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Abstract
Epstein-Barr virus (EBV) is a common human herpes virus known to infect the
majority of the world population. Infection with EBV is often asymptomatic but
can manifest in a range of pathologies from infectious mononucleosis to severe
cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV
has been linked to nearly 10% of all gastric cancers. Furthermore, recent
advances in high-throughput next-generation sequencing and the development
of humanized mice, which effectively model EBV pathogenesis, have led to a
wealth of knowledge pertaining to strain variation and host-pathogen
interaction. This review highlights some recent advances in our understanding
of EBV biology, focusing on new findings on the early events of infection, the
role EBV plays in gastric cancer, new strain variation, and humanized mouse
models of EBV infection.
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Introduction
Epstein-Barr virus (EBV), also known as human herpes virus 4, 
is a gamma-herpes virus that infects the majority of the world’s 
population. Initial infection with EBV is often asymptomatic but 
can also manifest as infectious mononucleosis. Following acute 
lytic replication in epithelial cells, EBV infects B cells where 
a distinct set of latency-associated genes and transcripts are  
expressed1. EBV was first identified in 1964 from cultured tumor 
cells derived from a patient with Burkitt’s lymphoma (BL)2. Early 
studies have demonstrated EBV’s ability to transform resting  
human B cells into lymphoblastoid cell lines (LCLs), further  
supporting the oncogenic potential of this virus3,4. Since then,  
EBV infection has been associated with a number of different 
malignancies of both lymphoid and epithelial origin and accounts 
for 1.8% of all cancer-related deaths worldwide5.

In vivo, EBV infection begins in the oral mucosa. Replication 
in epithelial cells is typically lytic; however, latent infection of  
epithelial cells can result in nasopharyngeal carcinoma or gas-
tric cancer (as discussed in more detail later). After replication 
in the epithelia, virus is primed for entry into B cells, where a  
transient growth program is thought to mimic a germinal center 
reaction, ultimately promoting maturation of the infected cell  
into the peripheral memory B-cell compartment. Advances in 
next-generation sequencing and the development of humanized 
mice have led to better ways to identify and understand the natural  
strain variation that occurs with EBV. New strain variations, 
particularly with mutations in latency-associated genes, have 
been identified in various malignancies. Harnessing these new 
humanized mice enables studies modeling latent infection and  
pathogenesis of host-restricted pathogens like HIV and EBV.  
This review will focus on the recent advances in EBV biology  
and primarily on understanding events in early B-cell infection,  
the role of EBV in gastric cancer, the breadth of EBV strain  
variation revealed by next-generation sequencing, and recent  
discoveries made using humanized mice.

Early events
Initial events of infection
EBV entry into epithelial cells occurs by direct fusion of the  
viral envelope with the cell plasma membrane; however, entry 
into B cells requires the virus to be endocytosed before mem-
brane fusion to escape the endosome6,7. B-cell entry requires 
five viral glycoproteins: gp350/220 allows for attachment 
by binding to CD21, gp42 binds to major histocompatibility  
complex (MHC) class II to initiate entry8, and the core herpes-
virus fusion machinery consisting of gB and the heterodimer  
gH/gL (Figure 1)1. Interaction of gp350/220 with the cell surface  
molecule CD21 results in the alteration of major signaling  
pathways believed to prime the cell to stable latent EBV infec-
tion. In particular, specific transcriptional profiles are involved 
in the evasion of apoptosis and there is evidence that EBV/CD21  
binding alters the expression of specific histone transcripts 
from clusters 1 and 2 (H2AFC, H2AFM, H2BF, H2BFG, H2BI,  
H3FA, H3FB, H3FL, H4FL, H4FK, H4FI, H4FK, H4F2, H1F3, 
and H1F4) (Figure 1)9.

Upon entry into B cells, the virion is endocytosed and is  
released into the cytoplasm following fusion of the virion mem-
brane with endosomal membrane. This process releases the viral 
tegument proteins into the host cell. One such tegument pro-
tein, BNRF1, binds the cellular protein Daxx and disrupts the  
Daxx-ATRX complex10. This complex is known to suppress tran-
scription through histone methylation11. Upon deposition into 
the nucleus, the viral DNA is associated with cellular histones12.  
Daxx-ATRX might normally support methylation of this new 
EBV chromatin to suppress transcription of viral genes. However, 
BNRF1 disruption of the Daxx-ATRX complex allows early viral 
latent gene expression (Figure 1)10.

Packaged, virally encoded RNA is also released upon fusion  
of the virion membrane with endosomal membrane. In particu-
lar, BZLF1 transcripts have been shown to be packaged into viral 
particles and are translated immediately upon release into the 
infected cell. These immediately translated proteins then function 
to transactivate viral promoters initiating the pre-latent phase of 
EBV infection. EBV also counters T-cell responses through the  
delivery of BNLF2a mRNA and non-coding EBV-encoded RNA 
transcripts that induce cellular cytokine synthesis13. EBV is known 
to encode at least 44 microRNAs (miRNAs). Though many of 
the miRNAs have no known function, it has recently been shown 
that these virally encoded miRNAs function in immune evasion 
by specifically suppressing the release of interleukin-12 (IL-12), 
disrupting CD4+ T-cell differentiation into type 1 T helper (Th1) 
cells, and reducing antigen presentation to CD4+ and CD8+ T cells. 
These miRNAs function by interfering with peptide processing, by 
directly targeting the TAP2 subunit, and by disrupting antigen pres-
entation on MHC-II and MHC-I molecules14,15.

Pre-latent gene expression
Pre-latent gene expression occurs immediately upon deposition  
of the viral genome into the nucleus of newly infected B cells.  
Promiscuous expression of both lytic and latent genes occurs at 
this time with the majority of infected B cells initially expressing  
EBV immediate-early genes16. Others have shown that BZLF1, 
the major transcriptional activator of lytic gene expression, is  
expressed as early as 1.5 hours post infection in the absence of 
protein expression, implicating BZLF1 as an immediate-early 
gene being expressed immediately following B-cell infection17. 
This initial burst of lytic gene expression could be essential to the 
production of progeny virus competent for infecting new B cells18, 
or immediate expression of lytic genes could be essential for the 
survival of latently infected B cells through inactivation of p5319. 
However, it is important to note that during this pre-latent phase, 
genes essential for DNA replication and structural proteins of the 
virion are not readily detectable16.

EBV encodes two bcl-2 proteins: BHRF1 and BALF1. Viral mutants 
lacking both bcl-2 proteins are unable to initiate proliferation and 
die from immediate apoptosis. Peak expression of these transcripts 
is detected at 24 hours post infection, implicating BHRF1 and 
BALF1 in the initial events prior to cell proliferation20. Also, it 
has recently been shown that BHRF1 is constitutively expressed 
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as a latent protein in BamHI W promoter (Wp)-restricted BL cell 
lines and LCLs21. These findings implicate BHRF1 and BALF1  
proteins as playing an important role in the evasion of apoptosis 
during latency; however, virally encoded miRNAs also cluster  
at the BHRF1 locus. Following induction of viral replication in 
latency I restricted Akata cells, these miRNAs are detectable at  
24 hours post stimulation and have been shown to drive prolifera-
tion and aid in the evasion of apoptosis22–24.

Hyper-proliferation
Following the pre-latent phase, the initial Epstein-Barr nuclear  
antigen (EBNA) latency promoter, Wp, is active promoting expres-
sion of EBNA-LP and EBNA2. Subsequently, these proteins transac-
tivate the viral C promoter, Cp, to initiate expression of the EBNA3s 
and EBNA1 along with their own transcripts to high levels. This 
EBNA-only gene expression state is associated with a period of 
rapid proliferation with the first three or four divisions occurring 

once every 8 to 12 hours25. This period lasting approximately the 
first 2 weeks following resting B-cell infection is termed latency 
IIb26,27. At this time, the virus expresses all of the EBNA proteins 
and minimally expresses latent membrane proteins (LMPs) 1, 2A, 
and 2B26. LMP1 is expressed as early as 2 days post infection; how-
ever, during this period, inhibition of early nuclear factor-kappa B 
(NFκB) activation does not affect transformation, supporting the 
distinction of this latency phase from the LCL state, which requires 
LMP1-mediated NFκB activity for survival26.

As a consequence of this rapid proliferation, EBV-infected  
B cells are susceptible to growth arrest induced by hyper- 
proliferation-associated DNA damage response26,28. Cells then 
transition from a period of rapid proliferation and high Myc  
activity to the steady-state proliferation (about 24 hours per cycle) 
observed in LCLs with lower Myc and high NFκB activity26,29,30. 
The high Myc/low NFκB state that occurs during latency IIb  

Figure 1. Initial events of Epstein-Barr virus (EBV) infection. The EBV membrane glycoprotein gp42 binds to its cell surface receptor 
major histocompatibility complex class II (MHC-II) to initiate entry into the cell. Also, gp350/220 binds to its cell surface receptor CD21 for 
entry. Interaction with CD21 initiates signaling cascades that prime resting B cells for persistent latent infection. Following endocytosis, the 
virion and packaged tegument proteins are released into the cytoplasm following fusion of the virion membrane with endosomal membrane. 
In particular, BNRF1 disrupts the Daxx/ATRX repressor complex to facilitate viral gene expression.
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might play a role in immune evasion as elevated Myc and low 
NFκB as observed in BL have been implicated in downregula-
tion of MHC class I and II (MHC-I and MHC-II) and avoidance of  
T-cell recognition and killing29,30.

Epstein-Barr virus infection in gastric cancer
Viral entry into epithelial cells is primarily mediated by three  
CD21-independent mechanisms. First, EBV can enter into  
epithelial cells by close membrane-to-membrane contact of 
EBV-infected lymphocytes to uninfected epithelial cells. Second,  
cell-free virus can enter polarized epithelial cells through their 
basolateral membranes which is mediated in part by interac-
tion between BMRF2 and beta1 and alpha5beta1 integrins. The 
third mechanism is by lateral spread through the epithelium from  
infected to uninfected epithelial cells31. EBV-associated gas-
tric carcinomas (EBVaGCs) are epithelial in origin and make up 
approximately 9% of all gastric carcinomas worldwide32. EBVaGCs 
characteristically acquire mutations within the cellular PIK3CA 
gene and display extreme cellular DNA hyper-methylation. 
Specifically, mutations in PIK3CA identified in intestinal-type 
gastric cancers were associated with an increased tumor incidence 
in the lower third of the stomach compared with those without33.  
Also, PIK3CA mutations in diffuse-type gastric cancer were 
associated with an increased tumor incidence in the upper third 
of the stomach and an increased association with hematogenous  
metastasis. Tumors identified with PIK3CA mutation in the middle 
third of the stomach had an increased association with EBV infec-
tion and increased peritoneal recurrence; however, PIK3CA muta-
tions did not demonstrate a significant effect on patient outcomes.

EBVaGCs are also known to have increased expression of  
JAK2, programmed death ligand 1 (PD-L1), and PD-L234. PD-L1 is 
known to interact with programmed death receptor 1 found on the 
surface of T cells. This interaction causes the inhibition of T-cell 
proliferation, cytokine secretion, and cytotoxic activity (reviewed 
in 35). Also, EBVaGCs have been shown to express BNLF2a, 
which functions in immune evasion by inhibiting the transporter 
associated with antigen-processing transport of antigenic peptides. 
Though this transcript is typically associated with lytic replication, 
in gastric cancers it is expressed latently and has the potential to 
protect the infected cell from immunosurveillance36. Despite the 
immunologically evasive nature of EBVaGC, patients with diag-
nosed EBVaGC had longer survival post diagnosis as opposed to 
EBV-negative gastric carcinoma37.

Infection of an EBV-negative GC cell line (AGS) with Akata  
EBV results in robust expression of virally encoded BART  
miRNAs with minimal protein expression38. Importantly, these 
infected AGS cells displayed a more transformed phenotype than 
their uninfected counterparts. The prototypical transforming EBV 
strain, B95-8, readily infects and immortalizes human B cells.  
However, this virus is deleted for most of the BART miRNAs, and 
infection of B cells with viral variants encoding these miRNAs 
results in minimal BART expression39,40. This tissue-specific BART 
expression suggests that these miRNAs are likely to play a signifi-
cant role in the transformed growth properties of EBVaGC.

Recently, it has been shown that CRISPR/Cas9-mediated  
cleavage for bacterial artificial chromosome (BAC) insertion into 
EBV episomal DNA in gastric carcinoma (GC) cell lines has 
facilitated the cloning of these viral genomes with unprecedented 
efficiency41. Subsequent infection of epithelial cells with the BAC 
clone reconstituted viruses induced resistance to oncogene-induced 
cell death, providing important clues concerning EBV-mediated 
epithelial carcinogenesis. Establishing this new state-of-the-art 
technique will enable future investigation into new strain variations 
and their relationship with EBV-associated disease.

Epstein-Barr virus strain variation
Recent advances in next-generation whole genome sequencing 
(NGS) have changed the landscape surrounding the analysis of 
EBV-type differences. Historically, the major distinction in EBV 
strains has been the delineation of type 1/type 2. Currently, the larg-
est distinguishing factors between EBV type 1 and type 2 rely on 
differences observed in the EBNA2 and EBNA3A, EBNA3B, and 
EBNA3C genes. Indeed, it has been shown that a single amino acid 
change in the transactivation domain of EBV-2 EBNA2 (S442D) 
can drastically alter EBV-2 B-cell transformation efficacy similar to 
that observed with EBV-1 and increase induction of LMP1 expres-
sion with a higher affinity for the LMP1 promoter42. However, a 
number of other factors may contribute to the underlying strain 
variation, including immunological pressures, skewed cell tropism, 
and geographic isolation43. Indeed, a recently described strain of 
EBV derived from a nasopharyngeal carcinoma case, M81, dis-
plays high epithelial tropism and also contains a polymorphism in 
the promoter of the lytic transactivator BZLF1 leading to elevated 
lytic replication44.

It has been proposed that the prevalence of MHC haplotypes  
within specific geographic regions induces immunological pres-
sures that can contribute to strain variation within immunologi-
cally dominant epitopes of particularly immunogenic proteins45.  
However, recent sequence analyses demonstrate that the large  
numbers of non-synonymous mutations observed in the EBNA3 
proteins are outside of known cytotoxic T-cell epitopes. More 
work is needed to identify alternative cytotoxic T lymphocyte 
(CTL) epitopes within the EBNA3s to explain this variation, or 
alternatively another selective pressure could be driving this vari-
ation perhaps regarding EBNA3 function43. For example, a recent 
study found that EBNA3B, an immunodominant latency protein, 
actually serves as a tumor suppressor and can be found deleted 
in EBV strains associated with diffuse large B-cell lymphomas  
(DLBCLs)46.

Recently, a provocative study implicated EBV-2 as having unique 
cell tropism skewing toward CD8+ T cells47. EBV has also been 
commonly detected in non-B cells in the blood of patients with 
EBV-positive lymphoproliferative disorder (LPD), including 
patients with HIV, post-transplant, anaplastic anemia, chronic 
active EBV (CA-EBV), and others48,49. While CA-EBV patients 
often had EBV+ T cells in the blood, other EBV+ LPD patients con-
tained EBV in monocytes as well as non-B, non-T, non-monocyte 
cell types based on surface staining49. Although this population is  
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certainly skewed from the norm with elevated viral loads and altered 
EBV immune responses, these findings suggest that EBV infection 
of T cells may be clinically relevant in some instances. Indeed, the 
detection of EBV in natural killer (NK)/T lymphomas50 and a high 
percentage of T cells in EBV-associated hemophagocytic lympho-
histiocytosis (HLH)51 suggest that lack of control of EBV infection 
might be associated with a broadening of cellular tropism. Interest-
ingly, cases of CA-EBV are most commonly reported as being of  
T and NK cell origin in Asia52 and almost entirely B-cell origin in 
the United States53. Information gained through NGS studies cou-
pled with further virus-host interaction work in vitro and clinical 
observation will lead to a greater understanding of how different 
EBV strains might achieve these drastic differences in cellular tro-
pism and maintenance of latency in various cell types.

Humanized mouse models of Epstein-Barr virus 
infection
EBV infection had been restricted to in vitro systems until the 
breakthrough of the scid-hu PBL mouse. Scid-hu PBL mice are 
based on the C.B-17 severe combined immunodeficient (SCID) 
mouse, which lack both B and T cells54. These mice are injected 
with human peripheral blood mononuclear cells and, after infection 
with EBV, effectively model the LPD observed in immunocompro-
mised humans (reviewed in 55). However, these mice have several 
drawbacks, including frequently observed graft-versus-host disease 
caused by the human T cells attacking mouse tissue, the transient 
nature of the engrafted human immune system, and a relatively low 
level of engraftment. Most importantly, these mice are unable to 
mount adaptive immune responses with their engrafted immune 
systems.

In order to overcome the obstacles of the scid-hu PBL mouse  
model, a new suite of humanized mice was generated by trans-
plantation of non-obese diabetic/SCID (NOD/SCID) animals with  
hematopoietic stem cells. These NOD/SCID mice have a com-
plete null mutation of the common IL-2 cytokine receptor gamma 
chain—NOD/LtSz-scid/IL-2 receptor gamma null (NSG), NOD/
Shi-scid/IL-2 receptor gamma null (NOG)—and, once trans-
planted, display a humanized immune system that persists for  
more than 24 weeks post transplant (reviewed in 56). In this model, 
the CD34+ hematopoietic stem cells are able to differentiate into 
various mature blood cells, including myelomonocytes, dendritic 
cells, erythrocytes, platelets, and lymphocytes. B cells undergo  
normal class switching, produce normal immunoglobulins, and 
even infiltrate into mucosal tissues in these mice. However, it is 
important to note that circulating IgG is approximately 1,000 
times lower than that observed in immunocompetent humans 
and that infiltration into mucosal tissues has been demonstrated 
to be severely attenuated. Differentiated T cells display human  
MHC-I/HLA-restricted cytotoxic functions: a vast improvement 
over scid-hu PBL mice57. The introduction of the human HLA 
A2 allele into NSG mice transplanted with CD34+ hematopoietic 
stem cells (NSG-HLA-A2) resulted in mice capable of reproducing 
adaptive immune responses known to occur after EBV infection of 
HLA A2-expressing individuals58. These NSG-HLA-A2 mice have 

been used to demonstrate the essential contribution of NK cells 
in controlling EBV infection with NK depletion resulting in the  
development of disseminated EBV+ lymphomas59. Further still, the 
BLT-NOD mice were developed by transplantation of autologous 
human hematopoietic fetal liver CD34+ cells into NOD/SCID 
mice previously implanted with human fetal thymic and liver tis-
sues. This resulted in long-term, systemic human T-cell homeosta-
sis capable of mounting anti-EBV MHC-I and MHC-II restricted  
adaptive immune responses60. Given the vast improvements in small 
animal models of EBV infection, we now have the tools to study 
post-transplant LPD in the context of a human immune system, 
adaptive immune responses to EBV infection, and an experimental 
model to understand the in vivo effects of strain variation and other 
important biological questions.

Humanized mice have been shown to demonstrate the cardi-
nal features of EBV-associated diseases developing B-cell LPD,  
EBV-associated HLH, and erosive arthritis resembling rheuma-
toid arthritis (RA). NOG humanized mice injected with 103 50%  
transforming dose (TD50) of EBV develop B-cell LPD. This 
LPD models the histological and viral gene expression signature 
observed in immunocompromised patients. Lower dose infec-
tion of less than or equal to 10 TD50 in NOG humanized mice 
resulted in a persistent asymptomatic infection with adaptive CD8+  
T-cell responses and virus-specific IgM detectable in the serum 
of infected animals61. Infection of NOG humanized mice has also 
been shown to result in the cardinal features of HLH with infected 
animals developing hemophagocytosis, erythrocytopenia, throm-
bocytopenia, hypercytokinemia, histiocyte proliferation and infil-
tration of activated CD8+ T cells into the spleen62. EBV has been 
implicated in the pathogenic manifestation of RA. Patients with 
this disorder demonstrate elevated EBV reactive antibody titers 
and impaired lymphocyte responses to EBV, and EBV has been  
identified in the synovial fluid of patients with RA, indirectly  
implicating EBV in RA pathogenesis63–65. Modeling this patho-
logical phenotype, humanized NOG mice infected with EBV  
develop an erosive arthritis. However, these findings are purely 
morphological and require in-depth molecular characterization 
to further validate this model66. A detailed description of recent  
publications involving the use of humanized mice in EBV research 
can be found in Table 1.

Concluding remarks
The recent advances described in this review address many  
of the key questions facing the EBV field today. With the advent 
of NGS and the development of humanized mice to better model 
EBV disease in vivo, we now have the tools to better understand  
the effects of strain variation on the development of EBV- 
associated diseases. Future research will benefit from further  
refinement of the humanized mouse models to better model the  
full spectrum of the human immune response to EBV infection  
with the aim of developing effective EBV-specific prophylac-
tics and therapeutics. Further studies of the early period after  
B-cell infection and its contribution to tumorigenesis and immune  
evasion will be important to study in the humanized mouse. Finally,  
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the role of EBV in epithelial malignancies and other diseases  
outside of the B-cell compartment is ripe for study in this post-
genomic era of EBV biology.
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Table 1. Epstein-Barr virus humanized mouse studies.

Mouse Epstein-Barr virus 
strain

Year Findings References

NSG+CD34-depleted human 
cord blood mononuclear cells

M81 BAC and p2089 
B95-8 LMP1-KO

2016 Blocking PD-1/CTLA-4 inhibits Epstein-Barr virus  
(EBV)-induced lymphoma growth.

67

NSG+purified CD34-positive 
cells from individual fetal liver 
samples

GFP-EBV B95-8 WT 2016 Leukocytes lacking cognate HLA ligands interfere with 
KIR+ natural killer (NK) recognition of HLA- tumors but 
improve NK-mediated control of EBV infection.

68

NSG-A2tg (expressing  
HLA-A2)+purified CD34-positive 
cells from two fetal liver samples

M81BAC, 
M81BACΔC1, 
M81BACΔC2, 
M81BACΔC1C2, 
M81BACΔb2, and 
M81BACΔAll

2015 BART microRNAs repress tumorigenesis in vivo and 
likely facilitate long-term persistence in the infected 
host.

69

Rag2−/− γC−/− double 
knockout+human hematopoietic 
stem cells injected into the liver

293EBV+ and 
293EBVdelta 
(BPLF1-KO)

2015 BPLF1 contributes to EBV oncogenicity. 70

NSG+purified human 
cord blood CD34-positive 
hematopoietic stem cells 
injected into the liver

B95-8 2015 EBV-associated Hodgkin’s lymphoma develops 
exclusively in mice with activated T-cell conditions and 
EBV-associated non-Hodgkin’s lymphoma develops 
in mice with a largely suppressed T-cell condition 
predominantly characterized with an abundance of 
immature B cells.

71

NSG-A2tg +purified human 
cord blood CD34-positive 
hematopoietic stem cells 
injected into the liver

B95-8 BAC, EBER1 
or EBER2 deletion 
mutants, and 
revertant viruses

2015 Wild-type and EBER-deleted mutant viruses 
demonstrate equal ability to persist in vivo.

72

NSG+purified human fetal liver 
CD34-positive hematopoietic 
stem cells injected into the liver

B95-8 GFP+ 2015 The human SAP-dependent 2B4 receptor is required for 
CD8+ T cell-mediated control of EBV infection.

73

NSG+purified CD34-positive 
cells from individual fetal liver 
samples and fetal thymus from 
the same donor

p2089 B95-8 BAC 
and p2089 B95-8 
BAC LMP1-KO

2015 LMP1 is not essential for EBV-induced lymphomas  
in vivo, and T cells supply signals that substitute for 
LMP1 in EBV-positive B-cell lymphomagenesis.

74

NSG-A2tg +purified human 
cord blood CD34-positive 
hematopoietic stem cells 
injected into the liver

Wild-type B95-8 and 
BZLF1 knockout

2014 T cells specific for the lytic EBV antigen BMLF1 can 
effectively control lytically replicating EBV+ B cells  
in vivo.

75

Rag2−/− γC−/− double 
knockout+human peripheral 
blood mononuclear cells 
(PBMCs) or Vγ9Vδ2-T cell-
depleted PBMCs

B95-8 and 
B95.8EBfaV-GFP 

2014 Vγ9Vδ2-T cells contribute to EBV immunity. 76

NSG+purified CD34-positive 
human cord blood mononuclear 
cells

B95-8 2014 CD4+ T cells are necessary for the generation/
maintenance of cells with latency I/IIa phenotype in 
humanized mice and contribute to this process through 
expression of CD40L.
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