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ABSTRACT

CAPRI rounds 28 and 29 included, for the first time, peptide-receptor targets of three different systems, reflecting increased

appreciation of the importance of peptide-protein interactions. The CAPRI rounds allowed us to objectively assess the per-

formance of Rosetta FlexPepDock, one of the first protocols to explicitly include peptide flexibility in docking, accounting

for peptide conformational changes upon binding. We discuss here successes and challenges in modeling these targets: we

obtain top-performing, high-resolution models of the peptide motif for cases with known binding sites but there is a need

for better modeling of flanking regions, as well as better selection criteria, in particular for unknown binding sites. These

rounds have also provided us the opportunity to reassess the success criteria, to better reflect the quality of a peptide-

protein complex model. Using all models submitted to CAPRI, we analyze the correlation between current classification cri-

teria and the ability to retrieve critical interface features, such as hydrogen bonds and hotspots. We find that loosening the

backbone (and ligand) RMSD threshold, together with a restriction on the side chain RMSD measure, allows us to improve

the selection of high-accuracy models. We also suggest a new measure to assess interface hydrogen bond recovery, which is

not assessed by the current CAPRI criteria. Finally, we find that surprisingly much can be learned from rather inaccurate

models about binding hotspots, suggesting that the current status of peptide–protein docking methods, as reflected by the

submitted CAPRI models, can already have a significant impact on our understanding of protein interactions.
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INTRODUCTION

The link between form and function has made clear

the usefulness of high-resolution 3D protein structures in

determining the details of biological processes. Once the

structure of a protein is known, residues critical for sta-

bility, as well as its active sites can often be located, and

targeted mutations can be introduced. Similar structures

can be identified and used to infer about the studied

protein.1 Similarly, resolution of protein complexes can

provide valuable information concerning the interaction

mechanisms of proteins, allowing for the improved char-

acterization and manipulation of signaling pathways in

the cell. Once the details of the interface are known,

inhibitors and activators of the target proteins can be

designed based on features of the binding interface.2,3

Despite the high demand for crystallography- and

NMR-derived structures, only a small percentage of pro-

teins, and even less protein complexes, have been solved

(as of 9/2016: 113,000 protein structures, among them

5000 complexes; see the Protein Data Bank, PDB, at

www.rcsb.org4). As a result, much focus has been placed
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on developing computational algorithms for the formula-

tion of structural models of proteins and protein com-

plexes. Over the past two decades, the community-wide

experiment for the blind prediction and assessment of

protein structures, CASP (critical assessment of structure

prediction), has considerably spurred the development of

ever improving and impressive tools for structure predic-

tion, involving increasingly better models, more partici-

pating groups and different algorithms and approaches

to solve the challenge.5 As a parallel to CASP, the CAPRI

(Critical Assessment of PRotein Interactions) experiment

has spurred development of docking protocols that will

generate a structure of a complex starting from the

monomer structures6,7 (for assessment of performance

at the 6th CAPRI meeting in Tel Aviv, see publications in

this edition of the Proteins journal). As CAPRI (and

CASP) evolved, new types of challenges have been

defined and put up to further increase the applicability

of computational models to the characterization of the

structure of proteins and their interactions. This has led

to the adaptation of existing and the development of

new tools to new applications (e.g., the docking of pro-

teins to biomolecules such as RNA8 and sugars,9 the

prediction of water molecules at interfaces,10 the predic-

tion of effect of mutations on binding affinities,11 the

identification of successful interface designs,12 and many

others).

Peptide-protein interactions have gained significant

attention as crucial players in cellular regulation. Thus,

the accurate modeling of these interactions, which

involve the binding of a short, linear stretch that often

contains a characterized sequence motif (alone, or within

the context of a usually unstructured region in a larger

protein), is of primary importance. The intrinsic flexibili-

ty of short peptides makes this type of interaction partic-

ularly difficult to model, as in contrast to many protein–

protein interactions mediated by structured domains, the

many degrees of freedom of the peptide need to be taken

into account during the docking process. Our peptide

docking protocol, Rosetta FlexPepDock, was one of the

first to explicitly allow for the sampling of full peptide

conformational flexibility during the docking process, by

adapting RosettaDock to include peptide backbone

degrees of freedom in the Monte-Carlo sampling pro-

cess.13,14 Rosetta FlexPepDock refinement can refine an

initial model of an interaction (up to 3.0–5.0 Å peptide

backbone RMSD away) to high resolution. Given a bind-

ing site (known, or predicted using, e.g., solvent map-

ping as in our PeptiMap protocol15), the corresponding

ab initio FlexPepDock version can fold the peptide with-

in the binding site using the Rosetta fragment-based

approach. In our new PeptiDock protocol, we have taken

this approach one step further to allow full ab initio

docking without prior knowledge of the binding site: for

peptides with known binding motif (extracted, e.g., from

the ELM database of eukaryotic linear motifs, elm.eu.org,16

or from the literature), we extract fragments from the PDB

based on this sequence motif, and map these fragments

using the PIPER17 rigid body docking protocol (instead of

mapping solvent molecules, as e.g. in PeptiMap15). The

pooled results are then clustered, and an approximate mod-

el (within 4.0 Å RMSD) can usually be found among the

top-ranking clusters (to be published).

Since then, a range of other original and very success-

ful tools for modeling peptide-protein complexes have

been proposed,18–26 and a book about modeling these

interactions is about to appear (Modeling Peptide–Pro-

tein Interactions, to appear in the Methods in Molecular

Biology Series, Ed. Springer). This progress has been

recently spurred also thanks to the addition of this type

of interactions to the CAPRI pool of challenges (see oth-

er manuscripts in this editions of Proteins). With the

definition of a new type of challenge comes the need to

redefine measures of success. CAPRI criteria for the qual-

ity of a model focus on ligand and interface Root-Mean-

Square Deviation (L- and I-RMSD) measurements, along

with cross-interface residue contact recovery (fnat).27,28

These measures have been adjusted ad hoc to better

reflect the quality of peptide-protein interactions (Table

I). The success of any applicative modeling endeavors is

contingent upon the quality of the models produced

and, consequently, on the criteria used to define high-

quality models. In general, the success of a model is

determined by how closely it aligns to a solved crystal

structure of the same protein. Whether using homology-

based approaches or de novo techniques, protein models

can now be generated with impressive accuracy. There is,

of course, much room for improvement, and many

research groups are forever seeking ways to advance their

protocols. This begs the question: at what point is

“pretty good” good enough? Could it be that success

Table I
Current CAPRI Success Criteria for Peptide–Protein Docking (Modified

From27,28)

(A) Measures

Interface residues <8.0 � between any two CB atoms (CA for Gly)
across interface

Native contacts <4.0 � between any two atoms across the
interface (residue-based)

Clashes <3.0 � between any two atoms across the
interface (atom-based)

(B) Classification

High quality (H) fnat [0.8 . 1.0] & (L-RMSD� 1.0 �
jj I-RMSD� 0.5 �)

Medium (M) fnat [0.5 . 0.8] & (L-RMSD� 2.0 �
jj I-RMSD� 1.0 �) jjfnat [0.8 . 1.0]
& (L-RMSD> 1.0 � & I-RMSD> 0.5 �)

Acceptable (A) fnat [0.2 . 0.5] & (L-RMSD� 4.0 �
jj I-RMSD� 2.0 �) jjfnat [0.5 . 1.0]
& (L-RMSD> 2.0 � & I-RMSD> 1.0 �)

Incorrect (I) The rest
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might not be measured in sub-Ångstr€om RMSD values?

When is a model capable of telling us as much as we

need to know to make our binding predictions and

design our potential drugs? Conversely, are there critical

features that are missed by the currently established crite-

ria for model quality assessment?

Accuracy criteria thus depend primarily on practical

use, that is, how a protein complex structure is used for

further study. Arguably, major applications involve the

identification of critical features at the interface, such as

specific hydrogen bonds, salt bridges and interactions

that involve aromatic rings that are responsible for bind-

ing affinity and specificity, which can then be reinforced

or targeted in design studies.2 These might necessitate

accurate measures, for example, the correct positioning

of side chains at the interface. Beyond this, a popular use

of complex structures is to close in on the few critical

interface hotspots,3,29 whose mutation would abolish

the interaction. Energy-based approaches for computa-

tional alanine scanning aim to estimate change in bind-

ing affinity, DDG, by comparison of the energetics of the

wild-type and the modeled alanine-substituted structure

(examples include implementations by molecular model-

ing tools such as FoldX,30 mmPBSA,31 and Rosetta32).

In addition, machine-learning approaches compile a

range of spatial and other features to train predictors

and classifiers, to assess the effect of mutation on the

strength of binding, similar in line to the prediction of

effects of mutation on protein monomer stability.33

However, despite considerable advances in this field, the

correlation between prediction and experiment on inde-

pendent validation sets has remained disappointingly

low, often barely crossing random performance.12,34,35

Many reasons are to blame, not least the fact that effects

on binding affinity measured for the same mutation in

two independent experiments are also rather weakly cor-

related (R 5 0.730), raising doubts on the general reliabil-

ity and reproducibility of binding experiments on the

one hand, and concerns related to overfitting of predic-

tors on the other.36 With this variability of predictions

based on crystal structures, it is therefore not clear which

measure would identify successful models for hotspot

identification. Despite these reservations, it is apparent

that a solved complex structure is of fundamental rele-

vance for the identification of both critical features at the

interface, as well as hotspots.

This study consists of two parts: we first present the

performance of Rosetta FlexPepDock in the peptide-

docking rounds of CAPRI. Here, we highlight successes

that profile our protocol as very accurate and top-

performing, in particular in the modeling of the peptide

motif region onto the receptor in cases where the bind-

ing site is known (Targets T60-64—nuclear localization

motifs bound to the minor site of importin, and T67—

WW domains bound to PPXY motifs). We also identify

challenges, in particular the selection of successful

receptor structure templates and the necessity of robust

protocols for the selection, for example of a receptor

template and a binding site, and suggest how these can

be attacked to further improve modeling.

The second aim is to assess, on the example of

peptide-protein interactions, how accurate structural

models of interactions need to be to provide information

similar to an experimentally determined structure for

practical use. We inspect models of peptide-protein com-

plexes of varying accuracies, submitted by several anony-

mous groups in recent CAPRI competitions (i.e., Targets

60–64 of round 28, Targets 65–67 of round 29), and

investigate the connection between accuracy, as measured

in the CAPRI experiment, and their practical use. We

assess the ability of these models to capture the details of

an interface observed in the solved crystal structure (e.g.,

specific hydrogen bonds, summarized in Tables (II–IV)),

and suggest two additional measures that provide com-

plementary information to the current criteria, which

can be used to refine the definition of model accuracy:

S-RMSD—interface side-chain RMSD, and fnathb,—the

fraction of native hydrogen bonds recovered by a model.

In addition, we also assess the models for their ability to

reveal known interface hotspots. For this, we characterize

each of the models using a representative set of predictor

programs designed to detect interface hotspots, namely

Rosetta alanine scanning (as implemented in the Robetta

alanine scanning server32), FoldX30 (version 2.5), and

mCSM33 (one of the best-performing machine-learning

tools that is based on spatial signatures of amino acid

residues around a tested hotspot residue). We show that

even models classified as poor (i.e., incorrect or accept-

able quality) can be surprisingly useful for certain appli-

cations. Thus, the quest for ever improved modeling

tools results both in the generation of high-accuracy

models, but also provides a plethora of more approxi-

mate models, and all together will significantly enhance

our understanding of more and more protein interactions.

METHODS

Modeling of peptide–protein complexes in
CAPRI rounds 28–29 using Rosetta
FlexPepDock

We used our Rosetta FlexPepDock program to gener-

ate models of peptide–protein complexes, starting from

an approximate model of the interaction (see below).

Docking was performed as previously described,13,14

using Rosetta version 3.4 with the scoring function

score12 (with modifications to the electrostatic potential,

as specified in Alam et al.47), and selecting models using

interface score, as well as reweighted score.47,48 In short,

the structure was first prepacked to remove internal

clashes in the receptor (and the peptide), by separating

the two partners, repacking each, and putting them back

FlexPepDock Performance and New CAPRI Criteria
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together. Then, the complex was either refined using the

FlexPepDock refinement option,13 or the peptide was

modeled using fragments with the ab initio FlexPepDock

protocol.14

Selection of receptor template structure

For each target, we collected all solved homolog struc-

tures of the receptor, and focused in particular on bound

conformations (see Results). For T60-64, we used the

structure of importin bound to a major-groove specific

peptide, SV40Tag (PDB id 1ejl39), since the peptide was

found to bind both the minor and the major site in the

crystal. For T67, we proceeded with the solved structure of

a homolog receptor bound to a template (PDB id 1eg450),

rather than with the structure of the free receptor provided

by CAPRI (see Results). For T65, many different structures

had been solved of the unbound RNAse, showing a range

Table II
Residues Involved in the Peptide–Receptor Interactions for CAPRI Targets T60-64: Importin a 2 NLS of RNA Helicase Gua 1 Peptides Derived

from mRNA Display (PDB ids 3zin, 3zio, 3zip, 3ziq, 3zir)39

Peptide residuea Contacting receptor residuesb Additional information

Ser P23'(W,R) S406 (HB:SM)c, G407
Arg P22' (I,A,S,V) D325 (SB), A364 (HB:SM), G365, R366, S406, G407
Gly P21' (H/Q) A364, N403 (HB:MS), S406, G407
Gln P0' (R) A364, W399, N403 (HB:MS)
Lys P1' V321d (HB:SM), T322, G323, T324, T328 (HB:SS), N361

(HB:SM), G365
[K->R: <5% NLS-GFP import]37

Arg P2' T322, W357 (HB:MS), S360 (HB:SS), N361 (HB:MSx2),
E396 (SB), W399 (1p;HB:MS), N403

[R->A: reduction in NLS-GFP import]38; [R->A/K: <5%
NLS-GFP import]37

[E396R: 100x less binding (E402)]39e; [E396Q: reduced
binding of bi-partite NLS-GFP]40f

Ser P3' (G,T,K) W357
Phe P4' (aro) R315 (p1), E354, W357 (pp) [W->V: <5% NLS-GFP import in mouse importin]37

[R315A & Y277A: 10x less binding of bipartite NLS-GFP
(R321, Y283)]40

Ser P5' –
Lys (1) P6' –
Ala P7' W357, E396
Phe P8' K353 (p1), W357, E396 [F->A: <5% NLS-GFP cargo import]37

Gly P9' –

aIn parentheses: amino acids in other peptides (T61–T64), if not identical. 1: basic residue; aro: aromatic residue.
bNative contact between peptide and receptor residues are defined as by CAPRI: at least one atom pair across the interface within 4.0 Å distance.
cSpecific interactions with the peptide are indicated in parentheses next to the receptor residue: SB: salt bridge; HB: Hydrogen bond between peptide and receptor

(involving side-chain, S or main chain, M); 1p: cation 2p . Hydrogen bonds and Salt bridges are identified according to HBplus, see Methods.
dResidues with conserved interactions are in italics.
eResidue numbering in respective studies is indicated in parentheses.
fNote that effect is observed only at 378C, not at 258C.

Highlighted in bold are the peptide residues that are part of the binding motif (first column), and the receptor residues for which experimental information on their

contribution to binding is available (detailed in the last column).

Table III
Residues Involved in the Peptide–Receptor Interactions for CAPRI Target T67: Nedd4 Third WW Domain–ARRDC3 PY1 (PDB id 4n7h)41 (Legend
as in Table II

Peptide residue Contacting receptor residues Additional information

Glu P22' W449 (HB:MS)
Ala P21' W449
Pro P0' F438, T447, T448, W449 [WWOX WW1-ErbB4 PY3] P->A: NBD42a

[Yap2 WW1-ErbB4 PY3] P->A: NBD43

[WWOX WW1 domain - WBP PY3] W449Y: binder -> NBD (W44)44

[WWOX WW2 domain - WBP PY3] E430R1 Y449W: NBD->binder (E66,Y85)44

Pro P1' A432, P433, F438, T447 (HB:MS), W449 [WWOX WW1-ErbB4 PY3] P->A: NBD42

[Yap2 WW1-ErbB4 PY3] P->A: NBD43

Ser P2' T447
Tyr P3' I440, D441, H442 (HB:SS), K445, T446, T447 [WWOX WW1-ErbB4 PY3] P->A: NBD42

[Yap2 WW1-ErbB4 PY3] P->A: NBD43

Ala P11, Glu P12 –
Val P13 E428, R430, F438, I440, H442, T447 V->I: �2x less binding41

[WWOX WW1 domain - WBP PY3] R430A: binder -> NBD (R25)44

gNBD—no binding detected.

Highlighted in bold are the peptide residues that are part of the binding motif (first column), and the receptor residues for which experimental information on their

contribution to binding is available (detailed in the last column).
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of loop conformations (see Results for template selection).

For T66 only the provided, non-bound structure was avail-

able. When using a template of different sequence (receptor

and/or peptide), the sequence of the receptor and the peptide

were adjusted using Rosetta fixed backbone design51 to

replace amino acids at relevant positions.

Mapping of binding sites

To identify the potential binding sites on the receptor

structures for T65 and T66, we applied our PeptiMap

protocol that is based on solvent mapping using FTmap

to identify sites particularly suitable for peptides15 (as

implemented in our server, http://peptimap.bu.edu). For

T66, the structure was first decomposed into individual

domains, and each was mapped separately (masking

regions at domain-domain interfaces).

For T65 we also tried a new approach, in which we

used an adaptation of FTmap to map the receptor with

fragments of SSB-terminal peptide conformations,

extracted from structures of solved SSB-receptor com-

plexes. Those fragments were individually docked using

PIPER,17 top scoring models (250 from each docking

run) were combined together and clustered (with a clus-

tering radius of 4.0 Å backbone RMSD). A representative

model of each cluster was further minimized using

CHARMM to improve the model quality. This application

is a precursor of a more general implementation of a global

peptide docking approach, PeptiDock, in which fragments

selected based on a known peptide binding motif are

mapped to the receptor using PIPER rigid body docking,17

to generate an approximate model of a peptide-receptor

interaction (within 4.0 Å RMSD) (See Introduction).

Generation of starting models

For T60-64 and T67, we generated starting models

based on homologous interactions. For T65 and T66, we

generated starting models by arbitrarily positioning an

initial peptide conformation (taken from a structure of

SSB bound to another receptor, e.g. PDB id 3sxu52) into

a given binding site. Ab initio FlexPepDock was then

applied to generate a final model of the interaction. For the

new PeptiDock mapping, a starting structure was already

provided for further refinement.

Assessment of model quality and
contribution to our understanding of an
interaction

New measures for CAPRI assessment

The current CAPRI criteria are listed in Table I. In

addition, we use the Interface side-chain RMSD (S-

RMSD), routinely calculated in CAPRI in the same way

as Interface backbone RMSD (I-RMSD), but for side

chains instead of the main chain atoms. We also include

the fraction of native interface hydrogen bonds (fnathb):

Interface hydrogen bonds (including short range salt

bridges) were detected using the program HBplus,53 and

fnathb was calculated analogously to fnat, by counting the

fraction of identified native hydrogen bonds in the models.

Definition of interface hotspots in targets 60–67

Residues were defined as interface hotspots, if they had

been shown by experiment to significantly affect binding

upon their mutation, and were reported as motif residues

of the peptide. We included both residues tested on the

proteins involved in the specific interaction, as well as

information on homolog interactions - for known peptide

motif and conserved receptor residues (see Tables (II–IV)).

We note that additional residues could be important, but

without experimental evidence we did not include them in

our list. Below we detail additional criteria applied to each

of the systems. T60-64 (importin minor groove—NLS

peptides): This target concentrated on the binding of pep-

tides to the minor groove on importin.37 We distin-

guished between motif residues that were already known

to be critical for NLS binding and new, minor-groove spe-

cific residues that were structurally characterized for the

first time in the T60-64 structures. We note that in this

study we have restricted our analyses to the structure of

the peptide bound to the minor groove, as this is the domi-

nant interaction and contribution. T67 (WW domain-

PPXY interaction): As was done for importin, we also

Table IV
Residues Involved in the Peptide–Receptor Interactions for CAPRI Targets T65/T66: Bacterial RNase/PriA Helicase—Single Strand Binding Protein

(SSB) c-Terminal Peptide (PDB id 4z0u45/4nl846)

T65 T66

Peptide residue Contacting receptor residuesa Additional information45 Contacting receptor residuesb

ASP P23' K3 (HB:MS;SS), Y28(HB:SS), R29(SB) K3A: ND; R29A: 8x less binding R699 (HB:SS)
ILE P22' Y28, R31 R31A: 10x less binding S696, R697, V698
PRO P21' V5, Y28, A58, L59, K60 (HB:MM), E61, C63 K60A: 10x less binding –
PHE C-term L26, Y28, R31, K33 (HB:MS), A58, K60 K33A: 3x less binding V341, R697 (oxt-SB/HB:MSc)

aChains B–E were used for further evaluation since the A–D complex contains far less interactions. Underlined are interactions that appear only in chains B–E.
bChains B–D were used.
cHB:FC’-R697 taken from chains E–F.

Highlighted in bold are the peptide residues that are part of the binding motif (first column), and the receptor residues for which experimental information on their

contribution to binding is available (detailed in the third column).
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distinguished here between motif residues that had been

characterized previously in studies on other proteins and

the newly identified important residue that is responsible

for binding specificity in the Nedd4-WW domain

ARRCD3-PPXY motif interactions. Thus, even though

peptide V P 1 3’ position shows a smaller effect on binding

upon mutation, it is important in determination of bind-

ing specificity.41 For the RNase—SSB peptide interaction

(T65),45 we included receptor residues with reported

strong and weak effects. For this Target we have chosen the

complex between chains B:E in the crystal structure, as in

this complex the local binding region is best defined

according to B-factor, and the largest number of hydrogen

bonds between receptor and peptide is observed. No infor-

mation was available for T66.

Alanine scanning for hotspot identification

The following computational alanine scanning protocols

were applied to identify hot-spots at the interface: (1)

Robetta alanine scanning,32 as implemented in http:://robet-

ta.org (a local executable was provided to us by Tanja Kor-

temme) and a newer implementation in Rosettascripts.54

Both protocols remove the side-chain of the tested residue,

but do not change the surrounding residues at the inter-

face. This approach was found to work best in several

large-scale tests32,55; (2) FoldX versions 2.5.2 and 330,56;

and (3) mCSM33 (using a script provided by David Ascher

to run the protocol on many models). All these different

protocols were applied to the target crystal structures, and

the Robetta, FoldX2.5 and mCSM protocols were selected

to scan for hotspots in models. mCSM was used to charac-

terize mutations to amino acids different from alanine. A

cutoff of DDG 5 10.95 U (assumed to approximate kcal/

mol) was used to define hotspots (to account for minor

noise around 1.0 kcal/mol, as reflected in the DDG values

of known hotspots obtained in the initial analysis on the

target crystal structures, see Results).

RESULTS

In the first part of this study, we report the perfor-

mance of Rosetta FlexPepDock in CAPRI rounds 28 and

29, the first to include peptide–protein docking chal-

lenges. The second part investigates a more general ques-

tion, that is, how accurate structural models of an

interaction need to be to be able to replace or comple-

ment experimentally solved structures of complexes. We

introduce new measures to enhance the set of current

assessment criteria.

CAPRI performance of Rosetta
FlexPepDock

The summary of performance of the Rosetta FlexPep-

Dock team in prediction of the peptide-protein complex

structures in CAPRI rounds 28 and 29 (Targets 60–67)

in Table V shows that using FlexPepDock, we were able

to generate some of the most accurate models submitted

by any of the predicting groups: best for T67 (high accu-

racy for motif, medium accuracy for the full peptide)

and right after the Guerois group for T60-64 (for the full

peptide, the Guerois group generated medium accuracy

models, while we and the Seok group, generated only

acceptable models for 3/5 targets). Thus, we generated

some of the best models among all the submissions, in

particular for the motif region, when a template struc-

ture of the peptide-protein complex is available (Targets

60–64, 67), but our ability to identify the correct binding

site, when it is not known, and consequently to generate

accurate models, is still far from complete (Targets 65–

66). We shortly detail our protocols and modeling results

for the different targets, highlight the successes, and in

particular, identify the challenges that need to be

addressed next to generate the next generation of

improved FlexPepDock modeling tools.

High-accuracy models of peptide motif-receptor interactions

T67: the importance of selecting a bound structure as
template, even if it is from a homolog. For T67 we were

able to generate the model of highest accuracy for the

motif, and the most accurate medium accuracy model

for the full peptide (Table V), confirming that FlexPep-

Dock indeed fulfills the goals that it was developed for.

Here we describe in short the steps undertaken to gener-

ate such a model. The first and crucial step was to select

Table V
Performance of the Furman Group Blind Predictions in the CAPRI Peptide–Protein Docking Rounds (Round 28: T60–64; Round 29: T65–67),

Using Rosetta FlexPepDock. CAPRI Format Report: # of Acceptable/High***/Medium** Accuracy Models

Target T67 T60-64a T60 T61 T62 T63 T64 T65/66

Motif (PPSY; hexamer) 10/6***/4**
highb

5/4**
medium

10/8**
medium

10/5**
medium

10**
medium

10
acceptable

10/8**
medium

–

Full peptide 10/5**
medium

3
acceptable

0 0 1
acceptable

3
acceptable

5
acceptable

0

aNumber of targets for which at least one high***/medium**/acceptable model was submitted.
bTop-ranking results are shown in bold: Rosetta FlexPepDock is the top-ranking approach for T67, and top-ranking together with the groups of Guerois and Seok for

T60-64 (see other contributions to this issue).
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a template for the receptor structure. Because we do not

currently model receptor flexibility beyond the side

chains, it is important to select an accurate starting tem-

plate. For T67, the free structure of the Nedd4 WW3

domain was provided, but crystal structures of homolog

WW domains bound to peptides were also available

(PDB ids 1eg450 and 4lcd57). To assess the importance

of using the correct protein versus using a bound confor-

mation, we first performed docking simulations on a

WW-peptide interaction where both bound and free

receptor structures were available. For the bound run we

kept the homolog bound receptor structure, as well as

the peptide backbone (PDB id 1eg4), and only changed

the peptide sequence by replacing side chains. For the

unbound run, we copied that peptide onto the unbound

structure provided by the CAPRI organizers. These start-

ing structures were subjected to FlexPepDock local

refinement runs. Assuming that the homologous interac-

tions are structurally similar, we expected that the opti-

mization would converge in a narrow funnel centered on

a near-native conformation. The better convergence on

the bound receptor conformation (Supporting Informa-

tion Fig. S1) indicates the presence of conformational

changes upon binding that are critical for accurate

modeling of the peptide. Furthermore, analysis of con-

formational variation of all solved WW domain struc-

tures revealed, despite overall sequence variation, a

distinct conformation in the bound structures, mainly of

the conserved tryptophan W449 of the WW domain that

interacts with the P0’ proline of the peptide binding

motif PP.Y. We therefore chose as a template for the

receptor the bound conformation of the dystrophin WW

domain (PDB id 1eg450), onto which we threaded the

sequence of the nedd4 WW3 domain (using fixed back-

bone design, see Methods). We added the unaligned part

of the peptide in an extended starting conformation and

optimized the structure using FlexPepDock ab initio and

then refinement, under constraints that maintain the

bound motif [i.e., constraining the distances between the

peptide motif residue P0’ and W449 (the conserved tryp-

tophan of the domain), motif residue P P’1 and F438,

and between motif residue Y P4’ and receptor H442, see

Tables (II–IV)]. Our best model reproduces the PPXY

motif conformation at high resolution. It also positions

the specificity determining valine at P 1 3’ accurately, but

not at atomic resolution [Fig. 1(A) and Table V].

T60-64: sometimes, simplest is best—Use the homolog
template as is and change the sequence to that of the
target peptide. Importins contain two distinct sites to

bind NLS, and often use both to bind so-called bi-partite

motifs that contain two repeats of the characteristic

basic-residue-rich motif. The structural data available

prior to the publication of these targets included the

complex of such a bi-partite motif bound to both sites

(PDB id 1pjn58), as well as the complex of an NLS

peptide from SV40TAg that binds specifically to the

major site, as evaluated by mutagenesis studies that

showed abolishment of binding only when the major site

was disrupted (PDB id 1ejl49). The latter structure

showed that both sites are occupied by the peptide, as

turned out to be the case also for the solved structures

of T60-64 upon their release: even though for most of

the targets, only mutation in the minor site region of the

receptor significantly reduced binding, again, the pepti-

des were found to be bound to both the minor and the

major site. In the major site only six peptide residues

centered on the motif could be resolved (XKRX[F/W/

Y]X), while in the minor site almost all the peptide resi-

dues were visible (e.g., SRGQKRSFSKAFG for T60).

Assessment of CAPRI targets was done for both sites,

and the minor site was assessed both for the hexamer

peptide as well as for all the resolved residues. High-

accuracy models were only obtained for hexamers, and

primarily for the major site. This site is however of less

importance according to mutational studies, indicating

that modeling accuracy is not necessarily correlated with

model relevance, a topic discussed further below.

For our predictions, we concentrated our efforts on

modeling peptides into the minor site, as we had identified

the targets to contain a minor site-binding motif (KRX[F/

W/Y]XXAF37). While our models are among the best sub-

missions for this target, and we were able to generate

medium-accuracy models for the hexamer peptide region

[Fig. 1(B)], we (and others) would have done better if we

had simply copied the coordinates from the solved struc-

ture of the major-site specific peptide, SV40TAg (bound to

the minor groove) and replaced the sequence using thread-

ing. The new information provided by the structures of

T60-64 was the formation of an alpha helix c-terminal to

the classical binding motif, which confers specificity to the

minor site [Fig. 1(C)]. Unfortunately, we were not able to

correctly identify this structure (in fact, only the Guerois

group succeeded in this challenge), but instead generated

alternative structures with well-packed arrangements of

series of stacked aromatic interactions [Fig. 1(D)]. This

over-rearrangement of receptor side chains, in particular

of aromatic rings, is to be addressed in our future peptide

docking simulations. We note however, that even with

these models we were able to classify the aromatic peptide

positions as hotspots, even if it was for the wrong reason.

Identification of peptide residue hotspots from inaccurate

models is further discussed below.

Wrong binding site–wrong prediction

T65: The challenge of selecting the right template, and
new directions for global peptide docking. For the inter-

action of bacterial RNAse with the c-terminal tail of SSB,45

no prior information about the binding site was available.

We used our solvent mapping-based PeptiMap protocol to

locate peptide-binding sites on the receptor. But which

receptor template structure should we use? Many structural
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templates were available, differing considerably in a loop

region that participates in peptide binding [Fig. 1(E)]. We

arbitrarily chose the structure with the best resolution:

2rn2.59 PeptiMap missed the binding site on this template

[Fig. 1(F)], and therefore, subsequent modeling efforts

based on this prediction failed. A template structure with

open loop conformation, for example 3aa2,60 would have

identified the site, but ranked it poorly (data not shown).

We note that on the bound structure, PeptiMap would rank

the binding site 5th [Fig. 1(G)].

On the peptide side, the same SSB terminal peptide

had been solved bound to different receptors, (e.g., PDB

id 3sxu52). Because conformations of the SSB terminal

peptide were known, we decided to proceed in parallel

with an alternative approach, in which we docked these

peptide conformations instead of solvent molecules (see

Methods). With this approach we identified a region

adjacent to the correct binding site on 2rn2. Model 10 of

our submission to CAPRI is based on this site, but was

not accurate enough to pass CAPRI criteria [Fig. 1(G)].

Figure 1
CAPRI performance of the Furman Group: (A) T6741: ARRDC3 rpEAPPSYAEVvt peptide bound to Nedd4 WW3 domain: High accuracy for pep-

tide motif (shown in cyan; fnat 5 0.83, L_rmsd 5 039 Å, I_rmsd 5 0.35 Å), medium accuracy for full peptide, including Valine at P 13’. Coloring
in this and next figures, unless specifically noted: Blue/Cyan—model; Green—crystal structure. (B–D) T60-6439: NLS peptides bound to importin

minor binding site. (B) Best model of peptide motif (in sticks, fnat 5 0.83, L_RMSD 5 2.42 Å, I_RMSD 5 0.79 Å), compared to solved structure of
T64. (C,D) Arrangement of aromatic side chains at the interface in the crystal structure (C), and a model (D): In the model, a rotamer flip of the

central tryptophan residue (highlighted by a black circle) allows to form a ladder of interface stacking interactions, involving both the receptor and
the peptide. This results in incorrect positioning of F P4’ (highlighted by a black rectangle). Coloring in (D): yellow–receptor; red–peptide). (E–G)

RNAse bound to SSB-terminal peptide (T65).45 (E) Superposition of the bound conformation and a representative free conformation shows signif-

icant movement of an adjacent loop (bound conformation: white and magenta, 4z0u45; free conformation: green, 2rn2). (F) Peptimap misses the
binding site on the free conformation that we used as template (2rn2), but mapping of SSB-peptide fragments identifies the site (submission 10;

peptide in spheres). (G) Mapping would identify the site and rank it 5th on the bound conformation (yellow mesh; additional predicted sites are
on the back, not shown). (H) PriA helicase bound to SSB peptide (T66).46 Mapping of the full receptor structure using peptimap identifies the

binding site and ranks it 5th. However, refinement of the crystal structure does not retain the peptide in the binding site (see Supporting Informa-
tion Fig. S2), indicating poor resolution of the binding site.
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Applying SSB-peptide mapping to a structure with open

loop conformation, for example 3aa2, would clearly have

identified the site (model ranked #8; after a cluster of

models all localized to the dominant site, which is

involved in dimerization in the solved structure 4z0u45).

This demonstrates that mapping using peptide-specific

conformations can dramatically improve peptide binding

site prediction, and in turn, global peptide docking. And

indeed, a general implementation of this approach, Pepti-

Dock, shows promising results for global peptide docking,

even though subsequent refinement to high resolution is

not always straightforward (see Discussion).

The solved structure of SSB peptides bound to other

receptors revealed also details about how this peptide binds

into a receptor-binding pocket. In particular, no significant

receptor side-chain rearrangement could be observed, con-

trasting our models in which we often rearrange aromatic

receptor side chains to allow improved packing of peptide

aromatic side chains into the pocket [exaggerated repacking

of the receptor was also observed in the importin targets; see

Fig. 1(D) and Discussion]. Instead, in the crystal structure

internal stabilizing interactions in the DIPF’ motif are

formed between the buried c-terminal phenylalanine and

the preceding isoleucine that remains exposed. It might be

that this hydrophobic residue is further buried by the

remaining peptide sequence that was included in the crystal-

lization experiment, but not ordered enough to be resolved.

We therefore anticipated that our models would not be

accurate, even if the pocket had been known, as our scoring

scheme tends to strongly prefer these over-packed structures,

and to penalize exposed hydrophobic side chains.

T66: reassessing domain decomposition for PeptiMap
peptide binding site mapping. T66 is a complex of PriA

helicase, composed of five domains arranged in a circular

order, bound to the SSB c-terminal peptide.46 For this tar-

get, we miss the binding site, because the current PeptiMap

protocol decomposes proteins into distinct domains before

mapping each separately for binding sites. If the full recep-

tor surface is mapped, the binding site is identified and

ranked 5th [Fig. 1(H)]. This target helped us refine our

PeptiMap protocol. The original idea of domain decompo-

sition was to identify binding sites that are contributed by

individual domains, since many of our false positive predic-

tions with PeptiMap were due to the identification of sites

between two domains, whose relative orientation might be

flexible, but the crystal structure presents them as fixed.15

In the case of T66, the circular arrangement of the domain

into a stable ring suggests that this binding site is rigid,

and therefore, domain decomposition is not recommended,

as it produces many more suggested binding sites and

selection of the correct site is a challenge.

The resolution of the T66 crystal structure is rather low,

with poor electron density in the binding site. Indeed, in a

standard FlexPepDock refinement run starting from the

crystal structure, no convergence is observed, and the

peptide moves away (Supporting Information Fig. S2). We

therefore would not have expected to succeed in this tar-

get, even had we identified the binding site. For this rea-

son, we did not pursue further with T66 in the analysis

below.

To summarize, our experience in the peptide docking

rounds of CAPRI has been very rewarding: on the one

hand, our accurate, top-performing models for importin

and WW domains highlight in a non-biased way the quali-

ty of models that can be obtained from Rosetta FlexPep-

Dock and reinforce our contribution to high-resolution

peptide-protein modeling. On the other hand, we have

identified specific, defined challenges that allow us to focus

further development of our peptide docking tools, both for

local refinement, as well as for global mapping. New exten-

sions of PeptiMap and FlexPepDock are already under

advanced development and we look forward to apply these

to the next round of CAPRI peptide docking challenges.

How accurate does a model need to be to be
useful?

We took the opportunity of this CAPRI assessment

round of peptide-protein complexes to study an out-

standing question that is often encountered when model-

ing peptide-protein interactions: How useful is a model

for characterization of interactions? Integral to this inves-

tigation is the question of just how accurate—that is,

similar in conformation to the solved crystal structure—

such a model needs to be to obtain relevant information,

and how well this dependency on accuracy is reflected by

the current CAPRI quality measures.

In this part, we first define the characteristic features

of an interaction from the structure (such as receptor-

peptide hydrogen bonds), as well as from literature (i.e.,

experimentally determined hot spots), and establish a

baseline of performance to detect these features on the

solved crystal structure. We then evaluate how well struc-

tural models of different quality (as assessed by the cur-

rent CAPRI criteria, see Table I) reproduce these baseline

features. Analysis of outliers (i.e., models classified as

incorrect or acceptable that reproduce a large fraction of

native features, as well as models classified as high quali-

ty that are less useful for structure-based characterization

of an interface) allows us then to refine our criteria for

improved model quality assessment.

Definition of critical features of the peptide–protein dock-
ing targets of CAPRI

As a first step, we need to define the characteristic fea-

tures at the peptide-protein interfaces assessed in this

study. Tables (II–IV) list, for the different targets, all

interface residues (see Methods for definition) and char-

acteristic features such as hydrogen bonds and salt brid-

ges across the interface. We highlight residues critical for

the interaction–peptide motif residues and receptor
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residues for which experiments have demonstrated con-

siderable decrease in binding upon mutation to alanine

or other amino acids. In the following we will term this

set of residues “hotspots,” even though for some the

observed effect on binding is mild and does not necessar-

ily abolish binding. This constitutes the dataset of inter-

actions and hot spots that we would like to identify in a

structure, or in a structural model. We note that for

most residues no experimental information is available,

including for those that might contribute to binding.

The baseline—how well can hotspots be identified from a
crystal structure? An important contribution of a

solved structure of a complex is its ability to define inter-

face hotspots that upon mutation will change the inter-

action affinity and can therefore be used in experiments

to further characterize the functional importance of an

interaction, without affecting the proteins themselves

(e.g., their stability, active site, etc). As mentioned in the

introduction, different protocols have been developed to

reliably identify these hotspot residues at the interface of

a complex structure. How well do they perform on the

present set of peptide-protein complexes, and to what

degree do they agree among themselves?

Figure 2 shows that different protocols paint a rather

different picture of a given interaction. Indeed, while

predictions of Robetta and FoldX2.5.2 correlate to a cer-

tain degree (Spearman correlations of 0.63, p-val 0.024),

no significant correlation is observed between these two

protocols and mCSM (0.49 and 0.32, respectively) (Sup-

porting Information Table SI), perhaps reflecting the dif-

ferent basis of energy-based and structural feature

template-based protocols. Notably, applying the same

protocol to different structures of similar peptides bound

to the same receptor (T60-64) shows a more consistent

picture, indicating robustness of a given protocol (Sup-

porting Information Fig. S3).

Importantly however, the protocols tend to agree for

the residues for which experimental data is available

(Fig. 2, lower panels), in particular for the peptide motif

residues. All known peptide motif residues are identified

Figure 2
The effect of alanine mutations, as predicted by computational protocols applied to crystal structures. Shown are results for (A) T60, (B) T65, and

(C) T67. Upper panels: results for all interface residues, colored from blue to orange for predicted values in the range of [0.00. 2.00] (values beyond

are capped to this scale). Lower panels: results for hotspot residues only, colored orange, yellow and cyan for >1.45;>0.95 and the rest. X: value
not calculated. Fx: FoldX (versions 2.5 and 3), Rob and RS: Robetta and Rosetta scripts. Residue coloring: Experimentally tested receptor residues

that affect binding are colored in red (weaker effect in orange). Previously known peptide motif residues are highlighted in red, and those identified
in the studies that report the target structures are in orange. [Color figure can be viewed at wileyonlinelibrary.com]
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by all protocols; and only Valine at P 1 3’ which has

been shown to play an important role in binding specif-

icity, rather than binding affinity of the WW domain of

T67, is not consistently defined as a hotspot (VP 1 3’I

mutation changes affinity by two-fold; Tables (II–IV)41).

For importin (T60-64), all important residues but one

are identified by all protocols, but for Bacterial RNAse

(T65), the receptor residues involved in binding are often

missed.

While the mutation experiments presented in Tables

(II–IV) are not always to alanine, the calculated effect is

not very different: E396R (T60-64): predicted DDG 5 3.17

versus 3.38, V P 1 3’ I (T67): 0.13 versus 0.26, and P P-1’

S (T65): 1.68 versus 1.32 (as calculated using mCSM). In

summary, while predictions of hotspots based on crystal

structures vary among different protocols, the known

effects are more or less identified by all the protocols.

With this in hand, we proceeded to assess how well a

model would predict the same effects, compared to a

solved crystal structure.

Are models useful? How accurate do they need to be?

To assess the contribution of a model to our under-

standing of an interaction, we assess here three measures

that could provide information, building upon the cur-

rent CAPRI criteria. (1) S-RMSD—the accuracy of the

modeled side chains of residues at the interface. This

parameter focuses on the part of the peptide that con-

tributes significantly to specific binding. The most recent

CAPRI assessments already calculated this measure, but

only the backbone RMSD has been used for classifica-

tion. We investigate its use for high-resolution peptide

binding assessment (see also Lensink et al. in this

Figure 3
Correlation between different measures of model accuracy. Interface side-chain RMSD (S-RMSD) versus interface backbone RMSD (I-RMSD) for
models submitted to CAPRI (regression line in red) (A), and models generated by FlexPepDock refinement starting from the native structure (C).

Models are colored according to CAPRI classification (medium accuracy—green; acceptable model—blue; incorrect models—magenta), and Target:
0 - T60, X- T65, and w-T67. (B,D) Models suggested for reclassification, based on their accurate side chains (see text for more details; coloring as
in Fig. 1). [Color figure can be viewed at wileyonlinelibrary.com]
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issue)61; (2) fnathb—the fraction of recovered native

hydrogen bonds at the interface. This parameter captures

how well hydrogen bond networks that often characterize

the specific features of binding are recovered in a model

compared to a solved crystal structure; (3) Hotspot

recovery—the ability of a model to define the residues

that are critical for the interaction, both on the receptor

and the peptide.

Interface side-chain RMSD as a measure of model accura-
cy. The modeling accuracy of side chains is highly corre-

lated to that of the backbone (Spearman rank correlation

R 5 0.96; p-val 5 0, see Supporting Information Fig. S4).

Zooming in onto the low-rmsd region (where useful mod-

els are located), we can see deviations from the regression

line that highlight models defined as acceptable even

though their side-chain RMSD is rather high (up to 5 Å;

above the regression line) [Fig. 3(A)]. These occur mainly

for the importins, not surprisingly, given the long amino

acid residues that form the binding motif, and the fact

that the backbone could be modeled based on an available

structure. In turn, overall only few models lie significantly

below the regression line, and would be judged as incor-

rect, despite rather low comparative side-chain RMSD.

However, a range of acceptable models for T67 show min-

imal side-chain RMSD values, suggesting that these might

be reclassified as medium accuracy [see for example

T67_P09.M06 in Fig. 3(B)]. We suggest therefore to loos-

en the threshold for interface and ligand backbone RMSD,

in combination with a restriction to the allowed side-

chain RMSD. This would restrict the reclassification to

Figure 4
Correlation between different measures of model accuracy. Hydrogen bond recovery (fnathb) versus native contact recovery (fnat) for models sub-
mitted to CAPRI (A) and models obtained from local refinement runs (C). (B) Example of model that recovers all hydrogen bonds, but is ranked

as medium due to low native contact recovery (coloring as in Fig. 3). [Color figure can be viewed at wileyonlinelibrary.com]
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models with well-modeled side chains. A more robust

decision awaits the assessment on a larger set of Targets in

the future, which hopefully will also provide more models

of better quality. To inspect this higher-quality regime, we

have also looked into a set of models generated by our

FlexPepDock refinement protocol starting from the native

structures. The distinctly colored steps in the correspond-

ing correlation plot [Fig. 3(C)] indicate that each model

quality is characterized by a range of models of minimum,

similar side-chain accuracy, as well as more models of

lower accuracy, highlighting the overall robustness of the

current classification scheme that at least does not miss

any accurate model. Again, this might highlight the need

to refine accuracy criteria by including more models with

well-modeled side chains but borderline backbone RMSD

values. In particular, the plot also highlights some of the

T65 models of sub-Ångstr€om side-chain RMSD that are

still classified as medium accuracy [see example in Fig.

3(D)]. This indicates that CAPRI criteria might indeed be

too stringent in some cases, and inclusion of a combined

I-RMSD and S-RMSD criterion as suggested here might

be the way to generate a refined classification.

Recovery of interface characteristics—hydrogen bonds. While

CAPRI assesses the ability of a model to identify correct

interface contacts, no specific emphasis is put on those that

mediate hydrogen bonds, even though these often play a

significant role in determining binding affinity and specif-

icity.62–64 We therefore define a complementary parame-

ter, fnathb, to measure hydrogen bond recovery. This

parameter shows a good correlation with fnat, but also con-

siderable differences, both for the models submitted to

CAPRI [Fig. 4(A), spearman correlation r 5 0.76, p-

val< 0.001], as well as for local refinement runs [Fig. 4(C),

spearman correlation r 5 0.8, p-val< 0.001]. In particular

Figure 5
Even incorrect models can identify critical interface receptor and peptide hotspots. (A) Distribution of number of hotspots identified by incorrect

models. Number of models for which Robetta (blue), FoldX2.5.2 (cyan) or mCSM (yellow) were able to identify a given number of receptor
(upper) or peptide (lower row) binding residues for T60-64 (left), T65 (center) and T67 (right). Stars indicate performance of the corresponding

crystal structures. Performance based on crystal structures is highlighted as stars of the same respective color of the protocol. (B) Distribution for

acceptable and medium accuracy models. (C) Example model with high hotspot recovery but poor modeling quality (T62_P36.M04; taken from
the boxes outlined in red): While previously known hotspots KP1’RP2’ are correctly positioned (green and blue overlay), the rest of the peptide

extends to form non-native interactions using FP4’, which nevertheless still results in high hotspot recovery rate. [Color figure can be viewed at
wileyonlinelibrary.com]
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for importins, structures that barely recover any hydrogen

bond show a range of native contact recovery. Could

hydrogen bond recovery be used as an additional criterion

for model quality assessment? Figure 4(B) shows an exam-

ple model classified as medium (T67_P44.M03:

fnat 5 0.69, L-RMSD 5 1.9 Å, I-RMSD 5 1.29 Å, S-

RMSD 5 1.9 Å), where the fact that all hydrogen bonds

are recovered may suggest a reassignment to high accuracy

model. Overall however, the fnat measure is not the main

determinant of model classification in this set of targets,

and RMSD measures of model accuracy of for example

tail regions beyond the hydrogen bond network have a

larger impact.

Recovery of interface characteristics—interface hot-
spots. How similar to the crystal structure does a mod-

el need to be to detect interface hotspots? We examined

two different aspects of hotspots detection. First, we

asked how many hotspots does each model identify, and

second, we assessed “hit rates” for individual residues at

the interface—how often are they suggested hotspots.

Histograms of how many hotspots are recovered in

incorrect and acceptable/medium quality models [Fig.

5(A,B)] show that while as expected most models per-

form worse as starting point for hotspot residue identifi-

cation than the crystal structure, even among incorrect

models a considerable fraction retrieves as many, or

almost as many, hotspots. Thus it would seem that while

most models of a large conformational distance from the

native structure are unreliable for spotlighting important

aspects of a protein–peptide interaction, many of them

perform surprisingly well for hotspot identification.

To further assess this observation, we repeated this

analysis at the level of individual residues: For each

receptor and peptide residue, we counted how often it

was predicted to be a binding hotspot (i.e., a hit). Fig-

ure 6(A) shows the structure of the T65 receptor col-

ored according to hit-rate of receptor hotspots

identified in the ensemble of incorrect T65 models.

Indeed, while each of these models was classified as

incorrect, as an ensemble they map out three possible

binding pockets, among them the correct binding

pocket for the SSB peptide (in addition to the domi-

nant site which is involved in dimerization in the

solved structure, 4z0u,45 as mentioned already above).

Furthermore, within the correct binding pocket, most

hotspots are recovered (except K3 that is located in the

flexible n-terminal tail, data not shown). Thus, when viewed

collectively, incorrect models yield a surprising amount of

correct information. As for importin, hit-rate recovers both

known and new peptide motif residues [Fig. 6(B)], but not

for the right reason: While receptor residues involved in

binding of the basic motif are highlighted, hit-rates locate

the pocket to bind FP8’ in a wrong region [Fig. 6(C)].

Finally, for the WW domain, the new region is identified,

even if VP’13 is only marginally hit (not shown). We

conclude that hotspot recovery can be successful, albeit not

necessarily for the correct reason, even if an ensemble of

incorrect models is used.

Figure 6
Hitmaps reveal that incorrect models can identify important features of an

interaction. Hitmaps show how often each residue on the receptor (and
the peptide) is defined as hotspot in the ensemble of incorrect models sub-

mitted to CAPRI. (A) T65—blind prediction of a binding site: The hitmap
of the receptor surface shows a few suggested binding sites, including the

SSB binding site (circled), as well as a known dimerization site (square).

(B,C) T60-64—prediction of secondary motif for minor-site specific bind-
ing: The hitmap recovers previously known, as well as new peptide motif

residues (aroP4’ and FP8’) (B), but for the wrong reasons: A wrong bind-
ing site is mapped (square), while the pocket binding the FP8’ in the cor-

rect orientation is missed (circle) (C). The structures are colored from blue
(0) to red (maximum) by the number of times a receptor residue was

detected to be important for binding by FoldX2.5.2. Peptide is colored in

salmon and represented as sticks. [Color figure can be viewed at wileyonli-
nelibrary.com]
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DISCUSSION AND
CONCLUSIONS

Peptide-protein interactions are now recognized as

crucial players in many biological processes, and the

modeling of peptide–protein complex structures has

come of age. The last CAPRI rounds have included for

the first time targets of peptide–motif–receptor interac-

tions, and spurred the development of a range of new

approaches to address this particular challenge of the

structural modeling of interactions (see also other manu-

scripts in this issue). Overall, the peptide docking results

from these rounds look very promising and indicate a

rosy future for the modeling of the many peptide-

mediated interactions of biological relevance.

Here we have summarized successes and challenges of

the Furman group submissions that we generated using

the Rosetta FlexPepDock protocol, among the first dedi-

cated peptide docking protocols developed.13,14 We

have been able to create models of top-ranking accuracy,

in particular for the known peptide-motif regions, but

also beyond (T60-64, T67; Table V and Fig. 1). Thus, we

have demonstrated here in a blind setting that indeed, in

the regime of structural refinement starting from a given

template, FlexPepDock is able to produce highly accurate

models of an interaction. This was mainly due to the

choice of a good receptor template structure: namely, a

bound receptor conformation (even if this was a homo-

log, bound to a different peptide, as in the case of T67).

Challenges that we identified include exaggerated recep-

tor side-chain motility upon binding that is not observed

in natural structures of side chains at the interface, but

generates well-scoring, strong inter-chain stacking inter-

actions [Fig. 1(D)]. This issue can be addressed by

defined restriction and improved control of side-chain

moves during optimization. For blind predictions, where

the binding site of the peptide was not known (T65&66),

we used our PeptiMap protocol to identify possible pep-

tide binding sites on the receptor surface.15 Unfortunate-

ly, we could not report any success on the blind peptide

docking targets. For T66, we identified the reasons for

failure as the need for refined rules for separating the

structure into independent domain units that are

mapped separately. For T65, the challenge was to identify

a good template—with an open conformation of the

binding site. Thus, while we successfully identified a

good template for T67 [Fig. 1(A)], we failed to do so for

T65 [Fig. 1(E–G)]. This highlights the need for a more

robust protocol for template identification.

On a more general term, our experience in CAPRI

rounds 28 and 29 highlighted the need for a better protocol

to address global peptide docking, including possible new

directions. Several global docking protocols have recently

been developed that are able to identify the binding site

and generate models of variable accuracy, including the

global docking of pre-folded peptides,22,24,26,65,66 as well

as the search for conformations similar to existing peptide-

protein interactions.23,67 FlexPepDock can in principle serve

as the local refinement step of such global docking methods.

However, FlexPepDock refinement starting from such mod-

els still awaits proper calibration, both to bridge different

force fields used, as well as to extend its sampling space so

that local minima can be escaped more frequently, in favor

of other, nearby minima.

Directly mapping the receptor using peptide fragments

(extracted, e.g., from solved structures, as for the SSB c-

terminal peptide) provided encouraging results that did

identify the binding site. In a more general setting, these

fragments can be extracted from the PDB based on a

characterized peptide-binding motif, as implemented in

our recently developed PeptiDock protocol.

Defining a new challenge in CAPRI—here peptide

docking—necessitates also the definition of new mea-

sures of success. DockQ,68 a recently introduced measure

of model quality provides one continuous value in the

range [0,1], by combining the existing Fnat, L-RMSD

and I-RMSD measures. This measure is highly correlated

with current CAPRI categorization of models, with the

advantage of allowing the ranking of models within each

category. While such a criterion is superior to a discrete

division of models into categories, from our results, it

seems that additional parameters, rather than an

improved classification based on existing criteria, are

needed for better categorization. If the backbone is mod-

eled accurately, it is assumed that the side chains are ori-

ented correctly as well. This is however not necessarily

the case, as we have shown here. Thus, our alternative

suggestion is to use an additional criterion to assess the

model quality, which is not reflected in the present mea-

sures, be it as additional measure in the CAPRI scheme,

or as part of a combined measure as in DockQ.

We have used this opportunity to ask more generally

how accurate a model needs to be to reveal information

about the interaction in a similar way as a crystal struc-

ture does. While it is clear that for applications such as

drug design there is a need for atomic level accuracy, as

is reflected by the CAPRI criterion for high accuracy

models (Table I), it seems that for other applications,

less accurate models can contribute important informa-

tion as well, but this depends on the feature we want to

recover.

Hydrogen bond networks: As an example, in many

interactions, it is the polar interactions, in particular spe-

cific hydrogen bonds, which define not only binding affin-

ity, but also binding specificity (e.g.,69,70). Therefore,

recovery of hydrogen bond networks is a desirable feature

of any docking program, in particular for peptide–protein

docking. Here we have suggested a new measure, fnathb,

the fraction of recovered hydrogen bonds (according to

definition by HBplus53) to assess the hydrogen bond net-

work recovery in models. Our new measure is a subset of

the traditional contact measure, fnat, which does not

FlexPepDock Performance and New CAPRI Criteria
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distinguish between polar and nonpolar contacts. There-

fore, the fnathb measure would provide information partic-

ularly important for protein-peptide binding (Fig. 4).

Side chain modeling accuracy (as measured by S-

RMSD, as already described at the 6th CAPRI evaluation

meeting in Tel Aviv, http://www.cs.tau.ac.il/conferences/

CAPRI2016) is also a measure that could improve our

assessment of models: for peptides in particular, it is

important to evaluate how accurately the side chains are

positioned, and not only the backbone (I-RMSD) as has

been done until now. Our results suggest that loosening

the I-RMSD (and L-RMSD) stringency of the CAPRI cri-

teria, together with the introduction of S-RMSD in the

classification, will improve the detection of good models

and their separation from the rest [Fig. 3(B,D)].

Identification of interface hot spots is of critical

importance for further characterization of an interaction

by experiment, and also a good test for the accurate

modeling of interface energetics. While this challenging

task has not been solved yet, and no general protocol is

available that can reliably identify the hotspots in protein

complex interfaces, we still could evaluate how well pre-

diction works on models compared to crystal structures.

This would give us an indication of how well models can

replace tedious experimental work if the goal is to identi-

fy binding hotspots. It turns out that for this specific

task, the requirements on model accuracy are particularly

loose—it is even useful to use different methods for

model generation, and combine the ensemble of models

that are mostly incorrect to identify peptide residue hot-

spots—mostly those that are part of the binding

motif, as well as hotspots on the receptor. As we show in

Figures 2, 5 and 6, even though hotspot recovery can

vary considerably depending on the protocol used, and

in some cases be rather poor, models can be used often

to a similar degree to identify critical residues. The rea-

son for this observation stems from general features that

determine binding sites on a protein, which can be

detected by mapping of molecules—be it solvents, such

as in FTmap approaches71 (including PeptiMap15), or

larger peptides (such as in our new PeptiDock approach,

to be published). Thus, an approach to detect hotspots

based on the mapping of many (incorrect) models would

profit from the advantage of pooling information from

different, often orthogonal approaches (similar to meta

servers that learn to identify e.g., protein interfaces from

a pool of interface predictions obtained from other serv-

ers72). Results from this analysis can also provide a good

starting point for local refinement protocols, such as

Rosetta FlexPepDock, as described above.

Our study emphasizes the major challenges that we still

face in the accurate modeling of the energetics of binding

events, which most probably also involve accounting for

conformational energetics of the unbound states of the

partners. Furthermore, we can also rejoice in the fact that

many peptide–protein interactions might be amenable to

characterization by modeling, be it at high resolution—as

the current CAPRI round definitely proves—or at lower

resolution, to identify leads to further experimental char-

acterization of interactions by targeted, model-driven

mutagenesis.
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