below 
0.1 Sm−1 for fat, bone and muscle, 0.2 Sm−1 for tumour and 0.3 Sm−1 for bladder. 
In vivo, DL-based conductivity had median values in agreement with H-EPT values, 
but a higher precision.

[Correction added after online publication April 30, 2020. The authors have adjusted text sequence in section 2.2.1 in the fourth paragraph. The column 
headings in Table 2 have been centered.]  
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1  |   INTRODUCTION

The omnipresence of electromagnetic (EM) technologies in 
telecommunication and medical applications has increasingly 
stimulated research on the electrical properties (EPs) of the 
human body. Electrical properties (permittivity and conduc-
tivity) regulate the interaction between EM fields and human 
tissues. Accurate dielectric models of the human body are 
crucial in EM dosimetry1-3 (e.g. for safety purposes in tele-
communication and MR scanning) and in treatment planning 
for therapeutic heating of cancer.4,5 At RF frequencies, these 
properties reflect tissue water content and ionic concentra-
tion6,7 and have been shown to change between healthy and 
pathologic tissues,8-12 suggesting potential use as a biomarker.

The majority of these EP studies and current computa-
tional dielectric models are based on ex vivo EP measure-
ments.13 However, differences between ex vivo and in vivo 
EPs were reported.10,14 Hence, non-invasive techniques for 
patient-specific EP detection were developed.15-17 One such 
technique, termed “MR Electrical Properties Tomography” 
(EPT), measures in vivo EPs at the Larmor frequency of the 
MR system (e.g. at 128  MHz for a 3T MR scanner). EPT 
exploits the fact that a subject’s EPs perturb the spatial dis-
tribution of the transverse magnetic field produced by the RF 
coil system for spin excitation, the B+

1
 field. The B+

1
 field is 

measurable with MR sequences. Therefore, tissue EPs can be 
reconstructed from B+

1
 measurements.16-18

EPT reconstruction algorithms to disentangle EPs from B+

1
 

field measurements include physics-based direct and inverse 
methods, and learning-based techniques. Direct methods re-
trieve EPs by applying Maxwell’s equations to the measured 
B
+

1
 field.17,18 Second order spatial derivatives in these equations 

are typically computed as finite difference kernels, which are 
convolved with B+

1
 maps. Despite this straightforward imple-

mentation, the differentiation operation—normally a Laplacian 
kernel—is extremely sensitive to noise in measured B+

1
 fields 

and introduces numerical errors at physical tissue interfaces 
and/or acquisition artefacts.17-19 Moreover, several direct EPT 
methods rely on piece-wise constant EPs and transceive phase 
assumptions.17,18,20 Denoising strategies, for example,21-23 were 
proposed and magnitude-driven bilateral filters22,24 or refor-
mulations of full Helmholtz equation25,26 were used to reduce 
boundary errors. Direct EPT techniques were employed in re-
cent clinical studies evaluating the potential value of EPT-based 
conductivity in discriminating tumours27,28 and in hyperthermia 

treatment planning.29 Reconstructing good quality permittivity 
maps with clinical scanners and within acceptable times re-
mains challenging: the necessary high precision requirements19 
are unmet with standard B+

1
 mapping techniques.30

Inverse approaches reconstruct EPs by iteratively mini-
mizing a cost function comparing the true B+

1
 with a modelled 

B
+

1
 field.31-35 These reconstruction techniques bypass the as-

sumption of piece-wise constant properties, reduce bound-
ary errors and mitigate noise impact on EP maps by avoiding 
differentiation on measured data. Their challenges are repre-
sented by accurate modelling of 3D incident magnetic and 
electric fields and high computational cost, for example, to 
update the contrast source in CSI-EPT.31 Promising recon-
structions with inverse approaches were shown on simulated 
data, but no study to date has reported in vivo EP maps recon-
structed with these techniques.

Learning-based methods, namely dictionary-based EPT36 
and deep learning EPT (DL-EPT), infer EPs from large data-
sets of B+

1
 fields and their corresponding EPs via machine/

deep learning. The basic idea of DL-EPT, for example, is to 
train a convolutional neural network (CNN) to learn the map-
ping relation between B

+

1
 and EPs. Typically, the CNN is 

trained in a supervised fashion with multiple B
+

1
 data and 

their corresponding EP distributions as input. So far, CNNs 
were trained on image37 or local38 level based on directly ac-
cessible MR quantities (B+

1
 amplitude, ||

|
B
+

1

|
|
|
 and/or transceive 

phase, ϕ±) from simulations37 or in vivo measurements.38 
When tested in brain at 3T, the trained network produced 
conductivity37,38 and permittivity37 maps with higher preci-
sion than in direct EPT maps. Nonetheless, an additional an-
atomical input (e.g. an MR magnitude image) was required 
besides the B+

1
 map for accurate EP reconstruction in Mandija 

et al.37 In Hampe et al38 the reliability of conductivity recon-
struction in diverse brain geometries was strongly limited by 
the lack of large representative datasets for training.

Building on the challenges of previous DL-EPT works, we 
introduce new methodological aspects for DL-based conductiv-
ity mapping at 3T. Our DL-EPT method employs a novel 3D 
patch-based CNN which was trained exclusively on simulated 
B1 fields with realistic accuracy and precision. Realistic accu-
racy and precision in B1 fields were reproduced by implement-
ing the framework developed in our previous study30 which 
combines EM and MR simulations. This enables training on 
realistic measurable datasets for which ground truth EPs are 
available, and stands as a valid alternative to training on in vivo 

Conclusion: Anatomically detailed, noise-robust 3D conductivity maps with good 
sensitivity to tissue conductivity variations were reconstructed in the pelvis with DL.
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MR measurements for which the true EP values are not avail-
able. In this study, we consider DL-EPT for female pelvic anat-
omies with and without cervical cancer, because patient-specific 
conductivity maps in this region would be relevant for hyper-
thermia treatment planning of cervical cancer patients. Thus, 
the training dataset comprised in silico B+

1
 fields of diversified 

human pelvic models. These pelvic models were derived from 
segmentation of CT scans of cervical cancer patients who un-
derwent hyperthermia treatment and possessed realistic tissue 
EPs variations at 128 MHz, including EPs of both healthy and 
malignant cervical tissues. By examining two network configu-
rations, that is, using complex B1 data (||

|
B
+

1

|
|
|
 and ϕ±) or only 

transceive phase information as input, we assess the conductiv-
ity reconstruction accuracy and precision of the proposed 
method in silico. We also discuss its performance regarding 
typical challenges for pelvis conductivity mapping: (i) greater 
size, which limits the validity of transceive phase assumption 
already at 3T39; (ii) high degree of anatomical variations (e.g. 
bladder filling, different inter-patient organ positions, inter-pa-
tient variation in body mass index); (iii) organ motion (bowel 
peristalsis and breathing); (iv) low SNR. Finally, we show DL-
based in vivo conductivity maps and compare them to the sta-
tus-quo EPT method for pelvis, that is, Helmholtz-based EPT.

2  |   METHODS

2.1  |  Database construction

2.1.1  |  Human pelvic models

Forty-two human models were built from CT scans of 42 
cervical cancer patients who had undergone hyperthermia 

treatments. Patients’ CT scans were semi-automatically seg-
mented based on Hounsfield unit intensity with an in-house 
developed software,40 resulting into fat, muscle, bone, and 
air segmentations. Tumour and bladder were manually seg-
mented for all pelvic models by a radiation oncologist.

2.1.2  |  Construction of dielectric models

Tissue-specific uniform distributions of realistic conductiv-
ity, σ, and permittivity, εr, values at 128 MHz (see Table 1) 
were defined for each tissue as explained in Supporting 
Information Appendix. Then, a total of 210 dielectrically 
different human models were generated out of the 42 ana-
tomically segmented models. For every anatomy, 5 different 
combinations of piece-wise constant conductivity and per-
mittivity were randomly assigned to each segmented tissue 
from the predefined tissue-specific EP uniform distributions.

To represent both healthy subjects and cancer patients in 
our dataset, one out of five tumour EP permutations was en-
forced to have muscle EPs for every anatomical model. Both 
empty and full bladder cases were included in the dataset. 
Empty bladders (present in 70/210 dielectric models) were 
given muscle EPs, as commonly adopted in hyperthermia 
treatment planning studies.29,41 Full bladders were assigned 
bladder content EPs.42 Figure 1 illustrates the final EP distri-
butions for each tissue in our complete dataset.

2.1.3  |  EM simulations

EM simulations with realistic MR setup and patient position-
ing were performed in Sim4Life (v3.4, ZTM AG, Zurich, 
Switzerland) for all 210 dielectric models. First, a 3T 

T A B L E  1   Electrical properties and relaxation times of tissues in pelvic models. Minimum and maximum values for the uniform distributions 
of both conductivity and permittivity are reported. T1 and T2 values assigned as input to MR simulations are listed as well. T1 and T2 values were 
taken from the following references: 54 for fat, bone and tumour; 55 for muscle, 56 for bladder

Segmented tissue Tissue in dielectric model σ (Sm−1) [min, max] εr (rel. units) [min, max] T1 (ms) T2 (ms)

Air Air 0 1 20 1

Fat Fat [0.04, 0.08] [5.92, 8.89] 382 68

Muscle          

Metal clips* Muscle [0.73, 1.07] [49.77, 73.21] 1233 37.2

Plastic catheter*

Empty bladder          

Full bladder Bladder content [1.35, 2.60] [69.60, 72.62] 2400 100

Bone Cancellous [0.14, 0.18] [21.03, 26.28] 586 49

  Cortical [0.07, 0.08] [14.72, 17.66] 586 49

Tumour Tumour [0.66, 1.45] [37.35, 82.34] 1616 83

*Non-biological materials (metal clips and plastic catheters), present during CT scan session in some cervical cancer patients and manually segmented in the 
corresponding pelvic model, were considered dielectrically equivalent to muscle, because their segmentations were physically surrounded by muscle. These non-
biological materials are typically absent in human body. 
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birdcage coil (bore diameter = 70 cm) was modelled and 
tuned at 128 MHz. Subsequently, each dielectric model was 
positioned inside the birdcage coil such that the cervix/tu-
mour location was axially centred with the isocenter. 
Furthermore, the model’s back was 13.5 cm distant from the 
isocenter, to mimic a patient lying on the MR table. A 2.5 × 
2.5 × 2.5 mm3 mesh-grid was enforced within a volume of 
550 × 360 × 260 mm3 centred at the isocenter. This volume 
was chosen based on the models with largest dimensions, 
such that it contained the anatomy between L3-4 vertebra to 
the perineum for each model. Outside this volume, the rest of 
the human model and the body coil were voxelized with a 
default resolution. Two FDTD simulations, i.e. in quadrature 
and anti-quadrature modes, were run per dielectric model 
(15.755 × 106 cells) on a GPU (NVIDIA Titan X Pascal, 
12 GB RAM) to calculate both transmit, B+

1
, and receive, B−

1
, 

fields.43 From these complex fields, B
+

1
 amplitude, ||

|
B
+,em

1

|
|
|
, 

and transceive phase, ϕ±,em, were retrieved for all 210 dielec-
tric models. ||

|
B
+,em

1

|
|
|
 was normalized to its mean value in the 

central slice. The total simulation time per model was 3.25 
hours.

2.1.4  |  MR simulations

MR simulations emulating ||
|
B
+

1

|
|
|
 and ϕ± acquisitions used in 

MR experiments were run as described in Gavazzi et al30 to 
account for sequence-specific accuracy and precision. We 
implemented AFI44 and SE sequences in a Bloch simulator 
adopting experimental MR parameters (see MR experiments) 
and using T1, T2 (Table 1), ||

|
B
+,em

1

|
|
|
 and ϕ±,em as inputs. In AFI, 

the nominal flip angle was scaled by ||
|
B
+,em

1

|
|
|
. In SE, ϕ±,em was 

applied as a phase shift to the RF pulses. Spatial encoding 
gradients were not included. MR signals were computed 
voxel-wise at TE. For both AFI and SE, the resulting noise-
less MR signals were used to retrieve noiseless ||

|
B
+,mr

1

|
|
|
 and 

ϕ±,mr. ||
|
B
+,mr

1

|
|
|
 was calculated from AFI signals as described in 

Yarnick44 and ϕ±,mr corresponded to the phase of SE signal.
To mimic a realistic image precision, real and imaginary 

parts of AFI and SE noiseless signals were corrupted by real-
istic Gaussian noise levels, and subsequently used to recon-
struct noisy ||

|
B
+,mr

1

|
|
|
 and ϕ±,mr.30 Realistic noise levels were 

chosen such that the simulated image SNR for both AFI and 
SE closely resembled experimental image SNRs obtained in 
the volunteer experiment for most tissues (see e.g. muscle, 
bladder and bone SNRs in Supporting Information Figure S1).

MR simulations were performed on dielectric models of 
dimensions 550 × 360 × 130 mm3, which consisted of the 
pelvic region only. Such smaller axial dimension was based 
on the FOV used for MR experiments and was adopted to re-
duce the computational cost when training the network. Both 
AFI and SE simulations were run in Matlab (R2015a; The 
MathWorks, Inc., Natick, MA) on a workstation with Intel 
Xeon CPU E3-1220 v3 at 3.1 GHz and lasted in total 2 min-
utes per model.

2.1.5  |  MR experiments

A healthy volunteer and two cervical cancer patients were 
scanned on a 3T clinical MR scanner (Ingenia, Philips, The 
Netherlands) with a 28-channel torso coil for reception. 
Patient 1 was diagnosed with IIB squamous cell carcinoma. 

F I G U R E  1   Final distribution of both conductivity (top row) and permittivity (bottom row) for all pelvic tissues in the complete dataset, after 
EPs were randomly assigned to all 210 dielectric pelvic models. Tissue-specific conductivity and permittivity distributions are displayed together 
in “All tissues” (first column), and separately in the remaining columns. Red dashed lines represent EP limits (maximum and minimum of uniform 
distribution, also reported in Table 1) imposed a priori for every tissue. Note that the resulting EP distributions for muscle and fat were higher than 
for bone, tumour and bladder content, because of their higher number of voxels in pelvic models
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Patient 2 had IIA2 neuroendocrine cervical carcinoma. Our 
imaging protocol was approved by the local ethical commit-
tee and all subjects gave written informed consent. The ||

|
B
+

1

|
|
|
 

was acquired with AFI sequence44 (flip angle = 60°, TE/TR1/
TR2 = 2.5/30/210 ms). The transceive phase was obtained by 
averaging phase images from two SE acquisitions with op-
posed gradient polarities to minimize eddy current effects.16,45 
SE settings were: imaging flip angle = 90°, TE/TR =  
6.2/12000 ms. FOV was 370 × 259 × 120 mm3 for volunteer 
and 400 × 280 × 120 mm3 for patients. Resolution was 2.5 × 
2.5 × 7.5 mm3 for volunteer and patient 1 and 5 × 5 × 7.5 mm3  
for patient 2 (due to scan time limitations). In all scans, the 
vendor-specific CLEAR option46 was used to replace the 
phase contribution of receive array with the receive phase of 
the body coil operated in anti-quadrature.

For both patients, the tumour was delineated by a radi-
ation oncologist on an ADC map aided by a T2-weighted 
image.47,48 For all subjects, muscle and bladder ROIs were 
manually delineated on 5 and 3 adjacent slices of SE magni-
tude image, respectively. Tumour delineation was transferred 
to SE magnitude image too.

2.2  |  Conductivity mapping

2.2.1  |  DL-EPT

EPs locally distort the RF magnetic field in all three dimen-
sions. To handle this physical problem, we sought a 3D net-
work architecture for regression tasks trainable at a patch 
level. The compact, 3D CNN architecture by Li et al49 sat-
isfied these requirements, thus was used for DL-EPT con-
ductivity reconstruction. Li et al’s network consists of 20 
convolutional layers of 3 × 3 × 3 voxels, which are residu-
ally connected in pairs and are progressively dilated with 
increasing dilation factors (for more details on network ar-
chitecture, see Ref. 49). The last layer had no activation func-
tion, differently from the original design in Ref.49 which was 
meant for classification problems. This network is currently 
implemented under the name of “highres3dnet” in NiftyNet 
(NiftyNet is an open-source, TensorFlow-based platform 
with modular structure for DL research in medical imaging 
(https://nifty​net.io/)).50

Tissue conductivity perturbs both ||
|
B
+

1

|
|
|
 and transceive 

phase, but it is predominantly encoded in the curvature of the 
latter.17,18,20 Based on this prior knowledge, we trained 
highres3dnet in both “full B+

1
” and “transceive phase only” 

configurations in order to assess whether differences in con-
ductivity reconstruction exist between configurations. In 
“full B1” configuration, input data comprised real and imagi-
nary parts of a complex B+

1
 field calculated as ||

|
B
+

1

|
|
|
 · exp(i·ϕ±). 

We refer to “NetEM-B1” when these input data were derived 
from (noiseless) EM simulations (i.e. ||

|
B
+,em

1

|
|
|
 · exp(i·ϕ±,em)) 

and “NetMR-B1” when they came from MR simulations (i.e. 
|
|
|
B
+,mr

1

|
|
|
 · exp(i·ϕ±,mr)) corrupted by noise. The “transceive 

phase only” variant employed ϕ±,mr from noisy MR simula-
tions as input and is indicated hereafter with “NetMR-ϕ±”. In 
both configurations, a binary mask of the pelvis was provided 
as additional input. Ground truth conductivity (σGT) was 
given in input as regression target during training.

Before entering the network, input data were rescaled by 
subtracting their mean value, which resulted in input data 
with values not exceeding [−3, 3] units. Physically, remov-
ing this mean value has no effect on conductivity estimation 
with EPT.17,18 Unlike usual DL endeavours, the standard 
deviation of input magnetic field data was not normalised 
to 1, because it holds information on spatial modulations 
from which the conductivity is retrieved in EPT. Before 
performing the aforementioned pre-processing steps, in 
vivo B+

1
 and ϕ± were interpolated to 2.5 × 2.5 × 2.5 mm3 

(same resolution of in silico models used in training). Target 
conductivity σGT was normalized within [−3, 3] units with 
fixed factors before training (�

scaled
=

�GT−a

b
, a = 1.5, b = 

0.5). These factors were used at inference (or test) stage to 
convert the inferred conductivity map from normalized to 
absolute values.

For both configurations, highres3dnet was trained and 
tested in 7-fold cross-validation on 180 (36 pelvic models ×  
5 EP permutations) and 30 simulated data, respectively. (In 
k-fold cross-validation (k = 7 in this study), the complete 
dataset (210 dielectric models) is randomly partitioned into 
k subdatasets of equal size (fold). One fold is retained for 
testing the CNN, whereas the remaining k  −  1 subdata-
sets are employed for training. This process is repeated k 
times, such that each subdataset is tested once and serves as 
the validation data on which the accuracy is assessed. The 
overall accuracy is then obtained by averaging the accuracy  
results obtained for each of the validation k subdatasets.) All 
210 dielectric models were tested once among all 7 folds. 
Training was performed with mean absolute error (MAE) 
loss function, L1 regularization with weight decay of 5.0 ×  
10−5 and Adam optimisation. MAE loss function and L1 
regularization on network weights were chosen to reduce 
sensitivity to outliers and promote sparsity. During train-
ing, input data were randomly sampled into patches of 80 ×  
80 × 24 voxels. We chose this patch size after prelimi-
nary empirical tests with different sizes, taking also into 
consideration the FOV of input data and the depth of the 
network, which benefitted from relatively big patches for ac-
curate reconstruction.49 The learning rate was 5 × 10−3 for 
10000 iterations and was decreased to 8 × 10−4 thereafter. 
Training was stopped after 42500 iterations for NetEM/MR-B1  
and after 35000 iterations for NetMR-ϕ± because the loss 
function had converged and the conductivity MAE averaged 
over all 7 folds was smaller than in other iterations for the 
majority of pelvic tissues. Training and testing were run on 

https://niftynet.io/
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a GPU (NVIDIA Tesla P100, 16GB RAM). Training lasted 
1-2 days. Inference time was ~10 s for a single model/sub-
ject. Further details regarding parameter tuning are listed in 
Supporting Information Table S1.

The accuracy and precision of conductivity reconstruction 
were evaluated for NetMR-B1 and NetMR-ϕ± with the 7-fold 
cross-validation. Accuracy and precision were calculated for 
each pelvic tissue. The accuracy was indicated by the mean 
error (ME), defined as:

where N is the number of voxels within the tissue. The precision 
was denoted by the difference between conductivity 90th and 
10th percentiles, S90-10:

where σ (Pi) indicates the ith percentile for conductivity.

2.2.2  |  Helmholtz-based EPT (H-EPT)

For comparison, Helmholtz-based conductivity was recon-
structed by convolving a noise-robust Laplacian kernel (7 × 
7 × 5 voxels)20 with simulated and measured data. The trans-
ceive phase assumption was used.17,18,20

3  |   RESULTS

3.1  |  In silico results

Conductivity maps reconstructed with NetEM-B1 on noise-
less simulated EM data displayed detailed pelvic anatomy 
(Figures 2 and 3B). In particular, tissue interfaces were 
sharply reconstructed. Only a few boundary voxels were as-
signed an incorrect conductivity value. This is a striking im-
provement over conventional Helmholtz-based conductivity, 
which exhibited the well-known “boundary errors” at tissue 
interfaces. These boundary errors prevented correct estima-
tion in small tissue volumes, for example, bone in Figure 2. 

(1)ME=

N
∑

i=1

�
GT

−�
i

N
,

(2)S
90-10

=
|
|
|
�

(

P
90

)

−�

(

P
10

)|
|
|

F I G U R E  2   Conductivity reconstruction for three in silico pelvic models (that share same anatomy but different tissue conductivity, pelvic 
model #15). Pelvis conductivity from a healthy subject (i.e. no tumour/muscle contrast) is displayed in top row. Conductivity from two cervical 
cancer patients is also shown: one with good tumour/muscle contrast (0.35 Sm−1, middle row) and one with poor tumour/muscle contrast (0.13 Sm−1,  
bottom row). Maps for ground truth conductivity (first column), Helmholtz-based conductivity (σH, second column), DL-EPT conductivity tested 
with NetEM-B1 (third column) and the difference between NetEM-B1 conductivity and ground truth conductivity (fourth column) are reported
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Moreover, anti-symmetric errors in Helmholtz-based conduc-
tivity (e.g. muscle) caused by degradation of the transceive 
phase assumption39 were absent in DL-based conductivity. 
Nevertheless, DL-based conductivity could display slight 
over-/under-estimation within a tissue: in the test model in 
Figure 3B, for example, conductivity was underestimated by 
0.23 ± 0.27 Sm−1 (mean ± SD) in the bladder volume. Note 
that the general reconstruction performance, assessed with 
the cross-validation, is discussed below. Figure 2 also shows 
that the tumour embedded in muscle was correctly “detected” 
when muscle/tumour conductivity contrast was sufficiently 
high (0.35 Sm−1) but was partly assigned muscle conductiv-
ity for low contrast (0.13 Sm−1).

Figure 3 illustrates the impact of using ||
|
B
+

1

|
|
|
 and ϕ± simu-

lated with AFI and SE sequences on DL-EPT conductivity 
reconstruction with NetEM-B1. Figure 3C shows that the re-
constructed conductivity was disturbed by the strong B+

1
 un-

derestimation in air (e.g. in bowel, Supporting Information 
Figure S2) when noiseless simulated MR data were given in 
input. However, small B+

1
 errors, occurring in fat and bone 

due to their low T1 to which AFI is sensitive30,44 (Supporting 
Information Figure S2), did not influence the conductivity. 
Using noisy simulated data as input for NetEM-B1 further  

perturbed the conductivity reconstruction (Figure 3D), espe-
cially in tissues with low precision, for example, air, muscle 
and bladder (see Supporting Information Figure S1). 
Conductivity reconstructions robust to both sequence-
specific errors and noise (Figure 3E) were obtained when the 
CNN was trained with input noisy simulated MR data (i.e. 
NetMR-B1).

Figure 4 shows that both NetMR-B1 and NetMR-ϕ± recon-
structed comparable conductivity maps in two patients with 
distinct anatomies. This finding was also confirmed by the 
results of 7-fold cross-validation: as reported in Table 2, 
conductivity reconstruction accuracy (ME) and precision 
(S90-10) in all tissues were comparable for both network con-
figurations. ME and S90-10 are also visualized for all test data 
and for all tissues in Supporting Information Figure S3: on 
average, ME was below 0.1 Sm−1 in all pelvic tissues, with 
minimum/maximum ME of approximately ±2.5 × 10−3 Sm−1 
for fat, ±5.0 × 10−3 Sm−1 for bone, ±0.15 Sm−1 for muscle, 
±0.23 Sm−1 for tumour and ±0.4 Sm−1 for bladder content. 
In general, S90-10 was below 0.1 Sm−1 for fat, bone and mus-
cle. For tumour and bladder content, S90-10 was on average 0.2 
and 0.3 Sm−1, respectively, with maximum peaks of 0.5 Sm−1 
for tumour and 0.6 Sm−1 for bladder content. Interestingly, 

F I G U R E  3   Impact of noiseless and noisy MR simulated input data on DL-EPT conductivity reconstructed with NetEM-B1, the network 
trained on EM simulations (B+,em

1
 and ϕ±,em). A, Ground truth conductivity. DL-EPT conductivity maps tested with NetEM-B1 using input data 

obtained from: B, (noiseless) EM simulations (B+,em

1
 and ϕ±,em). This is similar to the result reported in Figure 2. C, noiseless MR simulations 

(noiseless B+,mr

1
 and ϕ±,mr), to determine the impact of sequence accuracy on DL-EPT reconstruction. D, noisy MR simulations with realistic noise 

level on MR images (noisy B+,mr

1
 and ϕ±,mr), to determine the impact of sequence noise propagation on DL-EPT reconstruction. E, Conductivity 

map reconstructed with NetMR-B1, the network trained on noisy MR simulated data (noisy B+,mr

1
 and ϕ±,mr), to show the benefit of retraining with 

realistic MR simulated data. Magenta arrows in (C) and (D) point to an air pocket, the conductivity reconstruction of which is disturbed
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bladder content and tumour displayed the highest absolute 
values for ME and S90-10 (Table 2). Note that they were the 
least represented tissues in our dataset (140/210 and 168/210 
dielectric models showed bladder content and tumour EPs, 
respectively). Moreover, the comparable ME and S90-10 
among all test folds in Supporting Information Figure S3 
denote that both network configurations were robust to data 
with different geometries and EPs. It is also worth mention-
ing that NetMR-B1 retrieved sharper anatomical details, such 
as tissue infiltrations and interfaces, than NetMR-ϕ± (as can 
be appreciated in Figure 4). This was not accounted for in ME 
and S90-10 calculations, as these metrics were calculated in 
tissue ROIs obtained by erosion of 1 voxel from the original 
tissue segmentation.

Supporting Information Figure S4 explores the recon-
struction capability of NetMR-B1 in presence of tissues with 
conductivity values outside the predefined tissue conduc-
tivity ranges (outliers). For example, the tumour in outlier 1  
(σGT = 2.9 Sm−1) was assigned a mean σ = 2.2 Sm−1, be-
longing to bladder distribution, (Figure 1). The tumour in 
outlier 3 (σGT = 0.6 Sm−1, a value in between bone and 
muscle conductivity distributions, Figure 1) was predomi-
nantly assigned muscle-like conductivity although conduc-
tivity values of cancellous bone were also present. In outlier 
2, fat tissue presented fat-like conductivity values, with a 
mean σ ≈ 0.1 Sm−1 (vs σGT = 0.18 Sm−1). In all exam-
ples, the conductivity of adjacent tissues was reconstructed 
within the abovementioned accuracy and precision.

F I G U R E  4   Comparison between conductivity maps reconstructed with NetMR-B1 and NetMR-ϕ±, the networks trained on noisy MR 
simulated data using both B+,mr

1
 and ϕ±,mr or only ϕ±,mr, respectively. Maps for ground truth conductivity (first column), DL-EPT conductivity 

reconstructed by NetMR-B1 (second column), DL-EPT conductivity reconstructed by NetMR-ϕ± (third column) and the conductivity difference 
between NetMR-B1 and NetMR-ϕ± (fourth column) are shown for two pelvic models with different anatomies (one thin patient, model #07, and 
one fat patient, model #21)

T A B L E  2   Mean ± SD values for global ME and S90-10 over all dielectric models in all 7 test folds for both NetMR-B1 and NetMR-ϕ±

 

NetMR-B1 NetMR-ϕ±

ME (Sm−1) S90-10 (Sm−1) ME (Sm−1) S90-10 (Sm−1)

Fat −6.28 × 10−3 ± 0.0260 0.0107 ± 0.0063 −0.0101 ± 0.0246 0.0126 ± 0.0248

Muscle −0.0106 ± 0.0663 0.0938 ± 0.0374 0.0207 ± 0.0620 0.0994 ± 0.0307

Bone 7.16 × 10−3 ± 0.0228 0.0676 ± 0.0262 −1.03 × 10−4 ± 0.0242 0.0766 ± 0.0308

Tumour 0.0113 ± 0.1292 0.1886 ± 0.1360 0.0437 ± 0.1061 0.1654 ± 0.1171

Bladder Content 0.0607 ± 0.1593 0.3160 ± 0.1430 0.0912 ± 0.1107 0.3037 ± 0.1211



2780  |      GAVAZZI et al.

3.2  |  In vivo results

Conductivity maps obtained with NetMR-B1 and NetMR-ϕ± 
are shown in Figure 5 (transversal view) and Supporting 
Information Figure S5 (sagittal view). The conductivity 
maps reconstructed in vivo with DL-EPT confirmed the 
results obtained in silico: first, the underlying anatomy 
was clearly reconstructed (Figures 5 and 6 for a zoomed 
view); second, conductivity values were quite homogene-
ous within tissues. For both NetMR-B1 and NetMR-ϕ± erro-
neous conductivity values were predominantly caused by 
imaging artefacts in the underlying B+

1
 and ϕ± (Figure 7), 

such as ghosting arising from motion (e.g. breathing and 
flow) during acquisition. These were visible, for example, 
in proximity of bladder and bone. Note that ghosting arte-
facts were not included in training data.

The quality of DL-based conductivity outperformed 
that of Helmholtz-based EPT conductivity (Figures 5 
and 6), as already observed in silico. Figure 8 reports a 
quantitative comparison of NetMR-B1 and NetMR-ϕ± with 

H-EPT, depicting median conductivity values calculated 
in 3D tissue ROIs (illustrated in Figure 7), together with 
10th and 90th percentiles. Previous simulation and experi-
mental studies39,51 showed that accurate H-EPT estimates 
can be obtained within boundary-free ROIs. Because the 
broad boundary errors in H-EPT in fat and muscle did not 
leave enough voxels for reliable statistics, the comparison 
was not reported for these tissues. For all three subjects, 
median conductivity values differed from H-EPT median 
values by less than 8% in NetMR-ϕ± and ~11% in NetMR-B1 
in muscle and tumour. In bladder, differences in median 
values up to 35% were found in NetMR-ϕ± for all subjects, 
whereas in NetMR-B1 differences were less than 5% for 
volunteer and patient 2, and 40% for patient 1. DL-EPT 
values were also in the range of values found in an earlier 
study.42 Moreover, the conductivity spread in DL-EPT was 
smaller than in H-EPT. The relatively low 10th percentiles 
found for DL-EPT in the tumour were caused by afore-
mentioned motion-related errors entering the tumour ROI  
(Figure 5).

F I G U R E  5   In vivo conductivity results on a healthy volunteer and two cervical cancer patients (transversal view). Magnitude image from SE 
acquisition (first column), Helmholtz-based conductivity map (σH, second column), DL-EPT conductivity map reconstructed with NetMR-B1 (third 
column) and DL-EPT conductivity map reconstructed with NetMR-ϕ± (fourth column) are shown. Tumour delineation is displayed in magenta 
colour
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F I G U R E  6   Zoomed view of in vivo conductivity results on a healthy volunteer and two cervical cancer patients shown in Figure 5. 
Magnitude image from SE acquisition (first column), Helmholtz-based conductivity map (σH, second column), DL-EPT conductivity map 
reconstructed with NetMR-B1 (third column) and DL-EPT conductivity map reconstructed with NetMR-ϕ± (fourth column) are shown. Tumour 
delineation is displayed in magenta colour

F I G U R E  7   |
|
|
B
+

1

|
|
|
 (first column) and ϕ± 

(second column) maps of healthy volunteer 
and two cervical cancer patients. Tissue 
ROIs used for statistics were manually 
delineated on 5 adjacent slices, by avoiding 
visible Helmholtz-based EPT boundary 
errors, and are displayed on a slice of the 
magnitude image (third column)
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4  |   DISCUSSION

A novel deep learning-based method for reconstruction of 
subject-specific conductivity in the pelvic region was pre-
sented. This method comprises a fully open source three-
dimensional (3D) patch-based convolutional neural network 
(CNN) architecture (highres3dnet) and an in silico training 
dataset of MR accessible quantities (||

|
B
+

1

|
|
|
 and transceive phase,  

NetMR-B1, or transceive phase only, NetMR-ϕ±), which were 
obtained from realistic MR simulations at 3T of pelvic mod-
els with representative anatomies and electrical properties. 
Accuracy and precision of conductivity reconstruction were 

validated in silico. The trained network reconstructs in few 
seconds a 3D pelvis conductivity map with sharp tissue inter-
faces, robust to experimental noise levels and relatively sen-
sitive to tissue conductivity variations. When tested in vivo, 
the CNN produces conductivity maps with similar quality as 
in silico conductivity maps, demonstrating that the adopted 
simulation-based training dataset sufficiently represents 
measured B1 fields.

A merit of our approach is the ability to accurately re-
construct the conductivity at tissues interfaces, revealing the 
underlying pelvic anatomy (Figures 4 and 5). This shows that 
the network learnt to extract the anatomical information di-
rectly from the input B1 data alone, unlike a previous study, 
where an MR magnitude image was required in input to 
obtain 2D conductivity maps with correct brain anatomy.37 
Anatomically detailed conductivity maps, as achieved by the 
proposed DL-based method, are particularly appealing for 
MR-based hyperthermia treatment planning of cervical can-
cer patients: for example, to enable localization of hot spots, 
which typically occur at muscle/fat interfaces.4

Conceptually, the capability of accurate boundary recon-
struction is attributable to highres3dnet architecture, and in 
particular to the synergic combination of (1) patch-based 
training and (2) dilated convolutions. Highres3dnet was ini-
tially chosen for conductivity reconstruction because of its 
flexibility in dealing with 3D regression problems in patch-
based fashion, which we expected to capture the 3D, local 
nature of the EPT problem. Patch-based approaches allow to 
capture local features from input data, while diminishing the 
risk of overfitting global spatial context. Besides, they reduce 
the computational cost on GPU memory. Dilated convolu-
tions in our CNN architecture efficiently expand the recep-
tive fields, which relate to wider spatial contexts of the input 
patch, while preserving the spatial resolution of features in 
the input patch throughout the layers.49 This appears to be 
more advantageous than using down- and up-sampling lay-
ers, as found, for instance, in the U-net architecture employed 
by Hampe et al.38 Down-sampling layers reduce the resolu-
tion of the input features, which is only partially recovered 
by the subsequent up-sampling layers. This might potentially 
explain the smoother boundaries in Ref. 38.

Our approach does not depend on geometrical similarities 
among training human models and tested subjects, as sup-
ported by the consistent DL-EPT results for diverse pelvic 
tissue anatomies (Figures 2-5): all the relevant information is 
recovered from the B+

1
. This is a substantial difference with 

a recent DL-EPT finding, where only test geometries sim-
ilar to training geometries were well reconstructed.38 The 
network from this prior study likely over-fitted the anatom-
ical information in training from the input transceive phase. 
This issue was attributed to the lack of geometrical variability 
in training, being the training dataset based on geometrical 
transformations of few human brain models. Differently, we 

F I G U R E  8   Quantification of pelvic tissue conductivity 
reconstructed with Helmholtz-based EPT and DL-EPT (both  
NetMR-B1 and NetMR-ϕ±) for both healthy volunteer and cervical 
cancer patients. Median values are reported. Error bars denote 10th and 
90th percentiles. These values were calculated within the tissue ROIs 
illustrated in Figure 7. Literature mean values, along with maximum 
and minimum values found in the population examined in Ref.42 are 
also shown. V = volunteer; P1 = patient 1; P2 = patient 2;  
Lit = literature
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expect that our CNN properly exploited the diversified train-
ing dataset to learn the mapping function between input mag-
netic field and conductivity in the pelvis.

The training of our supervised DL-based method was de-
liberately founded on simulated data, as simulations intrinsi-
cally connect the ground truth EPs to ||

|
B
+

1

|
|
|
 and ϕ± and can 

reproduce the magnetic field with high fidelity. Direct train-
ing on MR data, as explored in Ref. 38 is another viable op-
tion, which could be motivated by the final practical 
application of the method on in vivo MR measurements. 
Nonetheless, in vivo MR data lack ground truth EP informa-
tion, thus target EPs must be obtained by an arbitrarily cho-
sen EPT reconstruction method (e.g. processed H-EPT38). A 
possible downside of training on in vivo MR data is that po-
tential inaccuracies in these EP maps deriving from the se-
lected EPT algorithm would be incorrectly learnt as true 
values. Furthermore, simulations allow to include knowledge 
of the RF coil system and to expand the training samples: for 
instance, by creating several EP permutations and/or by re-
trieving anatomies from different imaging modalities. In this 
study, CT scans of real patients were used to create human 
models but segmenting clinical MR images, which offer 
greater tissue contrast, might also be considered. In that case, 
we believe that highres3dnet would be able to reconstruct 
most of the tissues’ anatomy for the reasons discussed above. 
Moreover, the EP permutations were intended to cover the 
spectrum of possible inter-subject EP variations as much as 
possible (see Supporting Information Appendix) but, for sim-
plicity, each pelvic tissue was assigned a single EP value 
from the predefined EP distributions. Thus, our in silico 
training dataset currently does not account for intra-tissue EP 
variations, which instead would be naturally encoded in mea-
sured B1 data, even though B1 maps from a rather large popu-
lation should be acquired to sufficiently sample the 
inter-subject EP variability. Finally, simulations permit to 
emulate the accuracy, precision and acquisition artifacts of 
the ||

|
B
+

1

|
|
|
 and ϕ± maps measured with different MR sequences, 

which could be learnt and potentially compensated by the 
CNN.

Based on a framework using EM and MR simulations,30 
the propagation of sequence-specific systematic deviations 
(accuracy) and noise (precision) occurring from MR images 
to ||
|
B
+

1

|
|
|
 and ϕ± during the acquisition is realistically included 

in our training ||
|
B
+

1

|
|
|
 and ϕ± maps. On the contrary, it is “com-

mon practice” in DL-EPT to train on simulated EM data of 
magnetic fields to which Gaussian noise is directly superim-
posed.37 This does not account for sequence-related inaccura-
cies and it implicitly assumes a possibly unrealistic noise 
distribution in the ||

|
B
+

1

|
|
|
 and ϕ± maps (which, in fact, is regu-

lated by the mapping sequence), although it might approxi-
mate the noise level obtainable in measurements. However, 
our results demonstrated that the conductivity reconstruction 
with NetMR-B1, that is, the network trained on simulated MR 

data, was more robust to errors (e.g. in air, Figure 3C) than 
the reconstruction performed with the network trained on EM 
simulations alone (NetEM-B1). DL-based reconstruction with 
NetMR-B1 was also noise-robust.

The comparable performance of the two network configu-
rations (NetMR-B1 and NetMR-ϕ±) suggests that the CNN can 
reliably reconstruct the conductivity from the transceive 
phase alone (Table 2 and Supporting Information Figure S3). 
NetMR-B1 better reconstructed the tissue interfaces in silico; 
this advantage was not clear in vivo. In general, the contribu-
tion of ||

|
B
+

1

|
|
|
 for DL-based conductivity mapping seems minor; 

the two configurations differed only noticeably in the bladder 
for two subjects. A transceive phase-only approach would 
save scan time and avoid artefacts strictly related to ||

|
B
+

1

|
|
|
 

acquisitions.
All the technical aspects discussed thus far alleviated 

some problems of pelvis conductivity mapping at 3T. For 
example, the validity of the transceive phase assumption, ad-
opted in many EPT methods, degrades at 3T for large body 
sizes such as the pelvis (see e.g. H-EPT in Figure 2).39 
Training with the transceive phase circumvents this limita-
tion. Furthermore, the low pelvis SNR, which is typically 
compensated using large voxel sizes,39 was mitigated in this 
study by training on simulated MR data with SNRs predict-
ing the experimental precision at a desired resolution 
(Supporting Information Figure S1). Nevertheless, our DL-
based method does not currently handle the imaging arti-
facts caused by motion (breathing, bowel peristalsis, flowing 
blood) that inevitably affect ||

|
B
+

1

|
|
|
 and ϕ± maps (Figure 5). 

Handling these motion-induced artefacts is still an unre-
solved challenge in EPT. We envisage that including these 
artefacts in the simulated training dataset would improve in 
vivo DL-based pelvis reconstructions.

The network performs consistently when presented with 
unseen pelvic data, as confirmed by its stable behaviour with 
respect to test data of different folds (Supporting Information 
Figure S3), which gives confidence on the reliability of the 
overall accuracy and precision predicted by the in silico 
cross-validation. The cross-validation revealed on average 
a low mean error (ME) in all tissues (Table 2), which indi-
cates an overall good sensitivity to conductivity variations. 
Nevertheless, MEs up to ~20% from the ground truth conduc-
tivity could occur for muscle, bladder and tumour, therefore 
further optimization is necessary to render our method com-
petitive with the accuracy of other physics-based EPT recon-
struction methods (e.g. CSI-EPT approaches31,34 exhibiting 
errors below 10% in simulated pelvis conductivity maps). 
Those MEs might be possibly decreased by manipulating the 
loss function or augmenting the number of EP permutations; 
yet, we cannot predict the number of training samples needed 
for this improvement. Moreover, bladder content and tumour 
were less represented in our database (approximately one 
order of magnitude lower than the other tissue types, Figure 1),  
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which likely explains the higher uncertainty in ME and 
S90-10 in absolute values in these two tissues (Supporting 
Information Figure S3). Solutions to the issue of imbalanced 
data were proposed for DL classification problems, but they 
are still focus of research in regression problems.52 We expect 
that the accuracy in these tissues will be enhanced by han-
dling the problem of imbalanced data.

Our data-driven approach retrieves the conductivity for 
the specific body region, body coil and field strength, because 
this knowledge is imprinted during training. Its applicability 
to other body sites or field strengths cannot be assured yet. 
Moreover, Supporting Information Figure S4 suggests that 
the network tends to favour anatomically realistic conduc-
tivity values (seen in training) if outlier conductivity values, 
that is, outside the training range, are present. Thus, we de-
duce that training with a larger range of conductivity values 
would likely be more appropriate to generalize our method. 
We acknowledge also that the current implementation fails 
to indicate such type of error. We believe that combining our 
DL-based reconstruction with an inverse EPT reconstruction 
method (which guarantees data consistency), similarly to the 
hybrid approach adopted by Leijsen et al,53 could increase the 
confidence in the accuracy of reconstruction of outlier cases.

To emphasize the feasibility of the proposed DL-EPT 
method, we also reported conductivity maps reconstructed 
on experimental in vivo data. These maps reproduce the 
quality observed in the simulation study, thus we conclude 
that our training simulated B

+

1
 fields are sufficiently rep-

resentative of realistic B
+

1
 (excluding imaging artefacts, 

which were not simulated). Furthermore, we compared in 
vivo DL-EPT conductivity maps with Helmholtz-based 
EPT (H-EPT) conductivity maps. Note that H-EPT is cur-
rently the only method shown in vivo for pelvis conductiv-
ity mapping; the aforementioned CSI-EPT approaches,31,34 
despite showing good accuracy and precision in pelvis 
conductivity simulations, have not yet been presented for 
measured pelvic data. In vivo, DL-based conductivity rep-
resents a remarkable improvement over the state-of-art 
H-EPT conductivity (Figure 5), presenting no boundary 
errors, higher precision and rather small differences with 
H-EPT values in boundary-free tissue ROIs (Figure 8). 
However, we do realize that the presented comparison does 
not provide validation for our in vivo results, since H-EPT 
values cannot be considered as ground truth. Therefore, we 
advise caution in interpreting quantitative in vivo values 
obtained with DL-EPT without additional validation. We 
surmise that the accuracy predicted with the cross-vali-
dation also applies experimentally, but a separate study is 
warranted to validate this. Similar to previous conductivity 
works, an effective validation could be performed, for ex-
ample by testing the CNN on phantoms with known EPs, 
although the network might need re-training on different 
digital phantoms for this scope.

In the perspective of oncologic applications, several im-
plications ensue from the fact that MEs up to ~0.20 Sm−1  
could occur in tumour conductivity with NetMR-B1 and 
NetMR-ϕ±. In the context of hyperthermia treatment plan-
ning, for example, an under-/over-estimation of this mag-
nitude in the conductivity of a deep-seated tumour like 
cervical cancer has a limited effect on the tumour tem-
perature.29 Nevertheless, the tumour temperature is also 
affected by the conductivity of tissues surrounding the tu-
mour, like muscle and bladder.29 Thus, errors up to 0.15 and 
0.4 Sm−1 in muscle and bladder, respectively (Supporting 
Information Figure S3), might profoundly affect the tumour 
temperature achieved during the treatment. Moreover, it 
is currently unclear whether this reconstruction accuracy 
would prohibit usage in longitudinal studies to monitor the 
response of a treatment because inter-treatment tumour 
conductivity changes are unknown. For diagnostic appli-
cations based on conductivity, the tumour volume would 
be detected only if the dielectric contrast of normal/cancer-
ous tissues were above ~0.25 Sm−1. For lower conductivity 
contrasts, we observed that tumour and muscle (/healthy) 
tissues were generally given the same conductivity value 
(Figure 2).

5  |   CONCLUSION

We showed, for the first time, that in vivo conductivity maps 
in the human pelvis characterized by anatomical details, 
robustness to noise and relatively good sensitivity to tissue 
conductivity variations are feasible at 3T using deep learn-
ing. In particular, we demonstrated that the combination of 
(i) a broad training dataset, with realistic pelvic anatomies 
and EPs, (ii) a 3D, compact, high resolution CNN archi-
tecture (the implementation and configuration of which are 
made publicly available) trained at a patch level on (iii) only  
measurable ||

|
B
+

1

|
|
|
 and ϕ± quantities obtained from MR simula-

tions with realistic accuracy and precision was sufficient to 
guarantee good quality, 3D maps of pelvis conductivity.

The quality of DL-based conductivity maps shown in 
this work represents a dramatic improvement over the status 
quo methodology used for pelvis EPT, that is, conventional 
Helmholtz-based EPT, and may prove useful for clinical on-
cological applications.
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FIGURE S1 Comparison between measured and simulated 
MR data with realistic noise levels. For both AFI (left) and 
SE (right) sequences, measured and simulated data are re-
ported in top and bottom rows respectively. Image SNR for 
both sequences is shown in first column. For measured data 
image SNR were retrieved with Kellman and McWeigh’s 
method.57 ||
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derived "as described in Refs. 30 and 45 are shown in third 
column
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(bottom row) obtained from EM and noisy MR simulations. 
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and ϕ±,mr maps. Third column: Difference maps ΔB
+

1
 and 

Δϕ±, obtained as difference between data from noisy MR 
simulations (in second column) and data from EM simula-
tions (in first column). Magenta arrows in difference maps 
point to an air pocket
FIGURE S3 Mean error (ME) and spread S90-10 for all 
pelvic tissues, resulting from 7-fold cross validation for 
NetMR-B1 (first and second rows) and NetMR-ϕ± (third and 
fourth rows). ME and S90-10 in every tissue were calculated 
within a tissue ROI that corresponded to the tissue segmen-
tation without the outermost voxels (i.e. 1 voxel was eroded 
from the original segmentation). Each colour represents 
one (test) fold, where 30 dielectric models were used as 
test data. Each circle represents one dielectric model be-
longing to the test dataset. All 210 dielectric models were 
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tested once within all 7 folds. The dashed blue lines rep-
resent average ME and S90-10 (over all test folds) for each 
pelvic tissue
FIGURE S4 DL-EPT conductivity reconstruction (with 
NetMR-B1) in presence of outlier EP values, i.e. values that 
were not included in our EP database. Three outlier cases are 
presented: outlier 1 (top row), with tumour σ = 2.9 Sm−1 and 
εr = 85 rel. units; outlier 2 (middle row), with fat σ = 0.18 
Sm−1 and εr = 8.27 rel. units; outlier 3 (bottom row), with 
tumour σ = 0.6 Sm−1 and εr = 35 rel. units. Maps for ground 
truth conductivity (first column), DL-EPT conductivity re-
trieved with NetMR-B1 (second column) and conductivity dif-
ference (third column) are reported. Conductivity histograms 
for the tissue with outlier EPs are shown in fourth column. 
Solid and dashed lines in red colour represent ground truth 
conductivity and mean DL-EPT conductivity value in the tis-
sue, respectively
FIGURE S5 In vivo conductivity results on a healthy vol-
unteer and two cervical cancer patients (sagittal view). 
Magnitude image from SE acquisition (first column), 
Helmholtz-based conductivity map (σH, second column), 
DL-EPT conductivity map reconstructed with NetMR-B1 
(third column) and DL-EPT conductivity map reconstructed 

with NetMR-ϕ± (fourth column) are shown. Tumour delin-
eation is displayed in magenta colour. (Transversal view is 
shown in Figure 5)
FIGURE S6 Permittivity-Conductivity scatterplot of human 
tissues at 128 MHz. These values for electrical tissue prop-
erties were taken from Ref. 55. The dash grey line represents 
the polynomial fit to the data and the shaded area represents 
the ±20% error
TABLE S1 Parameters used to tune both full B

+

1
  

(“NetEM/MR-B1”) and transceive phase only (“NetMR-ϕ±”) 
network configurations. This table is shown in the form of 
the configuration file as provided in NiftyNet for this study 
(for more details on configuration file, see https://niftynet.
readthedocs.io/en/dev/config_spec.html)
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