
Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 12 | Article 635451

ORIGINAL RESEARCH
published: 26 February 2021

doi: 10.3389/fgene.2021.635451

Edited by: 
Wei Lan,  

Guangxi University, China

Reviewed by: 
Tiantian He,  

Nanyang Technological University,  
Singapore

Liang Zhao,  
Hubei University of Medicine, China

*Correspondence: 
Zhu-Hong You  

zhuhongyou@ms.xjb.ac.cn

Specialty section: 
This article was submitted to  

Computational Genomics,  
a section of the journal  

Frontiers in Genetics

Received: 30 November 2020
Accepted: 25 January 2021

Published: 26 February 2021

Citation:
Su X-R, You Z-H, Hu L, Huang Y-A, 

Wang Y and Yi H-C (2021) An 
Efficient Computational Model for 

Large-Scale Prediction of 
Protein–Protein Interactions Based 

on Accurate and Scalable Graph 
Embedding.

Front. Genet. 12:635451.
doi: 10.3389/fgene.2021.635451

An Efficient Computational Model for 
Large-Scale Prediction of 
Protein–Protein Interactions Based 
on Accurate and Scalable Graph 
Embedding
Xiao-Rui Su 1,2,3, Zhu-Hong You 1,2,3*, Lun Hu 1,2,3, Yu-An Huang 1, Yi Wang 1,2,3 and 
Hai-Cheng Yi 1,2,3

1 Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China, 2 University of Chinese 
Academy of Sciences, Beijing, China, 3 Xinjiang Laboratory of Minority Speech and Language Information Processing, 
Ürümqi, China

Protein–protein interaction (PPI) is the basis of the whole molecular mechanisms of living 
cells. Although traditional experiments are able to detect PPIs accurately, they often encounter 
high cost and require more time. As a result, computational methods have been used to 
predict PPIs to avoid these problems. Graph structure, as the important and pervasive data 
carriers, is considered as the most suitable structure to present biomedical entities and 
relationships. Although graph embedding is the most popular approach for graph representation 
learning, it usually suffers from high computational and space cost, especially in large-scale 
graphs. Therefore, developing a framework, which can accelerate graph embedding and 
improve the accuracy of embedding results, is important to large-scale PPIs prediction. In 
this paper, we propose a multi-level model LPPI to improve both the quality and speed of 
large-scale PPIs prediction. Firstly, protein basic information is collected as its attribute, 
including positional gene sets, motif gene sets, and immunological signatures. Secondly, 
we construct a weighted graph by using protein attributes to calculate node similarity. Then 
GraphZoom is used to accelerate the embedding process by reducing the size of the weighted 
graph. Next, graph embedding methods are used to learn graph topology features from the 
reconstructed graph. Finally, the linear Logistic Regression (LR) model is used to predict the 
probability of interactions of two proteins. LPPI achieved a high accuracy of 0.99997 and 
0.9979 on the PPI network dataset and GraphSAGE-PPI dataset, respectively. Our further 
results show that the LPPI is promising for large-scale PPI prediction in both accuracy and 
efficiency, which is beneficial to other large-scale biomedical molecules interactions detection.

Keywords: large-scale, protein-protein interaction, GraphZoom, weighted graph, graph embedding

INTRODUCTION

Over the past years, with the rapid development of biomedical researches as well as computer 
technologies, an increasing number of biomedical data, such as biomedical entities and their 
relationships, have been extracted from unconstructed data (Su et  al., 2018). As an important 
and pervasive data carrier, a graph is considered the most suitable structure to present biomedical 
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entities and their relationships. Both the availability of biomedical 
data and the researches of graphs have greatly facilitated 
biomedical graph studies, such as graph embedding, node 
properties prediction, and link prediction.

As the material basis of life, proteins are involved in every 
cell and almost every primary cellular process (Gavin et  al., 
2002). Analyzing protein–protein interactions (PPIs) can provide 
valuable insights into the molecular mechanisms underlying 
a living cell (Ma et  al., 2011). Due to the rapid research in 
high-throughput technologies and biomedical studies, millions 
of PPI data have been collected from various experiments. 
Many databases have been constructed accordingly. However, 
too much data brings a few problems, such as high false-
positive rates, low coverage, and high cost. Therefore, it is 
very meaningful to propose a high-efficiency computing method 
to identify PPIs.

Much work has been done in predicting PPIs. According 
to the method, it generally can be  categorized into two 
groups based on either (1) feature extraction or (2) based 
on machine learning and deep learning. For the first group, 
they concentrate on the feature design. Features are extracted 
from kinds of sources, including protein sequence, functional 
domain information, physicochemical properties, and the 
fusion of feature sources. For example, Shen et  al. (2007) 
predicted PPIs using conjoint-triad feature extracted from 
protein amino acids to represent protein. His work achieved 
a promising accuracy of 83.90% when applied to a 16,000 
diverse PPI pairs dataset. On the basis of a protein sequence, 
functional domain information was necessary for the 
understanding of biological processes. Hence, Mudita and 
Resat (2007) proposed a method based on quantitative score 
measuring domain-domain interactions derived from available 
PPI database, then used the obtained score to predict 
interaction probability between two proteins. Chen et  al. 
(2019) designed three types of protein-pair features based 
on physicochemical properties of amino acids, gene ontology 
annotations, and interaction network topologies. Then they 
introduced an ensemble learning approach for PPI prediction 
integrating three kinds of features. As for the second group, 
they concentrate on the design of classifier or neural network. 
Both machine learning methods and deep learning methods 
are based on statistics theories. Machine learning methods 
utilize classifiers to predict PPIs, such as naïve Bayes (NB), 
logistic regression (LR), random forest (RF), and support 
vector machine (SVM). Methods based on deep learning 
tend to apply neural networks to address PPI prediction, 
such as convolution neural network (CNN), recurrent neural 
network (RNN), and long short-term memory (LSTM). For 
instance, Romero-Molina et al. (2019) predicted the protein-
protein interactions using SVM based on the sequence of 
proteins. Wang et  al. (2017a,b,c) explored the protein 
evolutionary features from the angle of the image processing 
techniques in order to open a new way of researching 
protein sequences. Sequence-based approaches typically 
represent protein sequence as a vector using feature 
representation method, then the vector as an input of 
classification algorithm. All of these methods have achieved 

a promising result. However,  they tend to concentrate on 
protein feature extraction and the design of neural networks 
and not the complex relationships that the proteins have, 
such as graph topology. More specifically, proteins collaborate 
and interact with each other to perform biological functions, 
leading to many protein interactions, which can be integrated 
and modeled as a graph/network structure. Therefore, it is 
important to detecting PPIs from the perspective of 
graph structure.

Analyzing and modeling the biomedical data with graph 
structure rely on a thorough understanding of graph topology. 
Numerous network-based learning methods have been developed 
to explore the interactions between proteins. They are classified 
into three categories, based on (1) network diffusion, (2) 
handcrafted graph features, and (3) graph representation 
learning. For the first group, the diffusion methods employ 
random walk techniques for influence propagation in different 
networks, such as integrating PPI networks into disease gene 
prediction (Luo et  al., 2019). For the second group, various 
features for proteins are extracted and then fed into traditional 
machine learning methods. Other tasks also benefit from 
various features, especially when processing graph structure 
data. For example, graph clustering task (He et  al., 2019a,b) 
utilize these multiview features to detect biological module. 
Graph clustering is also conducive to graph representation 
learning tasks because such methods are able to decrease the 
graph scale, and they can then improve the efficiency of the 
representation learning model. As for the third group, instead 
of a handcrafted feature, graph representation learning methods 
learn features automatically. This kind of method aims to 
learn a low-dimension representation for each node. 
Representative methods include Matrix Factorization-based 
model, Random Walk-based model, and Neural Network-based 
model. MF-based model (Belkin and Niyogi, 2003) learns 
graph representation by factorizing the matrix of input data 
into lower dimensional matrices. RW-based model (Perozzi 
et  al., 2014; Grover and Leskovec, 2016) learns representation 
by generating a sequence of nodes randomly. The NN-based 
model integrates neural networks into representation learning. 
For example, (Kipf and Welling, 2016) proposed that graph 
convolutional networks (GCN) are perhaps the most 
representative graph neural network models, having a strong 
ability in the task of semi-supervised classification. The key 
issue in GCN is about the filter design in fact since it has 
a huge influence on the efficiency of model. Additionally, 
with the widely used of attention mechanism, attention-based 
graph neural network born, namely graph attention networks 
(GATs; Velikovi et  al., 2017). Compared with GCN, GATs 
are more flexible and efficient since less parameters are used 
and can be  parallelized. Although graph embedding is the 
most popular among these three methods, it usually suffers 
from high computational and space cost, owing to high 
dimensionality, sparsity of the network, and rapid expansion 
of the network. Therefore, developing an efficient framework, 
which can accelerate graph embedding and improve the 
embedding results accuracy, is important to both PPI and 
other molecular interactions.
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In this paper, we  proposed a multi-level model LPPI to 
improve both the quality and speed of large-scale PPIs prediction. 
LPPI consists four parts: (i) data collecting, (ii) graph embedding, 
(iii) embedding enhancement, and (iv) results prediction. Data 
collecting contains attribute feature extracting. We  adopt the 
fundamental information as the attribute feature, such as 
positional gene sets, motif gene sets, and immunological 
signatures. In addition, the protein attribute is used to reconstruct 
a weighted graph by calculating node similarity. Then, graph 
embedding is used to learn the topology feature for each node. 
During this process, GraphZoom (Deng et al., 2019) is applied 
to accelerate the embedding process by reducing the size of 
the graph. After enhancing embedding, the classifier is used 
to predict interactions between protein pairs.

Our contributions are 2-fold. Firstly, LPPI integrates protein 
attribute into graph embedding task. More than that, LPPI adds 
weight to the link by calculating node similarity adopting the 
protein attribute. In this way, multi-view information is used 
when learning node representation, which is conducive to the 
improvement of accuracy. Secondly, we  reconstruct the graph 
by using the GraphZoom algorithm in order to reduce the size 
of the graph. In this way, we  can accelerate the efficiency of 
any network embedding algorithms. By combining the above 
two aspects, LPPI can save execution time without losing accuracy. 
Experiments on PPI network dataset and GraphSAGE-PPI dataset 
demonstrate that LPPI compares favorably both in classification 
accuracy and efficiency (measured in CPU time) against baseline 
models for large-scale PPI prediction.

MATERIALS AND METHODS

Benchmark Dataset
In order to validate the efficiency of our model, we  collected two 
datasets with different sizes, which are the PPI network dataset and 
the GraphSAGE-PPI dataset. The statistics of the datasets are in Table 1 
in which the Density is defined as
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The positive PPI network dataset was downloaded from 
Stanford Large Network Dataset Collection (PPI Network, May 
2017 version). This version of the PPI Network contains 818,716 
protein-protein pairs of experimentally verified PPIs from 23,997 
different human proteins. After eliminating self-interactions 
and duplicate interactions, we  finally obtain 663,954 unique 
positive protein-protein pairs. The dataset is available at http://
snap.stanford.edu/graphsage/ppi.zip .

The positive GraphSAGE-PPI (Sep  2018 version) dataset 
was collected following (Hamilton et  al., 2017), which was 

also constructed by Stanford University. This version data set 
was used as the benchmark to train GraphSAGE. The data 
resource was the same as the PPI network. However, differently 
from PPI network, GraphSAGE-PPI contains fewer nodes and 
links, which are numbered at 6,370 and 186,421, respectively. 
The dataset is available at http://github.com/williamleif/
GraphSAGE/example_data.

One of the common ways to construct the negative data 
set is to consider two proteins with different cellular 
compartments nor interacting. In this study, we  adopted the 
same strategy to construct a negative dataset for two benchmark 
datasets. We followed this idea and constructed each benchmark 
dataset according to the following criteria: (1) the number of 
negative samples was equal to that in the positive dataset; (2) 
we  constructed a complementary graph; (3) we  removed the 
interactions from the same cellular compartments; and (4) 
we  randomly selected noninteracting protein pairs from the 
complementary graph. After that, a negative dataset had been 
constructed, which was trained with a positive dataset together. 
Five-fold cross-validation was adopted when training the model, 
and, therefore, a negative dataset was constructed at each fold.

Protein Attribute Extraction
In order to represent protein nodes, we  extracted the protein 
attribute features following (Hamilton et  al., 2017). Using 
positional gene sets, motif gene sets, and immunological 
signatures as features, collected from the Molecular Signatures 
Database (Subramanian et  al., 2005). Positional gene sets 
corresponding to each human chromosome and each cytogenetic 
band that has at least one gene. There are 326 positional gene 
sets in total. As for the motif gene sets, they represent potential 
targets of regulation by transcription factors or microRNAs. 
The sets consist of genes grouped by short sequence motifs 
they share in their non-protein coding regions. Immunological 
signatures represent cell states and perturbations within the 
immune system. The signatures are generated by manual curation 
of published studies in human and mouse immunology. Finally, 
the protein attribute feature is obtained.

Graph Embedding
Graph embedding methods aim to automatically learn a 
low-dimensional feature representation for each node in the 
graph (Wang et  al., 2016). Traditionally, a low-dimensional 
feature is considered as the structural information of the graph. 
Therefore, it can be  used in various downstream tasks. Since 
the concept of graph embedding proposed, graph embedding 
methods can be  categorized into three groups: MF-based, 
RW-based, and NN-based (Su et  al., 2018; Yue et  al., 2019).

For the sake of efficiency improvement, we  adapted the 
RW-based method, which was inspired by the word2vec model 
(Mikolov et  al., 2013). The RW-based method tries to learn 
node representation by generating node sequence through 
random walk in graphs. In this way, topological information 
can be  preserved into a low-dimensional vector. As the two 
representative methods based on random walk, DeepWalk (DW; 
Perozzi et al., 2014) and Node2vec (Grover and Leskovec, 2016) 

TABLE 1 | Statistics of the datasets.

Dataset #Nodes #Links Density

PPI network 23,997 663,954 0.23%
GraphSAGE-PPI 6,370 186,421 0.92%
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were applied to learn latent features. DW considers the paths 
as sentences and implements Skip-Gram to learn the embedding 
of each node. Specifically, the DeepWalk algorithm first generates 
a random walk path P P P Pv v v v

n
i i i i

1 2 3
, , , ,¼  by taking vi as the root 

node, the symbol n represents the length of random walk path. 
Therefore, the aim is to predict the next node according 
previous sequence:

 Pr , , , , )= ¼ -
( |P P P P Pv
m

v v v v
m

i i i i i

1 2 3 1

However, it is difficult to calculate an order sequence in 
the experiment. In order to solve this problem, Skip-Gram is 
used to learn the random walk path. This algorithm does not 
take the sequence order into consideration but sets a sliding 
window of length n, using target words to predict context. 
Therefore, the objective function of optimization is as follows:

 min logPr
p v

m
v
m n

v
m

v
m n

v
m

vi
m i i i i i

p p p p p- ¼ ¼{ }( )- - + +1 1
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Compared to DeepWalk, Node2vec introduces the probability 
of controlling the walk direction. Therefore, the objective 
function of optimization is as follows:

 max logPr
f u V

sN U f u
Î
å ( ) ( )( )|

In this formulation, u  represents the current node and 
N Us ( ) represents the nodes selected by strategy s. In Node2vec, 
it adapts the breadth-first search (BFS) and the depth-first 
search (DFS) into the generation process of the random walk 
sequence by introducing return hyperparameter p and ahead 
hyperparameter q to control the probability of a walk. The 

probability a qm,( ) from current node m to next node q  is 
defined as follows:
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Breadth-first search focuses on neighboring nodes and 
characterizes a relatively local network representation. DFS 
reflects the homogeneity between nodes at a higher level. 
Specifically, BFS explores the structural properties of the graph, 
while DFS explores the similarity in content or similarity 
between adjacent nodes.

GraphZoom
Owing to the scalable of PPIs data, it is essential to accelerate 
the graph embedding process. In this section, GraphZoom 
(Deng et  al., 2019) is applied to improve the accuracy and 
efficiency of graph embedding. GraphZoom is a multi-level 
framework for improving both the accuracy and scalability of 
unsupervised graph embedding algorithms. There are four 
components in it: (1) graph fusion, (2) spectral graph coarsening, 
(3) graph embedding, and (4) embedding refinement.

For the first step, original graph topology and attribute 
information are combined to construct a weighted graph, which 
has the same number of nodes as the original graph. 
Graph  topology can be  represented by the adjacency 
matrix A Rtopo

N NÎ ´ , and cosine similarity on attribute feature 
is used to calculate edge weight Afeat. Then, the fused graph 
can be  represented by a weighted sum:

 A A Afusion topo feat= + b

The second step is spectral coarsening, which is the core 
part of GraphZoom. In order to improve the embedding speed, 
a fused graph constructed before is coarsened into a much 
smaller graph by merging nodes with high spectral similarities. 
Inspired by signal processing, simple smoothing (low-pass graph 
filtering) function is applied to k random vectors to obtain 
smoothed vectors for k-dimensional graph embedding instead 
of calculating the eigenvectors of the original graph Laplacian. 
Gauss-Seidel iteration method is used to solve k linear equations 
to obtain initial random k-dimensional feature representation. 
x represents a random vector calculated by Gauss-Seidel, which 
is expressed with a linear combination of eigenvectors u  of 
the graph Laplacian. Smoothed vector u  is obtained by applying 
the smoothing function. Then the nodes with a higher spectral 
affinity ap q,  are locally clustered, and a graph with fewer nodes 
(adjacency matrix) is obtained so repeatedly. This method can 
be achieved in linear time. The whole process can be formulated:

 x u x u n N
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As for the third step, any unsupervised embedding methods 
can be  applied to embed the coarsest graph. The last step 
is embedding refinement. Using Laplace smoothing to map 
the node representation to each node of the original graph, 
then embedding representation of the original graph node 
is obtained. The embedding results can be  calculated 
as follows:
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where A is the adjacency matrix, D is the degree matrix, 

Hii+1 is the graph mapping operator between two coarsening 
levels i and i+1, and s  is a small value to ensure every node 
has its own self-loop.
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RESULTS

Evaluation Criteria
To verifies the proposed method in the experiments, we followed 
the 5-fold cross-validation specification. To evaluate the proposed 
method more fairly, a range of performance evaluation measures 
were computed including accuracy (Acc.), sensitivity (Sen.), 
precision (Pre.), and the Matthews correlation coefficient (MCC), 
which can be  defined respectively:

 Accuracy =
+

+ + +
TN TP

TN TP FN FP

 Sensitivity =
+
TP

TP FN

 Precision =
+
TP

TP FP

 MCC =
´ - ´

+( ) +( ) +( ) +( )
TP TN FP FN

TP FP TP FN TN FP TN FN

where the TN, TP, FN, and FP denotes the number of 
correctly predicted positive and negative samples, wrongly 
predicted positive and negative samples, respectively. 
Furthermore, the Receiver Operating Characteristic (ROC) 
curve, which represents the results of multiple confusion matrices, 
using a false positive rate as its x-axis and true positive rate 
as its y-axis. The area under curve (AUC) of ROC, which 
follows a philosophy of the bigger the better, is also adopted 
to measure the performance of the proposed model.

Model Construction
We implemented our model on two data sets of different sizes. 
In order to maintain unity, we  also integrated DeepWalk and 
Node2vec as the basic embedding methods into the proposed 
model, respectively. As for the hyperparameters in DeepWalk 
and Node2vec, we  used 10 walks with a walk length of 80 

and set the embedding dimension to 128. In addition, Node2vec 
has two parameters, return parameter p and in-out parameter 
q, which control the direction of the next step. We  set them 
to 1.0 and 0.5, respectively. The effectiveness of these parameters 
is verified by other experiments. GraphZoom is used to enhance 
the graph and accelerate the graph embedding process. The 
hyperparameters used in GraphZoom are fusion parameter b  
and coarsening level l . b  controls the proportion of attribute 
feature. Parameter l  is used in the graph reduction process, 
which controls the size of the reconstructed graph. Coarsening 
level l represents the iteration that the original graph is to 
be  reconstructed. With the increase of the coarsening level, 
the scale of the graph is smaller. We  adapted 0.1 and 1  in 
the baseline model, respectively. After obtaining graph embedding 
representation, several classifiers were applied to predict protein 
pairs. It should note that all parameters used in classifiers 
were the default. The model overview is shown in Figure  1.

Performance on Two Large-Scale Datasets
We test the performance of our model on two benchmark 
datasets. To contextualize the empirical results on benchmarks, 
we  construct a baseline model, which integrates DeepWalk 
(Perozzi et  al., 2014) as the graph embedding method and 
LR (Hosmer et al., 2013) as a classifier. Five-fold cross-validation 
is used to test the baseline model. The results are shown in 
Table  2. In addition, we  also compare the CPU time of two 
datasets, which is shown in Figure  2.

Our model achieves a highly predictive performance on 
both two datasets, which average accuracy is 0.99997 and 
0.9979, respectively. Compared with GraphSAGE-PPI data et, 
our model achieves better results on the PPI network dataset, 
which demonstrates that our model has the ability to process 
large-scale dataset precisely. More specifically, the number of 
nodes and links of the PPI network dataset is three times 
that in the GraphSAGE-PPI dataset in fact; however, the time 
cost of two datasets is similar, which further demonstrates 

FIGURE 1 | The overview of the proposed model.
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that our model can process the large-scale dataset efficiently. 
In conclusion, the proposed model has the ability to process 
high-density network both accurately and efficiently.

Comparing LPPI With Baseline Embedding 
Methods
In order to validate that the proposed model accelerates the 
embedding process without losing accuracy, we  compared the 
proposed model with two baseline embedding methods, which 
are also integrated into the proposed model as part of the 
embedding. The results are shown in Table  3 and Figure  3.

According to the results, firstly, the proposed model used 
less CPU time since LPPI had the graph reduction module, 
which can decrease the graph scale. In addition, it can 
be observed that the proposed model achieved higher accuracy 
than the other two baseline models on both the PPI network 

dataset and the GraphSAGE-PPI dataset. This is because LPPI 
contains more detailed information such as node attribute and 
concentrates more on the key part of the graph and eliminates 
noisy information. In conclusion, the proposed model performs 
better than baseline models mainly because (i) LPPI integrates 
node attribute information and node similarity as topology 
information into the model, which increase the accuracy of 
the proposed model, and (ii) LPPI reconstructs graph to reduce 
the graph scale, which is conducive to efficiency on embedding 
and noisy information eliminated.

Analysis on LPPI Kernels
There are two hyperparameters in LPPI model, which are fusion 
parameter b  and coarsening level parameter l . In order to 
study the efficiency and accuracy of LPPI, we  focused on two 
parameters. The results are shown in Table  4 and Figure  4.

FIGURE 2 | Timing experiments of four parts on PPI network dataset and GraphSAGE-PPI dataset.

TABLE 2 | Prediction results for two datasets. DW means Deepwalk, and LR represents Logistic Regression.

Baseline 
model

Fold PPI network GraphSAGE-PPI

Acc. Pre. Sen. MCC AUC Acc. Pre. Sen. MCC AUC

LPPI (GZ-
DW-LR)

0 0.99996 1.0 0.99992 0.99992 0.99996 0.9978 1.0 0.9956 0.9957 0.9978
1 0.99997 1.0 0.99993 0.99993 0.99997 0.9979 1.0 0.9958 0.9958 0.9979
2 0.99995 1.0 0.99991 0.99991 0.99996 0.9981 1.0 0.9961 0.9961 0.9981
3 0.99997 1.0 0.99993 0.99993 0.99997 0.9980 1.0 0.9960 0.9959 0.9980
4 0.99998 1.0 0.99996 0.99996 0.99998 0.9978 1.0 0.9957 0.9956 0.9978

Average 0.99997 1.0 0.99993 0.99993 0.99996 0.9979 1.0 0.9958 0.9958 0.9979

The bold values mean the best results achieved.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 7 February 2021 | Volume 12 | Article 635451

Firstly, we discuss the influence of coarsening level. Coarsening 
level controls the size of the reconstructed graph. Figure  5 
shows that the bigger the coarsening level is, the smaller the 
reconstructed graph is. In our experiment, five different values 
are used. From the results, we  can know that with the increase 
of the coarsening level, the accuracy of the two datasets is 
gradually decreased from 0.99997 to 0.99957 and from 0.9979 
to 0.9858, respectively. Correspondingly, the CPU time is 
dramatically decreased from 8131.417 to 350.093  s and from 
2309.847 to 69.745  s, respectively. When the coarsening level 
is 1, the model achieves the highest accuracy on the PPI network 
dataset, which is 0.99997, but it costs the most CPU time. The 
model with coarsening level 5 is the most efficient model as 
it costs the least CPU time, which is 350.093 s. More importantly, 
though the model using level 5 has the lowest accuracy, its 
accuracy is not much different from the model with level 1. 
As for the GraphSAGE-PPI dataset, LPPI achieves the best 
performance when the level is 2 with an accuracy of 0.9986 

and AUC value of 0.9985. Overall, when the number of coarsening 
level is less than 5, the accuracy of LPPI is always higher than 
that of DeepWalk and LPPI improves the efficiency of DeepWalk 
by 17.8 times and 26.2 times on two datasets, respectively. 
Hence, experiment results prove that our model can accelerate 
the embedding process without losing accuracy.

Next, we  discuss the fusion parameter b , which decides 
the proportion of attribute feature. In this part, we  also try 
five different values for parameter b . According to our experiment 
results (Figures  4C,D), this parameter has a positive influence 
on the final result. With the increase of b , the accuracy is 
increase gradually. For the PPI network, the highest accuracy 
is 0.99997, which is achieved by 0.1, 0.8, and 1. As for the 
GraphSAGE-PPI, the highest accuracy is obtained when b  is 
0.8 and 1. This result indicates that combing the attribute feature 
with network embedding can improve the predictive performance. 
In addition, CPU time has not been affected by parameter b  
as this parameter has no influence on the scale of the reconstructed 

TABLE 3 | Summary of results in terms of mean classification accuracy (Acc.), AUC, and CPU time for different combinations in LPPI on the PPI network dataset and 
GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time(s) Acc. AUC Time(s)

LPPI (GZ-DW-LR) 0.99997 0.99996 8131.417 0.9979 0.9979 2309.847
LPPI (GZ-NV-LR) 0.99993 0.99997 5001.137 0.9984 0.9983 1232.644
DeepWalk 0.99975 0.99990 12405.259 0.9544 0.9995 3633.228
Node2vec 0.99992 0.99995 7947.544 0.9879 0.9999 1580.749

The bold values mean the best results achieved.

FIGURE 3 | Timing experiments of different embedding methods on PPI network dataset and GraphSAGE-PPI dataset.
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graph. Even though, CPU time cost by LPPI with various fusion 
parameter is still less than that of DeepWalk.

In this part, we  discuss two parameters used in our 
model. Parameter coarsening level l  can accelerate the 

embedding process, parameter b  can improve the accuracy 
value. These two parameters further demonstrate that our 
model has the ability to balance the performance of accuracy 
and efficiency.

A B

C D

FIGURE 4 | Accuracy and timing experiments on two benchmark datasets. (A) Model performance with respect to the coarsening level on PPI network dataset. 
(B) Model performance with respect to the coarsening level on the GraphSAGE-PPI dataset. (C) Model performance about fusion parameter on PPI network 
dataset. (D) Model performance about fusion parameter on the GraphSAGE-PPI dataset.

TABLE 4 | Comparisons of different kernel parameters in GraphZoom in classification on the PPI network dataset and GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time(s) Acc. AUC Time(s)

DeepWalk 0.99975 0.99990 12405.259 0.9544 0.9995 3633.228
LPPI(DW-LR,l = 1) 0.99997 0.99996 8131.417 (×1.5) 0.9979 0.9979 2309.847 (×1.6)
LPPI(DW-LR,l = 2) 0.99996 0.99996 4236.696 (×2.8) 0.9986 0.9985 1062.251 (×3.4)
LPPI(DW-LR,l = 3) 0.99996 0.99996 1810.727 (×6.9) 0.9971 0.9971 418.485 (×8.7)
LPPI(DW-LR,l = 4) 0.99987 0.99985 696.115 (×17.8) 0.9931 0.9931 138.625 (×26.2)
LPPI(DW-LR,l = 5) 0.99957 0.99957 350.093 (×35.4) 0.9858 0.9856 69.745 (×52.1)
LPPI(DW-LR,β = 0.1) 0.99997 0.99996 8131.417 (×1.5) 0.9979 0.9979 2309.847 (×1.6)
LPPI(DW-LR,β = 0.2) 0.99996 0.99980 8667.839 (×1.4) 0.9979 0.9979 2396.033 (×1.5)
LPPI(DW-LR,β = 0.4) 0.99997 0.99996 8606.011 (×1.4) 0.9980 0.9978 2318.294 (×1.6)
LPPI(DW-LR,β = 0.8) 0.99997 0.99997 8669.954 (×1.4) 0.9982 0.9982 2342.992 (×1.6)
LPPI(DW-LR,β = 1.0) 0.99997 0.99995 8836.558 (×1.4) 0.9982 0.9981 2384.745 (×1.5)

The bold values mean the best results achieved.
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Comparison of Different Classification 
Algorithms
After obtaining embedding features, classifiers are used to 
classify the protein pairs. In this section, we  compare the 
results of different classifiers. Base on the baseline model, 
we  compare three types of classifiers, including LR, RF, and 
NB (Rish, 2001; Liaw and Wiener, 2002; Hosmer et  al., 2013) 
and the predictive performance is shown in Table  5. It should 
note that default parameters are used in different classifiers.

In our experiment, we  test classifiers based on LPPI (GZ-DW). 
Among these three classifiers, LR is a linear model, RF belongs to 
an ensemble-based model, and NB is a generation model. From 
the results, it can be  found that though RF achieves the best 
performances on both accuracy and AUC value for each dataset, 
it costs the longest time, which is not suitable for the sake of 
efficiency. On the other hand, LR has not only a promising performance 
with high accuracy and the AUC, but the least CPU time. As a 
result, LR is selected as the final classifier integrated into LPPI.

DISCUSSION

The proposed model has promising predictive performances on 
two large-scale datasets, the PPI network dataset and 
GraphSAGE-PPI dataset, which have 663,954 links and 186,421 
links in total, respectively. Our model aims to address large-scale 

protein pairs prediction, efficiently and accurately. However,  it 
is introductive to point out that there are still several limitations 
in our model. The current study constructs a multi-level framework 
for PPI prediction, containing four parts. In fact, classifiers as 
well as parameters affect results significantly, especially in 
classification tasks. Therefore, the performance of our model 
could still have a bias. Simultaneously, a multi-level framework 
is not convenient for a training model. In order to solve this 
problem, an end-to-end model is expected to be  adapted. More 
specifically, we  can replace classify layer with a forward neural 
network, which contributes to model training and CPU time. In 
addition, from the perspective of code implement, it is not efficient 
enough to link prediction tasks since the code is not parallelized, 
such as in the part of split data and 5-fold cross-validation.

Future efforts to improve the prediction of PPI based on 
the current study include (i) reducing the bias caused by 
classifiers, replacing the classify layer with a forward neural 
network, and (ii) improving efficiency through parallel computing, 
especially in the part of graph embedding.

CONCLUSION

In this study, we introduce a model LPPI, a multi-level framework 
to improve the accuracy and efficiency of large-scale protein-protein 
interactions prediction. The attribute feature is collected in LPPI 

A B

FIGURE 5 | (A) The change of link number and node number with the coarsening level increasing on the PPI network dataset. (B) The change of link number and 
node number with the coarsening level increasing on the GraphSAGE-PPI dataset.

TABLE 5 | Comparisons of different classifiers on the PPI network dataset and GraphSAGE-PPI dataset.

Method PPI network GraphSAGE-PPI

Acc. AUC Time (s) Acc. AUC Time(s)

LPPI(GZ-DW-LR) 0.99997 0.99996 8131.417 0.9979 0.9979 2309.847
LPPI(GZ-DW-RF) 0.99999 0.99998 17783.854 0.9999 0.9999 2874.321
LPPI(GZ-DW-NB) 0.98799 0.99996 17673.404 0.9899 0.9956 2821.121

The bold values mean the best results achieved.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Su et al. Efficient Model for PPI Predicting

Frontiers in Genetics | www.frontiersin.org 10 February 2021 | Volume 12 | Article 635451

firstly, which further is used to calculate the similarity between 
protein nodes to reconstruct a weighted graph. Then, a graph 
embedding method, such as DeepWalk and Node2vec, is applied to 
a new graph and generates topology features. Afterward, the classifier 
is used to test if protein pairs interact with each other. Experiments 
show that LPPI improves both classification accuracy and embedding 
speed on two benchmark datasets. Our work provides a new framework 
for large-scale protein-protein interactions prediction, which is 
beneficial to the detection of other biomedical molecule interactions.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This 
data can be  found at: https://github.com/Blair1213/LPPI .

AUTHOR CONTRIBUTIONS

X-RS and Z-HY designed the model and wrote the manuscript. 
X-RS, LH, Y-AH, YW, and H-CY conducted the experiments. 
Z-HY managed and directed the project. All authors contributed 
to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science 
Foundation of China (NSFC; No. 61572506), the National 
Outstanding Youth Science Fund Project of NSFC (No. 61722212), 
and the Pioneer Hundred Talents Program of the Chinese 
Academy of Sciences.

 

REFERENCES

Belkin, M., and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction 
and data. Neural Comput. 15, 1373–1396. doi: 10.1162/089976603321780317

Chen, K. -H., Wang, T. -F., and Hu, Y. -J. (2019). Protein-protein interaction 
prediction using a hybrid feature representation and a stacked generalization 
scheme. BMC Bioinformatics 20:308. doi: 10.1186/s12859-019-2907-1

Deng, C., Zhao, Z., Wang, Y., Zhang, Z., and Feng, Z. (2019). ‘GraphZoom: 
a multi-level spectral approach for accurate and scalable graph embedding.’ 
Comput. Sci. [Preprint].

Gavin, A. -C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., 
et al. (2002). Functional organization of the yeast proteome by systematic 
analysis of protein complexes. Nature 415, 141–147. doi: 10.1038/415141a

Grover, A., and Leskovec, J. (2016). “node2vec: Scalable feature learning for 
networks” in Proceedings of the 22nd ACM SIGKDD international conference on 
knowledge 1117 discovery and data mining (ACM); August 13–17, 2016; 855–864.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). “Inductive representation 
learning on large graphs.”

He, T., Bai, L., and Ong, Y. S. (2019a). “Manifold regularized stochastic block 
model” in 31st International conference on tools with artificial intelligence 
(ICTAI’19); November 4–6, 2019.

He, T., Liu, Y., Ko, T. H., Chan, K. C. C., and Ong, Y. S. (2019b). Contextual 
correlation preserving multi-view featured graph clustering. IEEE Trans. 
Cybern. 50, 4318–4331. doi: 10.1109/TCYB.2019.2926431

Hosmer, D. W., Lemeshow, S., and Sturdivant, R. X. (2013). Applied logistic 
regression. New Jersey: John Wiley & Sons.

Kipf, T. N., and Welling, M. (2016). “Semi-supervised classification with graph 
convolutional networks.”

Liaw, A., and Wiener, M. (2002). “Classification and regression by randomForest.” 
R News 2, 18–22.

Luo, P., Tian, L. -P., Ruan, J., and Wu, F. -X. (2019). Disease gene prediction by 
integrating PPI networks, clinical RNA-seq data and OMIM data. IEEE/ACM 
Trans. Comput. Biol. Bioinform. 16, 222–232. doi: 10.1109/TCBB.2017.2770120

Ma, D. -C., Diao, Y. -B., Guo, Y. -Z., Li, Y. -Z., Zhang, Y. -Q., Wu, J., et al. 
(2011). A novel method to predict protein-protein interactions based on 
the information of protein-protein interaction networks and protein sequence. 
Protein Pept. Lett. 18, 906–911. doi: 10.2174/092986611796011482

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). 
“Distributed representations of words and phrases and their compositionality” 
in Proceedings of the 26th international conference on neural information 
processing systems-Volume 2; December 12–15, 2013; Lake Tahoe, Nevada: 
Curran Associates Inc., 3111–3119.

Mudita, S., and Resat, H. (2007). A domain-based approach to predict protein-
protein interactions. BMC Bioinformatics 8:199. doi: 10.1186/1471-2105-8-199

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “DeepWalk: online learning of 
social representations” in Proceedings of the 20th ACM SIGKDD international 
conference on knowledge discovery and data mining; August 24–27, 2014; 
New  York, USA: Association for Computing Machinery, 701–710.

Rish, I. (2001). An empirical study of the naive Bayes classifier. J. Univ. Comput. 
Sci. 1:127.

Romero-Molina, S., Ruiz-Blanco, Y. B., Harms, M., Münch, J., and 
Sanchez-Garcia, E. (2019). PPI-detect: a support vector machine model for 
sequence-based prediction of protein–protein interactions. J. Comput. Chem. 
40, 1233–1242. doi: 10.1002/jcc.25780

Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., et al. (2007). Predicting 
protein–protein interactions based only on sequences information. Proc. Natl. 
Acad. Sci. U. S. A. 104, 4337–4341. doi: 10.1073/pnas.0607879104

Su, C., Tong, J., Zhu, Y., Cui, P., and Wang, F. (2018). Network embedding 
in biomedical data science. Brief. Bioinform. 21, 182–197. doi: 10.1093/bib/
bby117

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., 
Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles. Proc. Natl. 
Acad. Sci. U. S. A. 102, 15545–15550. doi: 10.1073/pnas.0506580102

Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. 
(2017). “Graph attention networks.”

Wang, D., Cui, P., and Zhu, W. (2016). “Structural deep network embedding” 
in Proceedings of the 22nd ACM SIGKDD international conference on knowledge 
discovery and data mining (ACM); August 13–17, 2016; 1225–1234.

Wang, Y., You, Z., Li, X., Chen, X., Jiang, T., and Zhang, J. (2017c). PCVMZM: 
using the probabilistic classification vector machines model combined with 
a zernike moments descriptor to predict protein–protein interactions from 
protein sequences. Int. J. Mol. Sci. 18:1029. doi: 10.3390/ijms18051029

Wang, Y. -B., You, Z. -H., Li, L. -P., Huang, Y. -A., and Yi, H. -C. (2017a). 
Detection of interactions between proteins by using legendre moments 
descriptor to extract discriminatory information embedded in pssm. Molecules 
22:1366. doi: 10.3390/molecules22081366

Wang, Y. -B., You, Z. -H., Li, X., Jiang, T. -H., Chen, X., Zhou, X., et al. 
(2017b). Predicting protein–protein interactions from protein sequences by 
a stacked sparse autoencoder deep neural network. Mol. Biosyst. 13, 1336–1344. 
doi: 10.1039/c7mb00188f

Yue, X., Wang, Z., Huang, J., Parthasarathy, S., Moosavinasab, S., Huang, Y., et al. 
(2019). Graph embedding on biomedical networks: methods, applications, and 
evaluations. Bioinformatics 36, 1241–1251. doi: 10.1093/bioinformatics/btz718

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Copyright © 2021 Su, You, Hu, Huang, Wang and Yi. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the 
original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. 
No use, distribution or reproduction is permitted which does not comply with 
these terms.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://github.com/Blair1213/LPPI
https://doi.org/10.1162/089976603321780317
https://doi.org/10.1186/s12859-019-2907-1
https://doi.org/10.1038/415141a
https://doi.org/10.1109/TCYB.2019.2926431
https://doi.org/10.1109/TCBB.2017.2770120
https://doi.org/10.2174/092986611796011482
https://doi.org/10.1186/1471-2105-8-199
https://doi.org/10.1002/jcc.25780
https://doi.org/10.1073/pnas.0607879104
https://doi.org/10.1093/bib/bby117
https://doi.org/10.1093/bib/bby117
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3390/ijms18051029
https://doi.org/10.3390/molecules22081366
https://doi.org/10.1039/c7mb00188f
https://doi.org/10.1093/bioinformatics/btz718
http://creativecommons.org/licenses/by/4.0/

	An Efficient Computational Model for Large-Scale Prediction of Protein–Protein Interactions Based on Accurate and Scalable Graph Embedding
	Introduction
	Materials and Methods
	Benchmark Dataset
	Protein Attribute Extraction
	Graph Embedding
	GraphZoom

	Results
	Evaluation Criteria
	Model Construction
	Performance on Two Large-Scale Datasets
	Comparing LPPI With Baseline Embedding Methods
	Analysis on LPPI Kernels
	Comparison of Different Classification Algorithms

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions

	References

